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Abstract: In this article, we considered the analysis of data with a non-normally 

distributed response variable.  In particular, we extended an existing Area Under 

the Curve (AUC) regression model that handles only two discrete covariates to a 

general AUC regression model that can be used to analyze data with unrestricted 

number of discrete covariates.  Comparing with other similar methods which 

require iterative algorithms and bootstrap procedure, our method involved only 

closed-form formulae for parameter estimation.  Additionally, we also discussed 

the issue of model identifiability.  Our model has broad applicability in clinical 

trials due to the ease of interpretation on model parameters.  We applied our 

model to analyze a clinical trial evaluating the effects of educational brochures for 

preventing Fetal Alcohol Spectrum Disorders (FASD).  Finally, for a variety of 

simulation scenarios, our method produced parameter estimates with small biases 

and confidence intervals with nominal coverage probabilities. 

Key words: AUC; clinical trial; discrete covariates; nonparametric;semiparametric. 

1. Introduction

Linear models are commonly used to assess the association between a continuous response 

variable and a set of covariates. Such models are flexible in that model terms can be continuous 

or discrete covariates as well as interactions among these covariates.  Despite many advantages 

of using linear models, there are data sets where linear models may not be appropriate to apply. 

For example, data sets exist where the response variables are not normally distributed.  Even 

with transformations, the transformed response variables may still be non-normally distributed.  

For these data sets, statistical methods other than linear models are desired.  

Nonparametric statistical methods are routinely used to analyze continuous response 

variables when linear models are inappropriate to use.  Many nonparametric methods are rank-

based and therefore are applicable not only to continuous but also to ordinal response variables.  

The Wilcoxon-Mann-Whitney test  can be performed for comparing non-normal responses 

between two treatment groups (Mann & Whitney, 1947; Wilcoxon, 1945).  The test does not 

make normality assumption and loses only a small amount of power as compared with the two-
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sample t-test even when the normality assumption holds.  However, this test cannot adjust for 

any other covariates, which limits its use in applications where additional covariates are 

available for analysis.  In situations where a stratum effect exists, where the stratum is defined 

by one discrete covariate or combinations of several discrete covariates, the van Elteren test can 

be conducted to compare the response variable between two groups while adjusting for the 

stratum effect (Van Elteren, 1960).  However, in more complex scenarios, the van Elteren test 

is no longer applicable. For example, this test is unable to handle the interaction between the 

treatment and the stratum effect. 

In many applications, comparing two groups while adjusting for multiple covariates is 

desired for the statistical analysis.  For instance, in clinical trials, adjusting for covariates is a 

necessary aspect of the statistical analysis in order to improve the precision of the treatment 

comparison and to assess effect modification. For this type of data and in the context of 

nonparametric methods, Dodd and Pepe (2003) and  Brumback, Pepe, and Alonzo (2006) used 

the area under the curve (AUC) regression model to compare two treatment groups while 

adjusting for continuous and/or discrete covariates.  Their method applied the logistic 

regression model on a derived binary outcome variable with correlate values for parameter 

estimation and then the bootstrap method for standard error estimation.  However, the bootstrap 

method involved heavy computation and did not produce an explicit analytical solution for the 

standard error estimation.  In addition, although their method can be used to adjust for 

continuous covariates, they did not provide a method for checking the linearity assumption 

between the logits and the continuous covariates.  Therefore, their method could lead to bias 

when the linearity between the logits and the continuous covariates does not hold. 

Recently, new methods have also been developed to perform the AUC regression that can 

adjust for covariate effects. A non-parametric AUC regression method adjusting for a 

continuous covariate was proposed by (Rodríguez-Á lvarez, Roca-Pardiñas, & Cadarso-Suárez, 

2011).  However, a bootstrap method must be used for testing the effect of the covariate on the 

Receiver Operating Characteristic (ROC) curves with the proposed method. In addition, this 

methodology can adjust for only one continuous covariate and not for a discrete covariate or for 

a combination of both.  (Rajan & Zhou, 2012) proposed a semiparametric AUC regression 

method for ordinal data that can account for both discrete and continuous covariates. They used 

a log link function and estimating equations for model estimation. With this method, the 

empirical variance-covariance matrix for parameter estimates was based on additional 

distributional assumption and thus, was difficult to calculate and needed to be calculated using 

a bootstrap method.  Similar to Dodd and Pepe (2003) and  Brumback et al. (2006), no method 

for checking the linearity assumption between the logits and the continuous covariates was 

provided. Moreover, additional contributions to the development of AUC models are recently 

added to the literature (Branscum, Johnson, Hanson, & Baron, 2015; Inacio de Carvalho, Jara, 

E. Hanson, & de Carvalho, 2013; Rodríguez & Martínez, 2014). Although these studies focus

on the semiparametric AUC models, they use either Bayesian approach or do not directly

address the issue mentioned above. In addition, a recent study attempted to extend the AUC

regression model to a case for ordered multiple treatment levels as an alternative hypothesis
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using the Jonckheere-Terpstra statistic (Buros, Tubbs, & Van Zyl, 2016). There are other 

methods developed with ROC curves for correlated measures for example, Gao, Xiong, Yan, 

Yu, and Zhang (2008) and Liu, Li, Cumberland, and Wu (2005), but these methods are  either 

computationally extensive or impose additional distributional assumptions. 

