
Journal of Data Science 18 (4), 632–648
October 2020

DOI: 10.6339/JDS.202010_18(4).0003

Gene Set Enrichment Analysis in RNA-Seq Data

Chen-An Tsai∗1 and Pei-Hsun Li1

1Department of Agronomy, Division of Biometry, National Taiwan University, Taipei, Taiwan

Abstract

To date, many gene set analysis (GSA) approaches have been developed for identifying differ-
entially expressed gene sets using microarray data. However, these methods are not directly
applicable to RNA-Seq data due to intrinsic difference between two data structures. When test-
ing the differential expression of gene sets, there is a critical assumption that the members in
each gene set are sampled independently in most GSA methods. It means that the genes within
a gene set don’t share a common biological function. The aim of this paper is twofold. First, we
propose a powerful yet simple extension to GSA methods based on the de-correlation (DECO)
algorithm that properly remove the correlation bias in the expression of each gene set. We then
study the performance of our proposed method compared with other GSA methods through a
real RNA-Seq dataset and simulation studies under various scenarios combining with four com-
monly used normalization methods. Second, we discuss the effect of the complex correlation
structure of gene sets on four normalization methods. As a result, we found that our proposed
method outperforms the others in terms of Type I error rate and empirical power. A compara-
tive study on a public data showed that gene sets identified by our proposed method have better
concordance with biological confirmed pathways than other methods.

Keywords correlation bias; DECO; gene set analysis; RNA-Seq

1 Introduction

Gene Set Analysis (GSA) originates from analyzing gene expression data. Up to the present,
many methodologies for testing differential expression of gene sets are aggregately named Gene
Set Analysis (GSA) approaches. According to Tian et al. (2005), GSA approaches can be grouped
into two categories depending on the null hypothesis tests. One is that the genes in a gene set
have the same level of association with the phenotype compared with the genes in the rest of
the gene set. The other is that none of the genes in a gene set is associated with the phenotype
of interest. The former called competitive approaches and the latter called self-contained ap-
proaches. Here, we focus on the latter group, which relies on permuting sample labels to generate
null distributions. Also, it is known as Gene Set Enrichment Analysis (GSEA) (Subramanian
et al., 2005), which provides an insight into gene expression data.

RNA-Seq, also called whole transcriptome shotgun sequencing, is a novel technology, which
uses next-generation sequencing (NGS) to reveal transcriptome profiling. In the past few years,
RNA-Seq has almost taken the place of microarrays (Wang et al., 2009). There are many applica-
tions of RNA-Seq, including gene expression profiling, rare transcripts, SNPs coding, alternative
splice sites, identification of novel transcripts, and so forth. Among these applications, the most
popular use of RNA-Seq is to identify differentially expressed genes. In general, gene counts are
modeled by using Poisson or Negative Binomial (NB) distribution. In Poisson distribution, the
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mean is equal to the dispersion parameter. If the genes of each sample have identical expres-
sion level, then we can use Poisson distribution to model counts data. However, the Poisson
distribution is not suitable for the over-dispersion in real data. To deal with the issue of over-
dispersion, a common solution is to use the negative binomial distribution, which is known as the
Gamma-Poisson mixture model. Due to the power of GSEA, many gene set analysis methods
and tools for RNA-Seq have been developed recently (Ren et al., 2017; Wang and Cairns, 2013).
However, most methods are based on algorithms developed for microarray data and challenges
exist in applying the existing algorithms to RNA-Seq data. The differing correlation structure
of enriched gene set may cause bias in gene set analysis.

In this paper, we propose an algorithm combining De-correlation (DECO) (Nam, 2010) with
the sum of square t-statistic to identify gene sets with differential expression profiles between two
biological conditions. Our algorithm offers an easy to implement GSA approach to quantifying
underlying phenotypic differences with the inter-gene correlation embedded in a gene set, and
allows us to rank the differential expression of gene sets. Since it was suggested that a normalized
procedure should be applied to RNA-Seq counts data before GSA, we compare the performance
of our proposed method to the existing multivariate tests in terms of the Type I error rate and the
power under four different normalization methods. Among all simulation settings, our proposed
method outperforms other methods in identifying differentially expressed gene sets. Among
these normalizations, the Trimmed mean of M-values (TMM) (Robinson and Oshlack, 2010)
provides better estimates. In addition, we found that methods combined with DECO are more
powerful than those without DECO when evaluating the power. Our simulation studies show
that our proposed algorithm improves the accuracy of estimations. A real RNA-Seq data from
lymphoblastoid cell lines of 69 unrelated Nigerian individuals is used to resent the performance
of the proposed methods.

2 Materials and Methods

Recent advances of GSA provide a complementary and powerful approach to microarray tech-
nologies for global expression profile of biological systems. Methods for gene set analysis have
successively revealed the underlying pathway activity variation associated with experimental
conditions of interest. To date, a number of approaches have been proposed to identify differen-
tially expressed gene sets based on microarray gene expression data. However, these methods are
primarily developed for microarray data. For RNA-Seq data, the corresponding read counts are
integer numbers. Since there are plenty of GSA approaches developed for microarrays, it would
be expected that they are suitable for RNA-Seq data. To deal with this problem, our method
converts RNA-seq data in a way of computational processing that makes the resulting transcript
profiling more similar to microarray gene expression measures

We conduct simulation studies to compare our proposed method with four commonly used
methods, including the Wald-Wolfowitz (WW) test (Rahmatallah et al., 2012), the Kolmogorov-
Smirnov (KS) test (Rahmatallah et al., 2012), the E-Statistic (Energy) test (Székely et al., 2004),
and the Quantitative Set Analysis of Gene Expression (QuSAGE) (Yaari et al., 2013). Also, we
take four normalization methods into account to examine the performance of multivariate tests,
including the Reads per kilobase per million (RPKM) (Mortazavi et al., 2008), the Upper-quantile
normalization (UQ) (Bullard et al., 2010), the Trimmed mean of M-values (TMM) (Robinson
and Oshlack, 2010), and the Log-counts per million (LCPM) (Law et al., 2014).

