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Abstract: The paper deals with robust ANCOVA when there are one or two 
covariates. Let Mj (Y |X) = β0j + β1j X1 + β2j X2  be some conditional measure 
of location associated with the random variable Y , given X, where β0j , β1j  and 
β2j  are unknown parameters.  A basic goal is testing the hypothesis H0: M1(Y |X) 
= M2(Y |X). A classic ANCOVA method is aimed  at addressing this goal, but it 
is well known that violating the underlying assumptions (normality, parallel 
regression lines and two types of homoscedasticity) create serious practical 
concerns. Methods are available for dealing with heteroscedasticity and non-
normality, and there are well-known techniques for controlling the probability of 
one or more Type I errors. But some practical concerns remain, which are 
reviewed in the paper. An alternative approach is suggested and found to have a 
distinct power   advantage. 
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1. Introduction 

A classic problem is comparing two independent groups based on some outcome measure 
Y while taking into account one or two covariates. For the jth group, let Mj (Y |X) be some 
conditional population measure of location associated with the random variable Y given X = 
(X1, X2). It is assumed that 

 
where  β0j ,  β1j   and  β2j   are  unknown  parameters  that  are  estimated  based  on  the  

random sample (X1j, Y1j ), . . . , (Xnj, Ynj ).  Further assume that given X, 
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where sj  has some unknown distribution with M (sj ) = 0 and λ(Xj ) is some 
unknown function of Xj used to model heteroscedasticity. As is evident, a 
fundamental goal is computing a confidence interval for M1(Y |X) − M2(Y |X). 

For convenience, momentarily focus on the single covariate case. The classic and best- 
known  approach  is  to  assume  sj   has  a  normal  distribution  with  M (sj )  =  E(sj )  =  0  
and λ(Xj )  ≡ 1 (within group homoscedasticity).   It is furthermore assumed that β11   =    β12 
(parallel regression lines), σ2

1 = σ2
2(between group homoscedasticity), and the unknown slope 

and intercept are estimated  via the ordinary least squares (OLS) estimator.   Based   on these 
assumptions, it suffices to compare the intercepts. It is well known,  however,  that violating 
any of these assumptions is a serious practical concern (e.g., Wilcox, 2017). More broadly, 
OLS is not robust (e.g., Staudte and Sheather, 1990; Maronna et al., 2006; Heritier et al., 2007; 
Hampel et al., 1986; Huber and Ronchetti, 2009), which can result in a misleading summary of 
the data as well relatively poor  power. 

For a single value of the covariate X, there is a simple method for testing 

 
that effectively deals with non-normality, outliers, non-parallel regression lines and both types 
of heteroscedasticity. (Details are described in section 2.) But focusing on a single value of the 
covariate can miss important details regarding how and where the regression lines differ. A way 
of dealing with this issue is to test (3) using K covariate values and control the probability of 
one or more Type I errors using some improvement on the Bonferroni inequality (e.g., 
Hochberg, 1988; Hommel, 1988). Another approach is to use a Studentized maximum modulus 
distribution with infinite degrees of freedom, assuming that a robust regression estimator is 
used. If for example K = 5 covariate values are chosen, these approaches appear to perform 
fairly well in terms of controlling the probability of one or more Type  I errors (Wilcox, 2013). 
But again there is the concern that this does not provide enough detail about where and how the 
regression lines differ. In particular, when K is small, power can be negatively impacted as will 
be illustrated. 

Consider instead the goal of testing 

 
for each k = 1, . . . , K, where z1, . . . , zK are K values evenly space between min(Xij ) and 

max(Xij ), the minimum and maximum values among all of the covariate values that were 
observed. If, for example, K = 25 is used, it is fairly evident that this raises concerns about 
power when using the methods derived by Hochberg (1988) or Hommel (1988) to control the 
probability of one or more Type I errors. 