For data sets with discrete covariates, but no continuous covariates, a semiparametric AUC 

regression method that used a set of AUC estimates for obtaining parameter estimates and 

combined Delong’s method and the delta method for computing parameter standard errors was 

proposed by (Zhang, Zhao, & Tubbs, 2011).  Their method was computationally simple based 

on closed-form parameter and standard error estimation. However, (Zhang et al., 2011) applied 

their new algorithm for estimating parameters and standard errors for the AUC regression 

model with only two discrete covariates, which led to the initiation of our research. Therefore, 

in this article, we intend to extend the semiparametric AUC regression model developed by 

(Zhang et al., 2011) to a general framework that can adjust for any number of categorical 

covariates and their interactions.  

The remainder of the paper is organized as follows.  In Section 2, we describe our model 

and derive the estimation method.  In Section 3, we conduct simulation studies to assess the 

performance our method under various simulation scenarios.  We illustrate the application of 

our method and interpretation of our model results using a clinical trial. We provide a 

discussion of issues on using our method in Section 5. 

2. Methods

2.1 Models 

We consider applications that compare a response variable y between two groups (A and B) 

while adjusting for k categorical covariates𝑋1, 𝑋2, … , 𝑋𝑘 .  The response variable y is a

continuous or ordinal variable that is not necessarily normally distributed.  Without loss of 

generality, we assume each covariate is coded such that 𝑋𝑖 = 1,… , 𝑛𝑖, for 𝑖 = 1,… , 𝑘. For

each combination of the levels of the covariates, we define the Area Under the ROC curve 

(AUC) in the following way: 

𝜋𝑥1𝑥2… 𝑥𝑘 = 𝑃(𝑌
𝐴 > 𝑌𝐵|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑘 = 𝑥𝑘)

+
1

2
𝑃(𝑌𝐴 = 𝑌𝐵|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑘 = 𝑥𝑘)

where 𝑥1 = 1,… , 𝑛1, … , 𝑥𝑘 = 1,… , 𝑛𝑘, and 𝑌𝐴  and 𝑌𝐵 are two randomly chosen

observations from Group A and B, respectively.  The second term in the above equation is for 

the purpose of accounting for ties. 

For each covariate 𝑋𝑖, without loss of generality, we use the last category as the reference

category and define 𝑛𝑖 − 1  dummy variables 𝑋𝑖
(1)
, 𝑋𝑖

(2)
, … , 𝑋𝑖

(𝑛𝑖−1) such that
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𝑋𝑖
(𝑗)(𝑥) = {

1, 𝑗 = 𝑥
0, 𝑗 ≠ 𝑥

 

where 𝑖 = 1, … , 𝑘;  𝑗 = 1, … , 𝑛𝑖 − 1;  𝑥 = 1, … , 𝑛𝑖. We model the association 

between AUC 𝜋𝑥1𝑥2… 𝑥𝑘 and covariates using a logistic model.  Such a model specifies 
that the logit of 𝜋𝑥1𝑥2…𝑥𝑘  is a linear combination of terms that are products of the 
dummy variables defined above.  Specifically, 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑥1𝑥2…𝑥𝑘) = 𝒁𝑥1𝑥2…𝑥𝑘𝜷

where 𝒁𝑥1𝑥2…𝑥𝑘  is a row vector whose elements are zeroes or ones and are products of

𝑋1
(1)(𝑥1),… , 𝑋1

(𝑛𝑖−1)(𝑥1),… , 𝑋𝑘
(1)(𝑥𝑘),… , 𝑋𝑘

(𝑛𝑘−1)(𝑥𝑘), and 𝜷 is a column vector of nonrandom

unknown parameters.  Now, define a column vector 𝝅 by stacking up 𝜋𝑥1𝑥2…𝑥𝑘 and define a

matrix 𝒁 by stacking up 𝑍𝑥1𝑥2…𝑥𝑘, as 𝑥𝑖 ranges from 1 to 𝑛𝑖, 𝑖 = 1,… , 𝑘, so that our final model

is 

𝑙𝑜𝑔𝑖𝑡(𝝅) = 𝒁𝜷                                                           (1) 

The reason for us to use a logit transformation of the AUC instead of using the original 

AUC is for variance stabilization.  We will illustrate the above general model using examples. 