Consider two different phenotypes with n1 samples for the first and n2 samples for the second
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phenotype. Each sample has measurements of same p genes. Let Xi and Yj be p-dimensional
vectors of measurements Xi, i = 1, . . . , n1 and Yj , j = 1, . . . , n2. Suppose that Xi and Yj are
independent and identically distributed with the distribution functions F , G, mean vectors µx,
µy and p × p covariance matrices Σx, Σy, respectively. We consider the problem of testing the
hypothesis H0 : µx = µy against an alternative H1 : µx 6= µy.

2.1 DECO: An algorithm to remove correlation in data

As we mentioned before, GSA gives an insight into expression data. It evaluates gene sets instead
of individual genes. Also, it provides high statistical power and can reveal biological processes,
which relates to specific phenotypes. Nevertheless, it relies on the assumption that the members
of each gene set are sampled independently, which means that the genes within a gene set don’t
share a common biological function. Based on this assumption, it may increase false predictions.

To solve this problem, Nam (2010) proposed DECO algorithm to remove the correlation
bias in the expression of each gene set in GSA. We conduct DECO and adopt the sum of square
t-statistic for our later analyses. The DECO algorithm is based on the eigenvalue-decomposition
of the covariance matrix of each gene set and a series of linear transformations of data.

The de-correlation procedure is described as follows.
Let X represent p ×N expression data of a gene set. Here p denotes the number of genes

while N denotes the total number of samples.
1. Normalize the profiles of each gene by taking log and Z-transformation, and let Y represent

the transformed data.
2. Estimate the covariance matrix C of p genes from Y .
3. Apply the eigenvalue-decomposition to the positive-definite symmetric matrix C as follows:
C = UDU−1, where U is the p × p eigenvector matrix and D = diag(λ1, . . . , λp) is the
diagonal matrix with positive eigenvalues λ1, . . . , λp.

4. Apply the linear transformations to Y ,

Y ∗ = U
√
D−1U−1Y,

where
√
D−1 = diag(λ

−1/2
1 , . . . , λ

−1/2
p ). This makes Y ∗ an identity covariance matrix.

The last step actually de-correlates the data by providing them a near spherical shape.
For eigenvalues, Nam (2010) provided another two methods for them. It is possible that large
gene sets have extremely small eigenvalues. If we amplify these small eigenvalues, they may
lead to unstable predictions. In addition, for the coordinated patterns of gene expression, large
eigenvalues are more explainable. Accordingly, the first method is based on reducing large
eigenvalues by using the following truncated diagonal matrix instead of

√
D−1,

√
D̄−1 = diag(β1, . . . , βp), βi =

{
λ
−1/2
i , λi > T,

T−1/2, otherwise,
0 < T ≤ 1.

Here, T = 1 is assumed in our tests. It implies that small eigenvalues will be rounded up to
1. To estimate the covariance matrices of gene sets accurately, the number of samples should
be sufficiently large. However, in real expression data, the number of samples may not be large
enough. The second method is based on a square-root de-correlation by taking one more square-
root on

√
D−1, √

D̃−1 =
γ
√
D−1, γ = 4.
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They denote the methods that use the truncated matrix (
√
D̄−1) as DECO-t, and the square

root matrix (
√
D̃−1) as DECO-sqrt. Moreover, we can obtain the desired data Y ∗ and remove

the estimation error involved in the eigenvectors (U) by returning the data to the original axes.
The DECO algorithm is based on the eigenvector-eigenvalue decomposition of the covariance
matrix between genes in each gene set. Principal components analysis (PCA) and singular
value decomposition (SVD) are two most popular dimensionality reduction techniques for gene
expression data analysis to date. It allows us to capture and visually analyze the global expression
patterns of gene expression data. Here the aim is to remove gene correlations, which may
produce a substantial amount of variance inflation in the GSA statistics, by rescaling the principal
components from the eigenvalue-decomposition of each gene set. This algorithm provides a de-
correlation procedure to remove the complex gene set correlation structure and to improve the
resolution of gene set analysis.

2.2 Estimating a covariance matrix with a small sample size

In practice, the number of samples may not be sufficiently large compared to the dimension of the
estimated covariance matrix. Therefore, the sample covariance S = n

n−1SML and the standard
maximum likelihood estimator SML cannot provide a good approximation of the true covariance
matrix. Moreover, when estimating large gene sets, S and SML may produce eigenvalues that
equal to zero. It implies that they can’t always provide positive-definite eigenvalues. In the Step
2 of the DECO algorithm, the shrinkage covariance estimator (Schäfer and Strimmer, 2005) can
be used to estimate the covariance matrices instead of the sample covariance because it pro-
vides a more accurate estimate which is always positive-definite. With the shrinkage covariance
estimator, all of the eigenvalues become positive.

Shrinkage covariance estimation is well-conditioned and always positive-definite even with
small number of samples. The purpose of it is variance reduction. Take a look at the bias-variance
decomposition of the mean squared error (MSE) for the sample covariance S,

MSE(S) = Bias(S)2 + Var(S).