Consider, for example, Hochberg’s sequentially rejective method, which is applied as 
follows. Let p1, . . . , pK be the p-values associated with the K tests, put these p-values in 
descending order, and label the results p[1]  ≥ p[2]  ≥ · · · ≥ p[K].  Beginning with k = 1, reject all  
hypotheses if 
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That is, reject all hypotheses if the largest p-value is less than or equal to α. If p[1] > α, proceed 
as follows: 

1. Increment k by 1.  If 

 
stop and reject all hypotheses having a p-value less than or equal  p[k] 
2. If p[k] > α/k, repeat step 1. 
3. Repeat steps 1 and 2 until all K hypotheses have been tested. 
 
Because at the kth step, hypotheses are tested at the α/k level, this suggests that Hochberg’s 

method can have relatively low power when K is even moderately large. Simulation results in 
section 3 illustrate that this is indeed the case and that the same is true when using Hommel’s 
method. 

When there are two covariates and the goal is to test H0: M1(Y |X) = M2(Y |X), again an 
extant method can be used when dealing with a single covariate point. Using a small number of 
covariate points, the probability of one or more Type I errors can again be controlled using say 
Hochberg’s method. But using only a small number of covariate points can miss important 
differences, so again there is the issue how to control the probability of one or more Type I 
errors when testing the null hypothesis for even a moderately large number of points. 

The goal in this paper is to suggest a robust heteroscedastic method for testing (4)     when 
K is relatively large, say greater than or equal 25, which has a power advantage over using 
Hochberg’s or Hommel’s method for controlling the probability of one or more Type I errors. 
Section 2 describes the proposed method when dealing with a single covariate. Section 3 
reports simulation results on how well the method performs.  Section 4 describes a 
generalization of the method in section 2 to situations where there are two covariates and 
section 5 reports simulation results on the ability of the method to control the probability of one 
or more Type I errors.  Results on power are reported as well. 
 
2. Description of the Proposed Method for a Single Covariate 

The proposed method, when dealing with a single covariate, mimics to some degree the 
approach used by the two-sample version of Student’s T test. First, determine an appropriate 
critical value, based on an obvious test statistic, assuming normality and homoscedasticity and 
in conjunction with a regression estimator of interest. Then study the impact of non- normality 
and heteroscedasticity via  simulations. 

Momentarily, focus on a single value for the covariate, X = x. Let τ 2 denote the squared 
standard error  of  Yഥ= b0  + b1x, where b0  and b1  are estimates of β0  and β1,  respectively based 
on some regression estimator to be determined.  A basic percentile bootstrap method   is used to 
estimate τ 2 (e.g., Efron & Tibshirani, 1993). More precisely, generate a bootstrap sample by  
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randomly sampling with replacement n pairs of points from (X1, Y1),…, (Xn, Yn) yielding 
(X*1,Y*1),…,( X*n,Y*n). Based on this bootstrap sample, estimate the intercept and slope and 
label the results b*0 and b*1, which yields Y* = b*0 + b*1X,  Repeat this B times yielding  
Y*1,…, Y*B, in which case an estimate of τ 2 is 

 
where   Yഥ ∗  = ∑ ܻ

  =  In  terms  of  controlling  the  probability  of  a  Type  I  error,  B ܤ/∗
100 appears to suffice, at least for the situations considered in sections 3 and 5, which is 
consistent with  related  results  summarized  in  Wilcox (2017). 

For the jth group, let τො2
j  be the estimate of the squared standard error of Yj  = b0j + b1j X. 

Then, of course, the hypothesis given by (3) can be tested   with 

 
once an appropriate critical value has been determined. 
Momentarily assume that W has a standard normal distribution, in which case a p- value 

can be determined for each X = xk, k = 1, . . . , K. Denote the resulting p-values by p1, . . . , pK 
and let pm = min(p1, . . . , pK ). As is evident, if the α quantile of pm can be determined, say pα, 
the probability of one or more Type I errors can be controlled simply by rejecting the kth 
hypothesis if and only if pk ≤ pα. And in addition, confidence intervals for each M1(Y |X = zk) 
− M2(Y |X = zk) can be computed that have simultaneous probability coverage 1 − α. 