2.2 Examples 

Consider as an example with only one covariate 𝑋1  with 𝑛1 = 3  categories. The last

category is the reference category. The above general formula can be applied to this specific 

example as follows. 

𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖) =  𝛽0 + 𝛽1𝑋1
(1)
(𝑖) + 𝛽2𝑋1

(2)
(𝑖),

where 𝑖 = 1, 2, 3, 

𝑋1
(1)(𝑖) = {

1, 𝑖𝑓 𝑖 = 1

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

𝑋1
(2)(𝑖) = {

1, 𝑖𝑓 𝑖 = 2
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

And, 

𝑍𝑖 = (1, 𝑋1
(1)(𝑖), 𝑋1

(2)
(𝑖)

The matrix form of π, Z, and β can be expressed as follows; 
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𝝅3×1= (

𝜋1
𝜋2
𝜋3
), 𝒁3×3= (

1 1 0
1 0 1
1 0 0

), 𝜷3×1=(

𝛽0
𝛽1
𝛽2

) . 

From this formulation, we see that 𝛽1 = 𝛽2 = 0 implies no interaction exists between the

group variable and covariate 𝑋1. If additionally 𝛽0 = 0, then there is no difference between two

groups in the response variable, 𝑌. 

Considering another example where 𝑘 = 2, 𝑛1 = 2, 𝑛2 = 3, and no interaction between two

covariates 𝑋1 and 𝑋2 exists, we obtain the following model;

𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖𝑗) =  𝛽0 + 𝛽1𝑋1
(1)(𝑖) + 𝛽2𝑋2

(1)(𝑗) + 𝛽3𝑋2
(2)(𝑗),

where  i = 1, 2, j = 1, 2, 3, 

𝑋1
(1)(𝑖) = {

1, 𝑖𝑓 𝑖 = 1
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑋2
(1)(𝑗) = {

1, 𝑖𝑓 𝑗 = 1
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑋2
(2)(𝑗) = {

1, 𝑖𝑓 𝑗 = 2
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

And, 

𝑍𝑖𝑗 = (1, 𝑋1
(1)(𝑖), 𝑋2

(1)(𝑗), 𝑋2
(2)
(𝑗)

The matrix form of π, Z, and β can be expressed as follows; 

𝜷4×1 =(

𝛽0
𝛽1
𝛽2
𝛽3

) . 

1 1 1 0
1 1 0 1( ) ,6×4= 1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

11
12( ) ,6×1 = 13
21
22
23

When k=2,n1=2,n2=3 and there exists an interaction between two covariates X1 and X2, we 

obtain the following model 
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𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖𝑗) =  𝛽0 + 𝛽1𝑋1
(1)(𝑖) + 𝛽2𝑋2

(1)(𝑗) + 𝛽3𝑋2
(2)(𝑗) + 𝛽4{𝑋1

(1)(𝑖) ∗ 𝑋2
(1)(𝑗)}

+ 𝛽5{𝑋1
(1)(𝑖) ∗ 𝑋2

(2)(𝑗)},
where 

𝑍𝑖𝑗 = (1, 𝑋1
(1)(𝑖), 𝑋2

(1)(𝑗), 𝑋2
(2)(𝑗), 𝑋1

(1)(𝑖) ∗ 𝑋2
(1)(𝑗), 𝑋1

(1)(𝑖) ∗ 𝑋2
(2)(𝑗))

The matrix form of π, Z, and β can be expressed as follows, 

11
12( ) ,6×1 = 13
21
22
23

1 1 1 0 1 0
1 1 0 1 0 1(6×6 = 1 1 0 0 0 0 ) ,1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 0

0

1( ) .6×1 = 2

3

4

5

2.3 Estimation 

First, we denote the number of observations with covariates 𝑋1 = 𝑖1, … , 𝑋𝑘 = 𝑖𝑘 in groups

A and B by 𝑁𝑖1… 𝑖𝑘
𝐴  and 𝑁𝑖1… 𝑖𝑘

𝐵 , respectively.  We assume both 𝑁𝑖1… 𝑖𝑘
𝐴  and 𝑁𝑖1… 𝑖𝑘

𝐵  are greater

than zero in the following development.  An unbiased estimator of 𝜋𝑖1… 𝑖𝑘 proposed by (Mann

& Whitney, 1947) is 

�̂�𝑖1… 𝑖𝑘 =
∑ ∑

𝑁𝑖1… 𝑖𝑘
𝐵

𝑗=1

𝑁𝑖1… 𝑖𝑘
𝐴

𝑙=1 𝐼𝑙𝑗

𝑁𝑖1… 𝑖𝑘
𝐴 𝑁𝑖1… 𝑖𝑘

𝐵

where 

𝐼𝑖1… 𝑖𝑘; 𝑙𝑗 =

{

1, 𝑌𝑖1… 𝑖𝑘; 𝑙
𝐴 > 𝑌𝑖1… 𝑖𝑘; 𝑗

𝐵 ,

1

2
, 𝑌𝑖1… 𝑖𝑘; 𝑙

𝐴 = 𝑌𝑖1… 𝑖𝑘; 𝑗
𝐵 ,

0, 𝑌𝑖1… 𝑖𝑘; 𝑙
𝐴 < 𝑌𝑖1… 𝑖𝑘; 𝑗

𝐵 .