When Bias(S) = 0, the only way to decrease the MSE of S is reducing its variance. The shrinkage
estimator S∗ = [s∗ij ] is defined as follows,

s∗ij =

{
sii, i = j,

r∗ij
√
siisjj , otherwise,

r∗ij =

{
1, i = j,

rij max
{

0,min(1, λ̄∗)
}
, otherwise,

with λ̄∗ =

∑
i 6=j V̄ar(rij)∑

i 6=j r
2
ij

,

where sii and rij denote the empirical variance and correlation respectively. Assume that xki is
the i-th gene in the standardized k-th observation. Define wkij = xkixkj and w̄ij = 1

n

∑n
k=1wkij .

This gives V̄ar(rij) = n
(n−1)3 (wkij − w̄ij)

2.

2.3 Gene Set Analysis with DECO

Suppose there are p genes andN samples in each gene set. As we mentioned before, self-contained
approaches are all based on random permutation of sample labels to assess the significance of



636 Tsai, C.-A. and Li, P.-H.

each test statistic. Here, we demonstrate how GSA works with DECO algorithm.
1. DECO the gene set.
2. Compute the Welch’s t-statistic of each individual gene, ti.
3. Combine the individual t-statistic within the gene set into a summarized statistic using the

sum of square t-statistic: Tobs =
∑p

i=1 t
2
i /p.

4. Randomly permute the sample labels of the transformed data Y ∗ B times.
5. Compute permuted sum of square t-statistics, T ∗(b) ; b = 1, . . . , B.

6. Calculate the empirical p-value, P− value =
∑B

b=1 I
[
T ∗(b) ≥ Tobs

]
/B.

With the observed sum of square t-statistic and the permuted sum of square t-statistics,
we can calculate the p-value of each gene set. It is important to note that by applying the
de-correlation procedure to gene expression data does not transform the data into independent
samples except that the gene expression profiles follow a multivariate Gaussian distribution.
Fortunately, gene log2 expression levels are highly correlated and, very likely, have approximately
normal distribution (Zhang et al., 2018). Therefore, it seems reasonable to use the de-correlation
procedure for such data to avoid overfitting when using sample permutations GSA methods.

3 Results

3.1 Simulation Study

For count data, we considered two scenarios. One is that the genes of each gene set are
sampled independently; the other is that some of the genes in each gene set are correlated.
The former is called independent data and the latter is called correlated data. We generated
count data from Negative Binomial (NB) distribution for RNA-Seq experiments with mean
counts µ and dispersion parameter φ. Let Yij denote the count for gene i in sample j, then
Yij ∼ NB {mean = µij , var = µij(1 + µijφij)} = NB(µij , φij). In addition, for each gene, we
used the Bioconductor package edgeR to estimate the dispersion parameter.

Prior to GSA analyses, we used different normalization methods to normalize read counts.
Then, we transformed them to log-scale by using the transformation function log2(1 + Yij). In
order to evaluate the performance of different multivariate tests accurately, two parameters, γ
and FC, were considered in our analyses. The γ parameter is the percentage of genes truly
differentially expressed in a gene set; the FC parameter denotes the amount of fold change in
read counts between two phenotypes. We calculated mean counts, µi, and estimated dispersion
parameter, φi, from Pickrell dataset for each gene i. We describe our simulation study design by
the following steps.
1. Randomly select numbers of genes from Pickrell dataset without replacement. The pairs of
µi and φi will be true parameters for simulated gene i.

2. Randomly select simulated gene i to be either differentially expressed (DE) gene or non-
expressed gene between two phenotypes. Furthermore, we pick half of the DE genes to be
up-regulated and half to be down-regulated between two phenotypes to avoid having all of
the DE genes are up-regulated for all generated gene sets.

3. Set a log fold change between two phenotypes.
4. Construct a correlation structure into the differential expression pattern of simulated gene i.
5. Generate the count of each simulated gene i in sample j from NB(µij , φi).
6. If the counts of simulated gene i are all zero for all samples, then we return to step 1 to

regenerate the count.
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Figure 1: Simulation scheme used to generate RNA-Seq data with a correlation structure and
known parameters.

In steps 4 and 5 above, we use the following algorithm to generate multivariate Negative
Binomial random variables.
1. Generate a p-dimensional Normal vector ~X with mean vector ~µ = 0, variance vector ~σ = 1

and a correlation matrix.
2. For each element Xi, i = 1, 2, . . . , p, calculate the Normal cumulative distribution function

(CDF) : Φ(Xi).
3. For each Φ(Xi), calculate the Negative Binomial inverse CDF with dispersion φi and mean
µi. Let Ξ be Negative Binomial CDF, then XNB

i = Ξ−1(Φ(Xi)).
For our correlation matrix, we set an equal correlation between any two genes. By setting

different simulated parameters, we can get different pseudo-datasets. For all of simulations, we
assumed a significance level of α = 0.05. Figure 1 outlines the parameters used to simulate the
correlated RNA-Seq data for performance evaluation.

To estimate the Type I error rates for all multivariate tests using simulated counts data, we
set γ and FC to 1 and generated two datasets of equal sample size, N/2, N ∈ {20, 40, 60} with
3000 genes, 20 times. For each time, we randomly selected 50 gene sets with numbers of genes
p, p ∈ {16, 60, 100}, forming 1000 gene sets. Then we estimated the proportion of gene sets that
rejected H0 : µx = µy among the 1000 gene sets. We estimated the Type I error rates of DECO
algorithm combined with E-stat and called this method as DECO-E. We denoted the method
combining DECO-t with E-stat as DECOt-E, and the method combining DECO-sqrt with E-stat
as DECOs-E. For convenience, DECO, DECO-t and DECO-sqrt refer to our proposed methods
combining the sum of square t-statistic with DECO, DECO-t and DECO-sqrt respectively in
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Table 1: Type I error rates of all methods for independent data.