The distribution of pm is approximated in the following manner. Assume both the error 
term s and X have a standard normal distribution and without loss of generality, consider the 
case β0j  = β1j  = 0 (j = 1,2).  Then a simulation can be performed yielding an estimate of the α 
quantile of pm. That is, generate data in the manner just indicated, compute pm and repeat this 
process A times yielding Pm1, . . . PmA. Put these A values in ascending order yielding Pm(1) ≤ . . . 
≤ Pm(A) and let A = αA rounded to the nearest integer. Then the α quantile of pm, pα, is 
estimated with Yα  = Pm(l).  This will be called method JN henceforth (because it represents a 
robust generalization of the method derived by Johnson and Neyman, 1936). 

 
2.1 Choosing a Regression Estimator 

As previously indicated, it is known that OLS is not robust. Some practical consequences 
are that outliers can result in a misleading summary of the association among the bulk of the 
points. Also, outliers among the dependent variable can result in a relatively high standard error, 
which in turn can mean relatively low power compared to various robust estimators that have 
been derived. Numerous robust estimators have been proposed that are aimed at dealing with 
these concerns (e.g., Wilcox, 2017, chapter 10). No single estimator is optimal, but one that 
performs relatively well is the Theil (1950) and Sen (1964) estimator. Peng et al. (2008) 
established that it can be super efficient when the error term is discontinuous. Its efficiency 
compares well to OLS under normality and there are situations where the Theil– Sen estimator 
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has a substantially smaller standard error (Wilcox, 2017). Accordingly, results based on the 
Theil–Sen estimator are reported plus results based on the quantile regression estimator derived 
by Koenker and Bassett   (1978). 

For a single independent variable, the Theil–Sen estimator is computed as follows. For any 
i < i’, for which Xi  ≠ Xi’ , let 

 
The Theil–Sen estimate of the slope is b1ts, the median of all the slopes represented by Siir . 

Two strategies for estimating the intercept have been proposed.  The first  is 

 
where My and Mx are the usual sample medians of the Y and X values, respectively. The 
second estimates the intercept with the median of Y1 − b1X1, . . . , Yn − b1Xn. Wilcox (2017) 
summarizes various strategies for extending the Theil–Sen estimator to more than one 
independent variable. 

As for the Koenker and Bassett (1978) estimator, let 

 
where I is the indicator function. Then the slope and intercept of the regression line are 
determined by minimizing 

 
where r1, . . . , rn are the usual residuals. For example, if the goal is to predict the .5 quantile 

of Y , given X, the parameters are estimated by minimizing∑ .5|ri|, which just the well- known 
least absolute value regression estimator. If the goal is to predict the .75 quantile of Y given X, 
this is done by minimizing . Wi|ri|, where Wi = .25 if ri < 0 and .75 otherwise. 

2.2 Some Estimates of Pα 

Table 1 shows some estimates of pα, α = .05, and K = 25 and 100, based on A = 4000 
replications and sample sizes n = n1 = n2 ranging from 20 to 500.  As can be seen, the 
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Table 1:  Estimates of pα  based on 4000 replications 

 
estimates are very stable for n ≥ 30. All indications are that for n ≥ 30 and K ≥ 25, p.05 is 

approximately equal to .015 when using either the Theil–Sen estimator or the Koenker– Basset 
quantile regression estimator. (Different results are obtained when using OLS. The estimates 
are smaller.) 

 
3. Simulation Results 

Simulations were used to study the small-sample properties of the method in section 2   
with n = 30 and α = .05. Estimated Type I error probabilities were based on 4000 replications. 