 

And 𝑌𝑖1… 𝑖𝑘; 𝑙
𝐴 and 𝑌𝑖1… 𝑖𝑘; 𝑗

𝐵 are observations with 𝑋1 = 𝑖1, … , 𝑋𝑘 = 𝑖𝑘  in groups A and B,

respectively. It is shown by (DeLong, DeLong, & Clarke-Pearson, 1988) that 

�̂�𝑖1… 𝑖𝑘 ∼̇ 𝑁(𝜋𝑖1… 𝑖𝑘 , 𝜎𝑖1… 𝑖𝑘
2 ) 

In order to obtain an estimator for 𝜎𝑖1… 𝑖𝑘
2 , they first computed 

𝑉𝑖1… 𝑖𝑘; 𝑙
𝐴 =

1

𝑁𝑖1… 𝑖𝑘
𝐵 ∑ 𝐼𝑙𝑗,

𝑁𝑖1… 𝑖𝑘
𝐵

𝑗=1
 𝑙 = 1, … , 𝑁𝑖1… 𝑖𝑘

𝐴
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and 

𝑉𝑖1… 𝑖𝑘;𝑗
𝐵 =

1

𝑁𝑖1… 𝑖𝑘
𝐴 ∑ 𝐼𝑙𝑗 ,

𝑁𝑖1… 𝑖𝑘
𝐴

𝑙=1  𝑗 = 1,… ,𝑁𝑖1… 𝑖𝑘
𝐵 . 

Then, an estimate of the variance of the nonparametric AUC was 

�̂�𝑖1… 𝑖𝑘
2 =

(𝑠𝑖1… 𝑖𝑘
𝐴 )

2

𝑁𝑖1… 𝑖𝑘
𝐴 +

(𝑠𝑖1… 𝑖𝑘
𝐵 )

2

𝑁𝑖1… 𝑖𝑘
𝐵 , 

where (𝑠𝑖1… 𝑖𝑘
𝐴 )

2
and (𝑠𝑖1… 𝑖𝑘

𝐵 )
2
 were the sample variances of (𝑉𝑖1… 𝑖𝑘; 𝑙

𝐴 : 𝑙 = 1,… ,𝑁𝑖1… 𝑖𝑘
𝐴 and 

𝑉𝑖1… 𝑖𝑘;𝑗
𝐵 : 𝑗 = 1,… ,𝑁𝑖1… 𝑖𝑘

𝐵 , respectively.  Clearly, we need both 𝑁𝑖1… 𝑖𝑘
𝐴 and 𝑁𝑖1… 𝑖𝑘

𝐵  are greater 

than two in order to compute �̂�𝑖1… 𝑖𝑘
2 . 

Now, in order to estimate parameters in Model (1), we first derive the asymptotic variance 

of 𝛾𝑖1… 𝑖𝑘  using the delta method, which results in

𝛾𝑖1… 𝑖𝑘 = 𝑙𝑜𝑔𝑖𝑡(�̂�𝑖1… 𝑖𝑘) ∼̇ 𝑁{𝑙𝑜𝑔𝑖𝑡(𝜋𝑖1… 𝑖𝑘), 𝜏𝑖1… 𝑖𝑘
2 }, 

where 𝜏𝑖1… 𝑖𝑘
2 =

𝜎𝑖1… 𝑖𝑘
2

�̂�𝑖1… 𝑖𝑘
2 (1−�̂�𝑖1… 𝑖𝑘)

2  and can be estimated by �̂�𝑖1… 𝑖𝑘
2 =

�̂�𝑖1… 𝑖𝑘
2

�̂�𝑖1… 𝑖𝑘
2 (1−�̂�𝑖1… 𝑖𝑘)