p = 16 p = 60 p = 100

RPKM UQ TMM LCPM RPKM UQ TMM LCPM RPKM UQ TMM LCPM

N = 20 E-stat 0.044 0.051 0.047 0.054 0.049 0.053 0.049 0.062 0.042 0.050 0.053 0.045
WW 0.081 0.094 0.072 0.079 0.088 0.081 0.079 0.102 0.099 0.097 0.086 0.079
KS 0.087 0.090 0.086 0.088 0.084 0.089 0.075 0.096 0.086 0.088 0.089 0.069

QuSAGE 0.048 0.051 0.048 0.053 0.055 0.055 0.057 0.054 0.041 0.054 0.051 0.036
DECO 0.052 0.050 0.048 0.050 0.048 0.046 0.048 0.050 0.048 0.048 0.050 0.055

DECO-sqrt 0.049 0.047 0.048 0.051 0.048 0.046 0.048 0.048 0.046 0.049 0.050 0.055
DECO-t 0.051 0.051 0.050 0.052 0.048 0.044 0.046 0.052 0.050 0.054 0.053 0.052
DECO-E 0.054 0.047 0.048 0.053 0.045 0.052 0.045 0.048 0.046 0.048 0.051 0.056
DECOs-E 0.046 0.050 0.052 0.051 0.050 0.052 0.049 0.062 0.046 0.048 0.051 0.048
DECOt-E 0.049 0.046 0.052 0.055 0.047 0.049 0.044 0.064 0.043 0.041 0.048 0.042

N = 40 E-stat 0.051 0.046 0.049 0.052 0.043 0.042 0.042 0.047 0.058 0.054 0.050 0.046
WW 0.078 0.069 0.092 0.080 0.072 0.079 0.074 0.068 0.078 0.073 0.071 0.081
KS 0.080 0.071 0.064 0.064 0.072 0.075 0.057 0.069 0.067 0.073 0.076 0.068

QuSAGE 0.050 0.050 0.049 0.050 0.051 0.057 0.055 0.038 0.047 0.041 0.042 0.042
DECO 0.056 0.051 0.051 0.058 0.057 0.062 0.055 0.053 0.047 0.048 0.050 0.045

DECO-sqrt 0.056 0.050 0.051 0.057 0.057 0.060 0.056 0.053 0.045 0.048 0.050 0.045
DECO-t 0.053 0.050 0.053 0.058 0.057 0.060 0.056 0.054 0.043 0.049 0.048 0.043
DECO-E 0.054 0.052 0.051 0.058 0.061 0.062 0.058 0.059 0.050 0.050 0.049 0.040
DECOs-E 0.052 0.055 0.058 0.051 0.047 0.046 0.049 0.045 0.055 0.049 0.056 0.037
DECOt-E 0.053 0.049 0.050 0.050 0.049 0.045 0.046 0.047 0.054 0.053 0.047 0.050

N = 60 E-stat 0.049 0.052 0.056 0.048 0.052 0.051 0.048 0.052 0.037 0.030 0.037 0.043
WW 0.063 0.075 0.078 0.068 0.069 0.059 0.066 0.060 0.069 0.075 0.060 0.063
KS 0.059 0.062 0.062 0.059 0.057 0.060 0.059 0.050 0.054 0.058 0.048 0.067

QuSAGE 0.038 0.040 0.034 0.055 0.048 0.048 0.045 0.057 0.065 0.065 0.063 0.054
DECO 0.051 0.049 0.049 0.052 0.046 0.041 0.043 0.044 0.042 0.047 0.045 0.050

DECO-sqrt 0.052 0.049 0.048 0.052 0.045 0.043 0.042 0.044 0.043 0.047 0.044 0.050
DECO-t 0.050 0.050 0.050 0.051 0.043 0.044 0.043 0.047 0.043 0.048 0.044 0.049
DECO-E 0.049 0.050 0.049 0.051 0.044 0.042 0.042 0.046 0.039 0.036 0.043 0.045
DECOs-E 0.058 0.062 0.061 0.051 0.053 0.056 0.048 0.051 0.032 0.031 0.033 0.038
DECOt-E 0.050 0.053 0.056 0.053 0.053 0.053 0.051 0.054 0.034 0.035 0.037 0.038

later analyses.
Table 1 presents the simulation results of independent data for the Type I error rates.

We found that all multivariate tests provide good estimates except for WW and KS. When
the sample size (N) increases, the Type I error rates of WW and KS decrease obviously. In
addition, compared with other tests, WW seems to be the most liberal and the KS is in the
second place. Also, TMM almost provides more conservative estimates than other normalization
methods and LCPM tends to have the most conservative or the most liberal estimates among
these four normalization methods. For correlated data, we added some correlation information
to our simulated counts data. Among 3000 genes, there are 600 genes with correlation (cor =
0.3, 0.6, 0.9). Tables 2-4 show the Type I error rates of all tests with normalizations under
different correlation strengths. In Table 2 cor = 0.3, the result is quite similar to the case of
independent data. In Table 3 cor = 0.6, we found that all tests control the Type I error rate
well under different gene set size when N = 60. As for Table 4 cor = 0.9, the most conservative
estimates occurred at the conditions when N = 40 and p = 60 while the most liberal estimates
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Table 2: Type I error rates of all methods for correlated data (cor=0.3).

cor = 0.3 p = 16 p = 60 p = 100

RPKM UQ TMM LCPM RPKM UQ TMM LCPM RPKM UQ TMM LCPM

N = 20 E-stat 0.050 0.049 0.052 0.050 0.041 0.043 0.041 0.043 0.034 0.039 0.036 0.050
WW 0.077 0.084 0.082 0.083 0.082 0.069 0.074 0.067 0.069 0.066 0.075 0.097
KS 0.086 0.088 0.093 0.103 0.078 0.080 0.089 0.077 0.086 0.083 0.093 0.079