Four types of distributions were used: normal, symmetric and heavy-tailed, asymmetric and 
light-tailed, and asymmetric and heavy-tailed.      More precisely, both the error term and 
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Table 2: Some properties of the g-and-h distribution 

 
the distribution of the independent variable were taken to be one of four g-and-h 

distributions (Hoaglin, 1985) that contain the standard normal distribution as a special case. If Z 
has a standard normal distribution, then 

 
has a g-and-h distribution where g and h are parameters that determine the first four moments. 
The four distributions used here were the standard normal (g = h = 0.0), a symmetric heavy-
tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution with relatively light tails (h = 
0.0, g = 0.2), and an asymmetric distribution with heavy tails (g = h = 0.2). Table 2 shows the 
skewness (κ1) and kurtosis (κ2) for each distribution. Additional properties of the g-and-h 
distribution are summarized by Hoaglin (1985). 

Three choices for λ were used: λ(X) = 1, λ(X) = |X| + 1 and λ(X) = 1/(|X| + 1). For 
convenience, these three choices are denoted by variance patterns (VP) 1, 2 and 3. As is evident, 
VP 1 corresponds to the usual homoscedasticity assumption. 

Table 3 summarizes the simulation results. Although the seriousness of a Type I error 
depends on the situation, Bradley (1978) has suggested that as a general guide, when testing at 
the .05 level, at a minimum the actual level should be between .025 and .075, and ideally it 
should be between .045 and .055. All of the estimates are less than .053, but when dealing with 
heavy-tailed distributions (h = .2) and VP 3, estimates drop below .025. The lowest estimate 
using Theil–Sen is .02 and the lowest estimate using the quantile regression estimator is .014. 

As previously indicated, another approach to controlling the probability of one or more 
Type I errors is to use the improvements on the Bonferroni method derived by Hochberg 
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Table 3: Estimated probability of one or more Type I errors, α = .05, n = 30, K = 25 covariate values 

 
Table 4:  Estimated power, α = .05, n = 50, K = 25 covariate values using Theil–Sen 

 
(1988) or a Studenized maximum modulus (SMM) distribution might be used with infinite 
degrees of freedom. Next, simulations are used to contrast the power of these methods with 
method JN in section 2.  Consider the situation where both X  and the error term have one  of 
the four g-and-h distributions used in Table 3 and the error term is homoscedastic.  For   the 
first group both the slope and intercept are zero, the intercept for the second group is  also zero 
but the slope is .8. Table 4 reports the probability of one or more significant results when n = 50 
and K = 25. As can be seen, there is little separating the power estimates using the Studentized 
maximum modulus distribution and Hochberg’s method. (Results based on Hommel’s method 
are virtually identical to those based on Hochberg’s method.) But clearly method JN can 
provide a substantial increase in   power. 

At least in principle, situations can arise where the Hommel and Hochberg methods reject 
in contrast to the method JN. If, for example, all of the p-values range between .02 and .049, 
then the Hommel and Hochberg methods reject all K hypotheses at the .05 level, but method JN 
would fail to reject.  But in practice, perhaps such a situation is highly unlikely. 
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4. Dealing with Two Covariates 

This section considers the case of two covariates. The basic strategy aimed at controlling 
the probability of one or more Type I errors is similar to the approach used in section 2. That is, 
momentarily assume normality and homoscedasticity and use simulations to estimate pα. But 
now, the number of covariate points that are used (the number of hypotheses tested) impacts the 
critical value, as will be illustrated. Consequently, this complicates how best to choose the 
covariate points where comparisons are to be made. Two strategies are used here with the 
understanding that many variations of these strategies are reasonable. 

Before describing these strategies, first note that there are various methods for measuring 
the distance of the point X from the center of a data cloud (e.g., Wilcox, 2017), the best- known 
being Mahalanobis distance. As suggested by Liu and Singh (1997), if U (X) is some distance 
measure, the depth of X is taken to D(X) = 1/(1 + U (X)). Here a particular variation of a so-
called projection-type method is used to measure the depth of a point. Complete computational 
details are described in Wilcox (2017, section 6.2.5). For brevity, only an outline of the method 
is described. 