2

Rewriting the above model, we obtain 

𝛾𝑖1… 𝑖𝑘 = 𝑙𝑜𝑔𝑖𝑡(�̂�𝑖1… 𝑖𝑘) = 𝑍𝑖1… 𝑖𝑘𝜷 + 𝜖𝑖1… 𝑖𝑘

where, 𝜖𝑖1,…,𝑖𝑘 ∼ 𝑁(0, �̂�𝑖1,…,𝑖𝑘
2 ).  Then, by stacking up the 𝛾1𝑖,…,𝑖𝑘  to be �̂�, 𝑍𝑖1… 𝑖𝑘  to be 𝒁,

and 𝜖𝑖1,…,𝑖𝑘 to be 𝝐, we have

�̂� = 𝑙𝑜𝑔𝑖𝑡 �̂� = 𝒁𝜷 + 𝝐 

where, 𝐸(𝜖) = 0 and T̂ = 𝑉𝑎𝑟(𝝐) = 𝑑𝑖𝑎𝑔(�̂�𝑖1,…,𝑖𝑘
2 ) which is a diagonal matrix.  Finally, by 

using the generalized least squares method, we estimate the parameters 𝜷  and its variance-

covariance matrix as follows; 

�̂� = (𝒁′ �̂�−𝟏 𝒁)
−𝟏
𝒁′ �̂�−𝟏 �̂�

and 

�̂�(�̂�) = (𝒁′ �̂�−𝟏𝒁)
−𝟏

The above equations can be used to construct a 100(1 − 𝛼)% Wald confidence intervals 

for 𝜷𝒊 using formula
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�̂�𝑖 ± 𝑍1−𝛼/2√�̂�(�̂�𝑖) ,

Where, 𝑍1−𝛼/2 is the (1 − 𝛼/2)𝑡ℎ quantile of the standard normal distribution.

;
𝐴

;
𝐵

Equivalently, we reject 𝐻0: 𝛽𝑖 = 0 if |�̂�𝑖| > 𝑍1−𝛼/2√�̂�(�̂�𝑖) . The p-value for testin       g  𝐻0 is

2𝑃 (|𝑍| > |�̂�𝑖|/√�̂�(�̂�𝑖)), where 𝑍 is a random variable with the standard normal distribution.

Now, the total number of cells (combinations of covariates 𝑋1, … , 𝑋𝑘 ) is 𝑛1𝑛2 ⋯ 𝑛𝑘 . As 
mentioned earlier, for a cell to be usable in the estimation, the cell needs to have at least two 

observations from Group A and two observations from Group B.  As long as the total number 

of usable cells is larger than the dimension of 𝜷, then the matrix 𝒁′ �̂�−𝟏 𝒁 is invertible and 
consequently, �̂� is computable and model (1) is identifiable.

3. Simulation

We conducted simulation studies to assess the performance of our new model estimation 

method under various scenarios.  For each simulation scenario, we generated 10,000 data sets.  

For each dataset, we computed the parameter estimates, variance estimates, and 95% CIs for 

the parameters according to the method derived in the previous chapter.  Then, for each 

parameter, the bias was calculated as the average of the 10,000 parameter estimates subtracting 

the true parameter value, and the coverage probability was calculated as the proportion of the 

10,000 95% CIs that cover the true parameter value. 

Two models were used to generate data.  One discrete covariate was used for the first 

model, and two discrete covariates were used for the second model.  We aim to generate a 

response variable and covariates that satisfy model (1).  For this purpose, we will use the 

following proposition:  let 𝑌𝐴 = −log  (𝑢𝐴) + logit (𝜋) and 𝑌𝐵 = − log  (𝑢𝐵), where 𝑢𝐴  and 
𝑢𝐵 are independent random variables with an exponential(1) distribution, then 𝑃(𝑌𝐴 > 𝑌𝐵) = 
𝜋. 

For the first model, we considered one covariate with three levels.  The general model (1) 

in this case can be written as 𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖) = 𝛽0 + 𝛽𝑖, where 𝑖 = 1, 2, 3.  In order to generate data 
satisfying this model, by the proposition above, we generated 𝑌𝑖 𝑗 = − log  (𝑢𝑖𝐴;𝑗) + 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖)
and 𝑌𝑖 𝑙 = − log  (𝑢𝑖𝐵;𝑙) , where 𝑖 = 1, 2, 3 ; 𝑗 = 1, … , 𝑛𝐴 ; 𝑙 = 1, … , 𝑛𝐵 , and {𝑢𝑖

𝐴
;𝑗, 𝑢𝑖𝐵;𝑙: 𝑖 = 

1, 2, 3;  𝑗 = 1, … , 𝑛𝐴;  𝑙 = 1, … , 𝑛𝐵} was a set of mutually independent random variables with 
exponential(1) distribution.  For numerical values of the parameters, we set 𝛽1 to be zero so that 
level 1 was the reference level.  Two sets of parameter values: (1) 𝛽0 = 0.15, 𝛽2 = 0.50, 𝛽3 = 
1.00, (2) 𝛽0 = 0.10, 𝛽2 = 0.30, 𝛽3 = 1.20, and three sets of sample sizes: (1) 𝑛𝐴=14, 𝑛𝐵=16,

(2) 𝑛𝐴=36, 𝑛𝐵=30, and (3) 𝑛𝐴=100, 𝑛𝐵=120, were used in the simulations for the first model.