QuSAGE 0.051 0.051 0.050 0.060 0.048 0.054 0.054 0.053 0.035 0.051 0.043 0.028
DECO 0.043 0.044 0.047 0.045 0.048 0.047 0.051 0.051 0.040 0.043 0.044 0.043

DECO-sqrt 0.043 0.043 0.046 0.046 0.046 0.047 0.052 0.050 0.035 0.038 0.041 0.043
DECO-t 0.044 0.045 0.050 0.047 0.047 0.044 0.051 0.049 0.043 0.038 0.040 0.040
DECO-E 0.047 0.044 0.051 0.050 0.037 0.041 0.041 0.042 0.036 0.039 0.036 0.042
DECOs-E 0.053 0.050 0.048 0.048 0.041 0.043 0.040 0.033 0.038 0.038 0.036 0.048
DECOt-E 0.051 0.052 0.048 0.050 0.038 0.043 0.043 0.040 0.041 0.042 0.040 0.050

N = 40 E-stat 0.052 0.054 0.049 0.053 0.045 0.047 0.043 0.055 0.058 0.055 0.052 0.046
WW 0.057 0.064 0.058 0.076 0.075 0.078 0.073 0.066 0.070 0.067 0.066 0.068
KS 0.059 0.071 0.073 0.049 0.070 0.066 0.066 0.077 0.064 0.062 0.066 0.063

QuSAGE 0.059 0.058 0.059 0.051 0.069 0.059 0.062 0.057 0.051 0.046 0.060 0.055
DECO 0.051 0.048 0.046 0.055 0.051 0.047 0.044 0.046 0.063 0.058 0.061 0.068

DECO-sqrt 0.051 0.048 0.048 0.055 0.046 0.045 0.047 0.046 0.061 0.057 0.063 0.065
DECO-t 0.052 0.047 0.049 0.056 0.045 0.046 0.044 0.045 0.061 0.054 0.061 0.062
DECO-E 0.051 0.053 0.050 0.062 0.044 0.046 0.044 0.038 0.061 0.062 0.060 0.055
DECOs-E 0.048 0.050 0.045 0.056 0.046 0.048 0.040 0.052 0.064 0.064 0.062 0.048
DECOt-E 0.057 0.055 0.048 0.056 0.047 0.046 0.048 0.051 0.053 0.051 0.053 0.050

N = 60 E-stat 0.047 0.049 0.048 0.053 0.040 0.036 0.044 0.041 0.053 0.055 0.051 0.044
WW 0.073 0.065 0.061 0.065 0.066 0.052 0.060 0.069 0.069 0.071 0.055 0.063
KS 0.048 0.057 0.052 0.065 0.051 0.062 0.069 0.055 0.061 0.073 0.059 0.047

QuSAGE 0.058 0.049 0.045 0.052 0.045 0.051 0.041 0.044 0.043 0.045 0.059 0.054
DECO 0.056 0.058 0.062 0.047 0.038 0.040 0.040 0.041 0.059 0.059 0.060 0.066

DECO-sqrt 0.055 0.057 0.059 0.047 0.037 0.039 0.039 0.042 0.059 0.061 0.061 0.074
DECO-t 0.052 0.055 0.056 0.047 0.038 0.040 0.040 0.042 0.061 0.062 0.057 0.077
DECO-E 0.055 0.058 0.050 0.053 0.035 0.037 0.035 0.038 0.055 0.053 0.057 0.058
DECOs-E 0.054 0.056 0.053 0.052 0.039 0.040 0.038 0.038 0.045 0.046 0.048 0.047
DECOt-E 0.045 0.048 0.049 0.061 0.041 0.040 0.043 0.040 0.054 0.056 0.049 0.044

occurred at the conditions when N = 20 and p = 100. As expected, the Type I error rates
decrease as the sample size increases. Also, the Type I error rate is unrelated to the increasing
number of genes. Intuitively, when the correlation between genes increases, it seems that all test
methods are unstable to correctly estimate the Type I error rates.

To estimate the empirical power for all multivariate tests using simulated count data, we
considered γ ∈

(
1
8 ,

1
4 ,

1
2

)
and FC from 1.2 to 2.8. Also, we set true expression rate as 0.1. We

estimated the empirical power by testing the null hypothesis H0 : FC = 1 against the alternative
hypothesisH1 : FC 6= 1 whenH1 holds true. For independent data, among 3000 genes, 300 genes
were differentially expressed and the rest 2700 genes were non-differentially expressed. Figure 2
illustrates the empirical power of all tests with RPKM normalization when p = 16, N = 20, 40, 60
and γ = 0.125, 0.25, 0.5. The similar results for UQ, TMM, LCPM normalizations can be found
in the Additional file (Figures S1-3). It implies that the power increases as N and γ increase.
Moreover, DECO, DECO-sqrt, and DECO-t outperform other multivariate tests, followed by
DECO-E and DECOs-E. In addition, TMM normalization almost leads to the highest power
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Table 3: Type I error rates of all methods for correlated data (cor=0.6).

cor = 0.6 p = 16 p = 60 p = 100

RPKM UQ TMM LCPM RPKM UQ TMM LCPM RPKM UQ TMM LCPM

N = 20 E-stat 0.043 0.037 0.048 0.037 0.070 0.071 0.064 0.072 0.059 0.063 0.057 0.062
WW 0.082 0.082 0.087 0.080 0.091 0.090 0.093 0.091 0.118 0.099 0.109 0.076
KS 0.102 0.108 0.111 0.085 0.095 0.090 0.133 0.101 0.108 0.127 0.091 0.096