For convenience, focus on (X1i, X2i), i = 1, . . . , n1, the covariate points associated with the 
first group. Let θ  be some robust measure of location based on these n1 points. Here the 
marginal medians are used but there are several other reasonable choices (e.g., Wilcox, 2017, 
section 6.3). For fixed k, project all n1 points onto the line determined by (X1k, X2k) and θˆ.  
Denote these points by Vik  (i = 1, . . . , n1).  Let Uik  = Hik/(qik2  − qik1), where Hik  is the 
Euclidean distance between the projection of (X1i, X2i) and θˆ, and where qik2 and qik1 are the 
upper and lower quartiles based on Vik (i = 1, . . . , n1). Then the projection distance of (X1i, X2i) 
is taken to be Gi = max Uik, the maximum taken over k = 1, . . . , n1, and the corresponding 
depth is Di = 1/(1 + Gi). 

Here, the first strategy for choosing the covariate points is to pick the deepest half of the 
covariate points among the cloud of all n1 covariate points associated with the first group. That 
is, use all points corresponding to Di satisfying Di > Md, the median of D1, . . . Dn1 . The second 
is to use all of the covariate points associated with the first group. The first strategy is 
considered here because the estimates of pα  are generally larger compared to   the estimates 
based on the latter strategy,  which raises the issue of whether the deepest  half might result in 
higher power. But an obvious disadvantage of the first strategy is that significant and possibly 
important differences might be missed due to ignoring half of the covariate points. 

The value of pα is more sensitive to the number of hypotheses tested compared to the single 
covariate case. The focus here is on the quantile regression estimator simply because 
simulations based on the Theil–Sen estimator result in substantially higher execution times. For 
the equal sample size case, let n denote the sample size for both groups. For α = .05 and n = 50, 
and when using the deepest half of the covariate points, the estimate of pα  is .013. In contrast, 
when using all of the covariate points associated with the first group, the estimate is .008. 

The value of pα can be estimated via an R function described in the final section of this 
paper. With a multicore processor and n = 50, execution time is approximately 3.2 minutes 
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using a quad core 2.5 GHz MacBook pro and the quantile regression estimator in conjunction 
with the R package parallel. (When using the Theil–Sen estimator, or when a multi-core 
processor is not available, execution time increases substantially.) To the extent this is a 
deterrent to using the method, it is noted that for 50 ≤ n ≤ 300, the estimate of pα ranges 
from .013 to .008 when using the deepest half of the covariate points. If, for example, pα = .012 
is used when n = 300, the actual probability of one or more Type I errors is estimated to be .066. 
If this is deemed to be reasonably satisfactory, pα = .012 might be used to reduce execution 
time. As for using all of the covariate points, the estimate of pα ranges between .008 and .005. 
A more refined approximation is obtained by noting that for n = 100, 200 and 300, the 
estimates of pα using the deepest half are .01, .007 and .008, respectively. Using all of the 
covariate points the corresponding estimates are .008, .005 and.005. 
 

5. Simulation Results for Two Covariates  

As was the case for a single covariate, once pα has been estimated, there is the issue of how 
non-normality and heteroscedasticity impact the probability of one or more Type errors. Here, 
the results are limited to the quantile regression estimator due to substantially higher execution 
time associated with the Theil–Sen estimator. Now heteroscedasticity is modeled using λ(Xi) = 
|Xi1| + 1 (VP 2) and λ(Xi) = 1/(|Xi1| + 1) (VP 3). As before VP 1 refers to the homoscedastic 
case. Table 5 reports estimates of the actual probability of one or more Type I errors for n = 50 
when using pα = .012 for the deepest half of the covariate points and pα = .007 using all of the 
points. As can be seen, the estimates never exceed .050. The lowest estimates occur for VP 3 
and when dealing with heavy-tailed distributions (h = .2). The lowest estimate is .02. 