For the second model, we considered two discrete covariates one with two levels and the

other with three levels.  The general model (1) in this case can be written as 𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖𝑗) = 𝛽0 +
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𝛽𝑖 + 𝛽𝑗  and examples include 𝑙𝑜𝑔𝑖𝑡 (𝜋11) = 𝛽0 + 𝛽1 + 𝛽2 , 𝑙𝑜𝑔𝑖𝑡 (𝜋12) = 𝛽0 + 𝛽1 + 𝛽3 ,

𝑙𝑜𝑔𝑖𝑡 (𝜋21) = 𝛽0 + 𝛽2, and 𝑙𝑜𝑔𝑖𝑡 (𝜋23) = 𝛽0.  Note that this model regards last level of both

covariates as the reference level.  In order to generate data satisfying this model, by the 

proposition above, we generated 𝑌𝑖𝑚;𝑗
𝐴 = − log (𝑢𝑖𝑚;𝑗

𝐴 ) + 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑚)  and 𝑌𝑖𝑚;𝑙
𝐵 =

− log (𝑢𝐵𝑖𝑚;𝑙) , where 𝑖 = 1, 2 ; 𝑚 = 1, 2,3 ; 𝑗 = 1, … , 𝑛𝐴 ; 𝑙 = 1, … , 𝑛𝐵 , and {𝑢𝐴𝑖𝑚;𝑗, 𝑢𝐵𝑖𝑚;𝑙: 𝑖 =
1, 2; 𝑚 = 1,2,3;  𝑗 = 1, … , 𝑛𝐴;  𝑙 = 1, … , 𝑛𝐵}  was a set of mutually independent random 
variables with exponential(1) distribution. Two sets of parameter values: (1) 𝛽0 = 0.15, 𝛽1 = 
0.70, 𝛽2 = 0.50, 𝛽3 = 1, (2) 𝛽0 = 0.10 , 𝛽1 = 0.40, 𝛽2 = 0.80, 𝛽3 = 1.5 , and three sets of sample

sizes: (1) 𝑛𝐴 = 25, 𝑛𝐵 = 30, (2) 𝑛𝐴 = 50, 𝑛𝐵 = 60, and (3) 𝑛𝐴 = 100, 𝑛𝐵 = 120, were used in the

simulations for the second model. 

Tables 1 and 2 present the true parameter values, parameter estimates (calculated as the 

average of the 10,000 simulations), biases, and coverage probabilities of the 95% CIs for the 

two models, respectively.  For both models with various sample sizes and different sets of true 

parameter values, our estimation procedure produced estimates with small biases.  In addition, 

the 95% CIs have coverage probabilities close to the nominal level.  As expected, the biases 

decrease and the coverage probabilities get closer to the nominal level as the sample sizes 

increase. In addition, as sample sizes increase, the distribution of parameter estimates gets 

closer to normal distribution. 



338 General Semiparametric Area Under the Curve Regression Model with Discrete Covariates

Table 1: Parameter estimates, biases, and 95% CIs for the model with one discrete covariate 

n Parameter 

True Value 

(𝛽𝑖)

Estimate 

(�̅�𝑖) 

Bias 

(�̅�𝑖 − 𝛽𝑖)

Coverage 95% CI 

𝑛𝐴=14,

𝑛𝐵=16

𝛽0 0.15 0.1575 0.0075 0.9640 

𝛽2 0.5 0.5351 0.0351 0.9601 

𝛽3 1.0 1.0559 0.0559 0.9582 

𝑛𝐴=36,

𝑛𝐵=30

𝛽0 0.15 0.1563 0.0063 0.9571 

𝛽2 0.5 0.5079 0.0079 0.9543 

𝛽3 1.0 1.0249 0.0249 0.9543 

𝑛𝐴=100,

𝑛𝐵=120

𝛽0 0.15 0.1517 0.0017 0.9517 

𝛽2 0.5 0.5036 0.0036 0.9494 

𝛽3 1.0 1.0099 0.0099 0.9539 

𝑛𝐴=14,

𝑛𝐵=16

𝛽0 0.1 0.1043 0.0043 0.9613 

𝛽2 0.3 0.3183 0.0183 0.9565 

𝛽3 1.2 1.2833 0.0833 0.9570 

𝑛𝐴=36,

𝑛𝐵=30

𝛽0 0.1 0.0994 -0.0006 0.9549 

𝛽2 0.3 0.3106 0.0106 0.9544 

𝛽3 1.2 1.2370 0.0370 0.9541 

𝑛𝐴=100,

𝑛𝐵=120

𝛽0 0.1 0.1002 0.0002 0.9501 

𝛽2 0.3 0.3029 0.0029 0.9505 

𝛽3 1.2 1.2112 0.0112 0.9492 
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Table 2: Parameter estimates, biases, and 95% CIs for the model with two discrete covariates. 