QuSAGE 0.046 0.047 0.046 0.050 0.047 0.050 0.050 0.053 0.061 0.076 0.061 0.047
DECO 0.043 0.043 0.043 0.042 0.083 0.074 0.073 0.082 0.079 0.078 0.071 0.071

DECO-sqrt 0.049 0.044 0.045 0.042 0.079 0.077 0.071 0.081 0.077 0.077 0.074 0.079
DECO-t 0.048 0.045 0.045 0.041 0.076 0.081 0.075 0.079 0.074 0.073 0.073 0.074
DECO-E 0.045 0.048 0.048 0.049 0.075 0.072 0.076 0.071 0.068 0.066 0.067 0.075
DECOs-E 0.042 0.036 0.045 0.041 0.070 0.073 0.074 0.067 0.070 0.067 0.065 0.061
DECOt-E 0.045 0.047 0.050 0.035 0.066 0.066 0.066 0.075 0.056 0.058 0.055 0.061

N = 40 E-stat 0.052 0.053 0.059 0.041 0.054 0.059 0.061 0.061 0.066 0.063 0.071 0.067
WW 0.076 0.075 0.065 0.069 0.065 0.070 0.067 0.087 0.064 0.070 0.070 0.061
KS 0.066 0.065 0.055 0.062 0.064 0.073 0.080 0.067 0.085 0.067 0.069 0.056

QuSAGE 0.060 0.049 0.054 0.048 0.039 0.043 0.046 0.041 0.076 0.076 0.057 0.066
DECO 0.046 0.047 0.041 0.047 0.071 0.068 0.061 0.064 0.079 0.067 0.065 0.067

DECO-sqrt 0.048 0.045 0.045 0.045 0.076 0.071 0.071 0.067 0.077 0.067 0.066 0.084
DECO-t 0.050 0.046 0.045 0.046 0.072 0.072 0.071 0.068 0.084 0.077 0.077 0.087
DECO-E 0.043 0.046 0.043 0.042 0.065 0.061 0.064 0.066 0.068 0.059 0.059 0.061
DECOs-E 0.045 0.051 0.050 0.039 0.060 0.065 0.064 0.060 0.069 0.063 0.067 0.069
DECOt-E 0.055 0.052 0.058 0.041 0.058 0.061 0.063 0.062 0.062 0.058 0.060 0.068

N = 60 E-stat 0.056 0.057 0.055 0.048 0.046 0.042 0.046 0.055 0.045 0.044 0.044 0.054
WW 0.065 0.062 0.055 0.065 0.061 0.070 0.063 0.086 0.065 0.069 0.054 0.064
KS 0.063 0.056 0.066 0.066 0.052 0.056 0.063 0.046 0.061 0.060 0.059 0.058

QuSAGE 0.055 0.053 0.055 0.058 0.052 0.052 0.055 0.051 0.041 0.039 0.048 0.039
DECO 0.043 0.045 0.041 0.041 0.038 0.040 0.034 0.045 0.033 0.033 0.033 0.047

DECO-sqrt 0.044 0.045 0.042 0.044 0.036 0.037 0.034 0.041 0.036 0.032 0.037 0.036
DECO-t 0.047 0.041 0.043 0.052 0.039 0.038 0.037 0.038 0.049 0.041 0.039 0.035
DECO-E 0.044 0.046 0.044 0.047 0.046 0.044 0.045 0.044 0.038 0.037 0.037 0.043
DECOs-E 0.053 0.053 0.053 0.040 0.043 0.046 0.043 0.050 0.046 0.043 0.044 0.052
DECOt-E 0.061 0.057 0.060 0.044 0.047 0.046 0.043 0.047 0.045 0.047 0.047 0.054

while LCPM gives the lowest power performance among four normalization methods. When
the gene set size increases to p = 60 (Figure 3) and for p = 100 (Figure 4), we compared power
performance for all tests with TMM normalization. Both scenarios show the similar performance.
Overall, our approach DECO-t has the highest power performance of all the methods across all
scenarios. In addition, when p and γ increase, the power increases in detecting small fold changes
for all tests.

For correlated data, among 3000 genes, 300 genes were differentially expressed with correla-
tion, 300 genes were non-differentially expressed with correlation, and the rest 2400 genes were
non-differentially expressed without correlation (cor = 0.3, 0.6, 0.9). Figure 5 shows differences
in power performance across all methods using TMM normalization, p = 60 and cor = 0.6. It
is clear that as N and γ increase, the power increases. All simulation results can be found in
the Additional file (Figure S4-23) by varying normalization method, gene set size and correla-
tion level among genes. Overall, our proposed methods DECO and DECO-sqrt show the best
results in the simulations, with higher power performance in all scenarios. QuSAGE could lead
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Figure 2: The power curves of multivariate tests for independent data with gene size (p = 16)
and RPKM normalization.
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Figure 3: The power curves of multivariate tests for independent data with gene size (p = 60)
and TMM normalization.
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Figure 4: The power curves of multivariate tests for independent data with gene size (p = 100)
and TMM normalization.
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(p = 60) and TMM normalization.
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Table 4: Type I error rates of all methods for correlated data (cor=0.9).

cor = 0.9 p = 16 p = 60 p = 100

RPKM UQ TMM LCPM RPKM UQ TMM LCPM RPKM UQ TMM LCPM

N = 20 E-stat 0.047 0.046 0.043 0.052 0.033 0.037 0.034 0.026 0.078 0.075 0.075 0.052
WW 0.074 0.083 0.074 0.075 0.079 0.070 0.077 0.072 0.090 0.085 0.089 0.093
KS 0.086 0.096 0.090 0.091 0.069 0.075 0.069 0.085 0.101 0.088 0.083 0.104