To provide at least some perspective on power, first consider the case where for the first 
group β11 = β21 = .7 and β01  = 0.  For the second group β12  = β22  = β02  = 0.   Under 
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Table 5: Estimated probability of one or more Type I errors, α = .05, n = 50 

 
normality and homoscedasticity and with n = 50, power using Hochberg’s method based on the 
deepest half of the covariate points was estimated to be .444. Using instead the extension of 
method JN to two covariates, as described in section 4, power was estimated to be .662. 
(Hommel’s method and the Studentized maximum modulus distribution have virtually the same 
amount of power as Hochberg’s method.) Using all of the covariate points, the corresponding 
estimates were .646 and .806 . The superiority of using all of the covariate points is not too 
surprising because the smallest differences occur among the deepest points. 

Now consider the case where β11= β21 = 0 and β01 = .6 and again β12 = β22 = β02 = 0. Using 
only the deepest half of the covariate points, the estimates are now .286 (Hochberg) and .514 
(the extension of method JN). So again the extension of method JN has a distinct advantage. 
Using all of the covariate points, the estimates are .222 and .486. So now, using the extension 
of method JN in conjunction with the deepest half of the covariate values yields higher power 
compared to using all of the covariate points, but it might be argued that the increase in power 
is not that striking. 
6. Illustrations 

The methods are illustrated using data from the Well Elderly 2 study (Clark et al., 2012) 
that dealt with an intervention program aimed at improving the physical and emotional 
wellbeing of older adults. A portion of the study focused on comparing a control group (n = 179) 
to a group receiving intervention (n = 101) based on a measure of meaningful activities 
(MAPA). Moreover, a goal was to take into account the cortisol awakening response (CAR), 
which refers to the change in cortisol concentration that occurs 30-60 minutes after waking 
from sleep. (Past studies indicate that the CAR is associated with various measures of stress.) 
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Figure 1 shows a plot of the data.  The solid line is the estimate of the regression line   for 
the control group. (Leverage points were removed.) As can be seen, there appears to be little or 
no difference in MAPA scores when the CAR is close to zero.  When the CAR is −.390 or .385, 
a significant difference is found when testing at the .05  level. 

This last illustration is repeated, only now a second covariate is added: a measure of 
personal support (PEOP). Figure 2 shows a plot of the covariate points that were used. 
Covariate points where a significant difference was found are indicated by a +. So there is a 
significant result at seven covariate points that roughly occur when the CAR is negative and 
simultaneously the PEOP score is relatively low. (The median PEOP measure was estimated to 
be 11 and the lower .25 quantile was  9.) 

 
7. Concluding Remarks 

There are, of course, many other ways the covariate points might be chosen. The main point  
is that extant strategies based on robust regression estimators are based on a relatively small 
number of points, which raises obvious concerns about about detecting and understanding any 
differences that might exist.  All indications are that the probability of one or more Type I 
errors can be controlled fairly well based on the estimate of pα when using the the deepest half 
or even all of the covariate points associated with the first group.  Moreover, in terms   of 
power, using pα offers a practical advantage over using Hochberg’s method, Hommel’s
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Figure 1: The solid line is the estimated regression line for the control group. Significant differences 

are found at CAR values −.390 or .385 when testing at the .05   level. 
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Figure 2: Shown are the covariate points used when comparing the two groups. Significant 

differences in MAPA scores were obtained for the points indicated by   +. 
 
method or the Studentized maximum modulus distribution. In terms of maximizing power, 
situations can be constructed where using the deepest half of the covariate points is a bit better 
than using all of the covariate  points.   But there are situations where using all of     the 
covariate points offers a striking advantage. Consequently, a speculation is that in most 
situations, using all of the covariate points offers the highest power despite the smaller pα  that 
is used, but more experience with the method is needed to determine the extent this is the case. 

Finally, the R functions ancJN and ancJNmp apply the proposed methods and are being 
added to the R package WRS. The function ancJN is designed for the single covariate case and 
ancJNmp deals with two covariates. For the two covariate case, the R function ancJNmpcp can 
be used to estimate pα. 
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