n Covariate Parameter 

True 

Value 

(𝛽𝑖)

Estimate 

(�̅�𝑖) 

Bias 

(�̅�𝑖 − 𝛽𝑖)

Coverage 

95% CI 

𝑛𝐴=25,

𝑛𝐵=30

𝛽0 0.15 0.1540 0.0040 0.9597 

X1 

𝛽1
0.7 

0.7076 0.0076 0.9594 

X2 

𝛽2 0.5 0.5021 0.0021 0.9549 

𝛽3 1.0 1.0166 0.0166 0.9554 

𝑛𝐴=50,

𝑛𝐵=60

𝛽0 0.15 0.1534 0.0034 0.9566 

X1 

𝛽1
0.7 0.7071 0.0071 0.9524 

X2 

𝛽2 0.5 0.4977 -0.0023 0.9534 

𝛽3 1.0 1.0041 0.0041 0.9541 

𝑛𝐴=100,

𝑛𝐵=120

𝛽0 0.15 0.1505 0.0005 0.9510 

X1 

𝛽1
0.7 0.6994 

-0.0006
0.9497 

X2 

𝛽2 0.5 0.5014 0.0014 0.9515 

𝛽3 1.0 1.0028 0.0028 0.9532 

𝑛𝐴=25,

𝑛𝐵=30

𝛽0 0.1 0.1032 0.0032 0.9595 

X1 

𝛽1
0.4 0.4036 0.0036 0.9577 

X2 

𝛽2 0.8 0.8087 0.0087 0.9575 

𝛽3 1.5 1.5242 0.0242 0.9560 
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𝑛𝐴=50,

𝑛𝐵=60

𝛽0

0.1 0.1008 0.0008 0.9548 

X1 𝛽1 0.4 0.4050 0.0049 0.9524 

X2 

𝛽2 0.8 0.8081 0.0081 0.9557 

𝛽3 1.5 1.5158 0.0158 0.9537 

𝑛𝐴=100,

𝑛𝐵=120

𝛽0 0.1 0.0996 -0.0005 0.9514 

X1 

𝛽1
0.4 0.4013 0.0013 0.9502 

X2 

𝛽2 0.8 0.8030 0.0030 0.9523 

𝛽3 1.5 1.5089 0.0089 0.9535 

4. Example

To illustrate how to apply the proposed method, we obtained data from a randomized and 

controlled clinical trial, which was designed to increase knowledge and awareness to prevent 

Fetal Alcohol Spectrum Disorders (FASDs) in children through the development of printed 

materials targeting women of childbearing age in Russia. The study objective was to evaluate 

effects of FASDs education brochures with different types of information and visual images on 

knowledge, attitudes, and alcohol consumption among women of childbearing age. The study 

was conducted in two regions in Russia including St. Petersburg (SPB) and the Nizhny 

Novgorod Region (NNR) in 2007-2008. 

A total of 422 women were recruited from 20 women’s clinics in St. Petersburg and the 

Nizhny Novgorod Region in Russia and were randomly assigned to one of three groups 

(defined by the GROUP variable): (1) a printed FASD prevention brochure with positive 

images and information stated in a positive way, positive group (PG) (n=141), (2) a FASD 

education brochure with negative messages and vivid images, negative group (NG) (n=141), 

and (3) a general health material, control group (CG) (n=140). Each study participant received 

one of three printed education brochures in accordance with her group assignment. For the 

purpose of the analysis in this article, only women in the PG and CG were included. A 

structured interview to assess women’s alcohol consumption, knowledge about prenatal effects 

of alcohol, FASDs, and attitudes to drinking during pregnancy was designed for the study at 

baseline. At a one-month follow-up, women in all three groups completed a face-to-face 
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structured interview of self-reported alcohol consumption, knowledge about prenatal effects of 

alcohol and FASD, and attitudes to drinking during pregnancy. Data were obtained from the 

study principal investigators. The response variable was the change in the number of drinks per 

day (CHANGE_DRINK=number of drinks after-number of drinks before) on average in the 

last 30 days from one-month follow-up to baseline. Two covariates considered for the proposed 

method were “In the last 30 days, have you smoked cigarettes?” (SMOKE) and  “In the last 30 

days, did you take any other vitamins?” (OVITAMIN). Both covariates had “Yes” or “No” as 

the two levels. The question of interest here was to assess the joint predictive effects of 

SMOKE and OVITAMIN on whether the participants reduced the number of drinks per day 

from baseline to one month follow-up period. A total of 210 women with no missing data on 

any of the CHANGE_DRINK, SMOKE, GROUP, and OVITAMIN were included in the 

analysis. 