QuSAGE 0.043 0.052 0.045 0.049 0.041 0.044 0.042 0.054 0.064 0.060 0.056 0.050
DECO 0.038 0.039 0.038 0.039 0.030 0.034 0.026 0.032 0.065 0.066 0.070 0.066

DECO-sqrt 0.038 0.035 0.037 0.037 0.031 0.031 0.025 0.024 0.082 0.085 0.087 0.063
DECO-t 0.041 0.038 0.040 0.036 0.021 0.024 0.022 0.021 0.100 0.102 0.100 0.091
DECO-E 0.038 0.040 0.036 0.039 0.029 0.029 0.031 0.021 0.069 0.068 0.066 0.057
DECOs-E 0.040 0.038 0.042 0.048 0.021 0.023 0.021 0.022 0.078 0.076 0.071 0.055
DECOt-E 0.044 0.046 0.043 0.053 0.035 0.033 0.033 0.025 0.074 0.077 0.073 0.051

N = 40 E-stat 0.051 0.052 0.050 0.059 0.029 0.030 0.027 0.033 0.051 0.051 0.054 0.066
WW 0.067 0.061 0.064 0.066 0.061 0.067 0.063 0.057 0.080 0.081 0.080 0.085
KS 0.055 0.073 0.056 0.065 0.045 0.059 0.066 0.045 0.064 0.080 0.073 0.081

QuSAGE 0.038 0.046 0.045 0.048 0.047 0.039 0.039 0.051 0.060 0.067 0.057 0.050
DECO 0.068 0.065 0.062 0.052 0.045 0.041 0.043 0.042 0.048 0.055 0.057 0.047

DECO-sqrt 0.068 0.066 0.062 0.060 0.037 0.041 0.039 0.050 0.055 0.059 0.059 0.048
DECO-t 0.067 0.063 0.061 0.063 0.032 0.033 0.032 0.040 0.062 0.066 0.064 0.062
DECO-E 0.058 0.055 0.056 0.061 0.040 0.044 0.042 0.036 0.059 0.061 0.059 0.057
DECOs-E 0.063 0.063 0.062 0.051 0.028 0.027 0.024 0.034 0.051 0.053 0.051 0.062
DECOt-E 0.051 0.051 0.051 0.056 0.034 0.028 0.030 0.037 0.056 0.054 0.057 0.065

N = 60 E-stat 0.053 0.058 0.054 0.061 0.086 0.084 0.086 0.071 0.051 0.050 0.056 0.038
WW 0.072 0.074 0.066 0.072 0.059 0.055 0.058 0.061 0.074 0.075 0.076 0.068
KS 0.075 0.063 0.051 0.058 0.063 0.066 0.064 0.073 0.055 0.052 0.047 0.054

QuSAGE 0.067 0.070 0.061 0.051 0.041 0.052 0.040 0.046 0.035 0.035 0.031 0.042
DECO 0.053 0.054 0.058 0.055 0.077 0.078 0.076 0.074 0.045 0.049 0.051 0.048

DECO-sqrt 0.053 0.054 0.059 0.052 0.074 0.082 0.083 0.074 0.052 0.052 0.054 0.053
DECO-t 0.052 0.052 0.050 0.050 0.085 0.083 0.082 0.078 0.059 0.059 0.061 0.060
DECO-E 0.052 0.051 0.055 0.045 0.078 0.077 0.073 0.072 0.047 0.044 0.044 0.042
DECOs-E 0.063 0.058 0.061 0.059 0.081 0.085 0.081 0.076 0.049 0.052 0.054 0.040
DECOt-E 0.056 0.059 0.053 0.059 0.079 0.079 0.078 0.080 0.056 0.055 0.056 0.039

to the lowest power of test when p and γ are small. Interestingly, when the correlation increases,
both our proposed methods DECO and DECO-sqrt still perform well, but the powers of all
tests decrease slightly. When p increases, the power increases for all tests even with small fold
changes. In addition, it appears that there are no significant differences in power performance
across RPKM, UQ, and TMM normalizations. However, the LCPM normalization appears to
be relatively less powerful in all simulations.

3.2 Real data analysis

In this section, we present the performance of the GSA methods on a real dataset using four
normalization methods. We re-analyzed the Pickrell dataset from the Bioconductor package
tweeDEseqCountData. The dataset consists of 69 lymphoblastoid cell lines (LCL), which were
derived from Yoruban Nigerian individuals. The annotEnsembl63 is a data frame object with an-
notation data for the human genes. Our gene information was obtained from the annotEnsembl63
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in tweeDEseqCountData package. Then, we discarded genes that didn’t have gene length infor-
mation. Also, any genes with an average count per million (cpm) less than 0.1 were discarded.
Gene sets were obtained from the C2 curated pathways of the molecular signatures database
(MSigDB) 3.0. The GSVAdata package provides the list of these gene sets. Next, we used the
org.Hs.eg.db package to convert the entrez identifiers to gene symbol identifiers. In addition,
genes which did not exist in the Pickrell dataset were discarded from the C2 curated pathways.
Last, we kept gene sets with the number of genes between 10 and 500. We randomly chose 29
samples for each gender. The dataset was left with 4741 genes and 58 samples, while the resulted
pathways were left with 1085 pathways.