The response variable CHANGE_DRINK was heavily skewed and not normally distributed 

in each group  (Shapiro-Wilk p<0.001). Therefore, we decided to use the AUC regression 

model to analyze the data.  In the AUC regression model we define π=P(YCG>YPG).  Note that a 

π of greater than .5 means that women in the PG had a greater reduction of alcohol drinks than 

those in the CG. For statistical results, all p-values < .05 were considered statistically 

significant and 95% CIs were presented. 

We first fit an AUC regression model including both main effects of the covariates.  Note 

that the main effects of the covariates in fact represented their interactions with the GROUP 

variable, which is different than the linear or generalized linear model frame.  The reason is that 

the GROUP variable is involved in defining the AUC.  Table 3 presents the parameter estimates, 

SEs, p-values, and 95% CIs.  Because parameter β2 was not significantly different from 0, we 

dropped OVITAMIN and fit another model including only the SMOKE main effect.Table 4 

shows a significant interaction between SMOKE and GROUP because the SMOKE was 

statistically significant (95% CI: (0.056, 1.478)). Therefore, the final model was 

logit(π(SMOKE))=�̂�0 + �̂�1𝐼 (SMOKE=Yes). Because the interaction between SMOKE and 
GROUP was significant, we need to use AUC as a measure of the GROUP effect on 

CHANGE_DRINK for smokers and non-smokers separately.  Specifically, the AUCs were 

0.537 (insignificant) and 0.713 (significant) for non-smokers and smokers, respectively.  This 

implies that the effect of positive and control brochures were similar for nonsmokers; however, 

for smokers, the probability that the positive brochure had a better effect than the control 

brochure in terms of alcohol reduction is 71.30%, indicating the positive brochure is a better 

option than the control brochure. 

̂
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Table 3: Parameter estimates and 95% confidence interval obtained using the proposed method for 

the FAS clinical trial example data* (n=210) with SMOKE and OVITAMIN as main effects. 

Parameter Level Estimate SE 95% CI p 

�̂�0 Intercept 0.103 0.197 (-0.284, 0.490) 0.600 

�̂�𝟏 SMOKE = Yes 0.743 0.369 (0.021, 1.466) 0.044 

�̂�2 OVITAMIN = Yes 0.219 0.338 (-0.444, 0.881) 0.517 

*Development of Education Materials for Prevention of FAS in Russia was supported by the Centers

for Disease Control and Prevention (CDC), National Center on Birth Defects and Developmental

Disabilities (NCBDDD) through a cooperative agreement with the Association of University Centers on

Disabilities (AUCD), Grants Number AUCD RTOI 2005-999-01 and RTOI 2005-999-01 to Barbara

Bonner, PhD and Tatiana Balachova, PhD at OUHSC.

Table 4: Parameter estimates and 95% confidence interval obtained using the proposed method for 

the FAS clinical trial example data (n=210) with SMOKE as main effect. 

Parameter Level Estimate SE 95% CI �̂�* (95 % CI) p 

�̂�0 Intercept 0.143 0.168 (-0.185, 0.471) 

�̂�𝑁𝑆 = 0.537 

(0.454, 0.616) 

0.393 

�̂�𝟏

SMOKE = 

Yes 

0.767 0.363 (0. 056, 1.478) 

�̂�𝑺 = 𝟎. 𝟕𝟏𝟑

(0.514, 0.814) 

0.035 

*NS = Non-smokers; S = Smokers

5. Conclusion

In this article, we conducted research on AUC regression on a non-normally distributed

response variable while adjusting for discrete covariates.  We derived explicit and non-iterative 

formulas for point and interval parameter estimation.  Simulation studies showed that our 

method produced parameter estimates with small biases and confidence intervals with close to 

nominal coverage.  We illustrated our method using a pediatric data example and demonstrated 

that the results from our modeling can be easily interpreted. 
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In classic linear models with discrete covariates comparing two groups, the differences in 

mean response are first computed at each combination (which we define as cell) of the discrete 

covariates.  Then, the overall comparison between the two groups is calculated as weighted 

averages of these differences computed at the cellular level.  Our AUC regression works in a 

similar way.  Therefore, in order for a cell to be usable, at least two observations from each 

group are required.  Moreover, users of our method need to be careful when the total sample 

size is small and there are too many covariates or some of the covariates have too many levels.  

It is prudent for the users to ensure that the model they fit is identifiable.  Additionally, similar 

to linear models, our AUG regression model may not be appropriate for sparse data. 

Our method has a broad applicability even though it does not handle continuous covariates.  

This is because only discrete covariates are of interest in many applications.  Even when there 

are continuous covariates, often times these covariates can be categorized.  In fact, practitioners 

sometimes prefer to use these transformed discrete covariates due to the ease of interpretation.  

In applications where adjusting for continuous covariates is necessary, we are currently 

working on new methodologies to cope with this type of data. 
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