We detect pathways whether they are differentially expressed (DE) between male and female
samples using multivariate tests (E-stat, WW, KS, QuSAGE, and DECO-sqrt) by using different
normalization methods. Also, we set a significance level α = 0.05. To summarize, DECO-sqrt
is the most liberal test while QuSAGE is the most conservative test. Among four normalization
methods, DECO-sqrt detects 196 DE pathways with RPKM, 174 DE pathways with UQ, 158
DE pathways with TMM, and 221 DE pathways with LCPM; QuSAGE detects a total of 346
pathways. Figure 6 presents the Venn diagrams for the TMM normalization. The performance
of these methods is very similar for other normalization methods (Additional file, Figures S24-
26). For normalization methods, TMM and LCPM detect more pathways compared to others.
Figure 7 shows the common pathways detected by our proposed method DECO-sqrt for different
normalization methods. We found that DECO-sqrt detects much more common pathways than
others across four normalizations. Corresponding results for other competing methods can be
found in the Additional file, Figures S27-30.

To have more information about DECO-sqrt’s ability in detecting differentially expressed
gene sets, we calculate the number of DE gene sets detected only by DECO-sqrt. We found that
there are 56 DE gene sets detected only by DECO-sqrt. In order to know whether there is any
important gene set among them, we compared these 56 gene sets with the results presented by
Zhang et al. (2009). They used GSEA and C2 curated pathways to reveal differences in YRI
(Yoruba people from Ibadan, Nigeria) expression data between males and females. The YRI
expression data was derived from the Affymetrix GeneChip Human Exon 1.0 ST array (exon
array) dataset. We found one gene set, MANALO_HYPOXIA_DN, in common. The gene set
is enriched in female samples and related to hypoxia and overexpression.

According to Brannon et al. (2012), they identified whether gender influences on tumor
biology. Their materials are C2 curated gene sets and T261 array. We found that there are 9
gene sets in common (2 DE gene sets enriched in females and 7 DE gene sets enriched in males).
See Table 5.

4 Conclusions

Identifying differentially expressed genes is a useful way to overview genome wide expression
profiling. In most cases, the genes within each gene set aren’t distributed independently, which
does not agree with the assumption of most statistical tests. Therefore, making this independence
assumption may lead to difficulties of biological interpretation by conventional GSA methods. In
this paper, we used the DECO algorithm to alleviate this problem by removing the correlations
in each gene set. The proposed method could reduce the estimation error for the covariance
matrix of each gene set because the intra-gene set correlation has a significant impact on the
distribution of testing statistics.
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Figure 6: The Venn diagram of the C2 curated pathways detected in the Pickrell dataset by
different tests under the TMM normalization.

We compare and evaluate our proposed method to other existing self-contained GSA ap-
proaches in combination with four different normalizations (RPKM, TMM, UQ, and LCPM) on
simulated and real RNA-Seq data. The results show that our proposed methods appropriately
control the type I error and have the highest power. These observations indicate that intra-gene
set correlation should be taken into account when evaluating the gene set enrichment significance.
Based on these results, we observed that all tests with TMM normalization have the highest sta-
tistical power, while tests with LCPM normalization have the smallest power and the smallest
Type I error rates. When the gene set size increases to 100, the Type I error rate and the power
depend only on the test statistics and are insensitive to the different normalizations. Overall,
DECO and DECO-sqrt have the highest power of all the methods with intermediate to large cor-
relation and DECO-t performs well with independent and small correlation across all scenarios.
In addition, DECO and DECO-sqrt are more powerful in detecting smaller fold changes in the
simulation study. From the real RNA-Seq dataset, very often different normalization and GSA
methods may detect different differentially expressed gene sets. It reveals that every method is
constructed under different assumptions and searches for the significant gene sets from different
perspective. As expected, our proposed approach is much powerful and detects more common
pathways than others across four normalizations. The experiments conducted here support the
application of de-correlation algorithm combining with univariate statistics, recommending that
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Figure 7: The Venn diagram of the C2 curated pathways detected in the Pickrell dataset by the
DECO-sqrt method under varying normalization methods.

Table 5: Tumor-related gene sets.

Gene Set Name Gender

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_DN Females
ELVIDGE_HYPOXIA_DN Females

TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HSC_DN Males
ZHAN_MULTIPLE_MYELOMA_CD1_UP Males

ODONNELL_TFRC_TARGETS_UP Males
RODWELL_AGING_KIDNEY_NO_BLOOD_UP Males

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP Males
TSAI_RESPONSE_TO_IONIZING_RADIATION Males

TARTE_PLASMA_CELL_VS_B_LYMPHOCYTE_DN Males

both DECO and DECO-sqrt methods were successful in identifying differentially expressed gene
sets from RNA-Seq data.

An important conclusion from our work reveals that normalization methods are not robust
to the intra-gene set correlation. This implies that differentially expressed gene sets have low
reproducibility from normalization methods. In fact an increasing number of genomic data by
different types of available platforms suffer from the same problem as the examples presented here,
having few overlapping gene sets identified simultaneously by different normalization methods.
These results suggest that reproducibility can be improved by optimizing experimental designs,
randomizing potential experimental factors to biological samples, and increasing the sample size.
Also, it is worth noticing that the selection difference between various GSA approaches is due
to the null hypothesis which they test for significant gene sets from different perspective. To



Gene Set Enrichment Analysis 647

reduce the burden of multiple testing and relatively small sample size, a potential improvement
can be reached to adapt the GSA approaches to integrate analyses from multiple studies using
a meta-analysis.

The proposed strategy can also be applied to other sorts of high-throughput genomic data
when the intra-gene set correlation cannot be ignorable. This consideration of intra-gene set
correlation provides a more significant improvement to the statistical power. Indeed, many
alternative GSA approaches have been proposed recently for modeling dependency among genes
within each gene set. Also, it is worth noting that pairwise information between gene sets is of
critical importance and more efforts should be addressed to develop new methodologies.
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