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Abstract: In semiparametric regression it is of interest to detect 
anomalous observations that exert an unduly large influence on the 
parameter’s esti-mate and fitted values. Usually the existence of 
influential observations is complicated by the presence of collinearity. 
However no method of influ-ence diagnostics available for the possible 
effects that collinearity can have on the influence of an observation on the 
estimates of parametric and non-parametric component of semiparametric 
regression models. In this paper we show when Liu estimators are used to 
mitigate the effects of collinearity the influence of some observations can 
be drastically modified. We propose a case deletion formula to detect 
influential points in Liu estimators of semi-parametric regression models . 
As an illustrative example a real data set are analysed.

Key words: Bandwidth, Cross validation, Diagnostics, Leverages, Liu 
esti-mator.

1. Introduction
Diagnostic techniques for the regression model have received great attention in
statistical literature. See Cook (1977), Belsley et al. (1989), Walker and Brich
(1988) among others. In nonparametric and semiparametric regression models,
diagnostic results are quite rare; among them one can refer to Eubank (1985),
Silverman (1985), Thomas (1991), and Kim (1996) who studied the basic diag-
nostic building blocks such as the residuals, the leverage and the local influence for the
choice of smoothing parameter.

In the analysis of influential observations to measure the impact of the ith 
observation, the most common approach is to compute single-case diagnostics with 
the ith case deleted. Since the pioneering work of Cook (1977), case dele-tion 
diagnostics such as Cook’s distance or the likelihood distance has been suc-cessfully 
applied to various statistical models. Fung et al. (2002), Kim et al.(2001, 2002) 
and Kim et al. (2002) applied the same case deletion method via
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some type of Cook’s distance in local polynomial regression and semiparametric 
regression respectively. In regression analysis, researchers often encounter the 
problem of multicollinearity. The remedies for the problem of multicollinear-ity 
depend on the objective of the regression analysis. The multicollinearity is a 
problem when the primary interest is in the estimation of the parameters in a 
regression model. In ordinary regression many important biased estimation models 
have been proposed to deal with multicollinearity; among these the or-dinary ridge 
regression (RR) models and the Liu estimator (LE) of Liu (1993) are popular. 
Application of the conventional influence measures in the RR and LE of ordinary 
linear regression has seen a great surge of research activities during the last two 
decades or so. It is clear from several articles that appeared in the lit-erature; see, e.g., 
Walker and Brich (1988), Asar and Erisoglu (2016) and Emami and Emami (2015). 
However, the LE is generalized to fit the semiparametric regression model for 
multicollinearity data (see Akdeniz and Akdeniz Duran (2010), Duran et al. ( 2012) 
and Duran et al. (2011)). There does not seem to have any work on diagnostics for 
semiparametric regression models in present of collinearity. Recently, Emami (2015) 
and Emami (2016) developed influence diagnostics based case deletion and local 
influence approach for ridge estima-tors and Liu estimators in semiparametric 
regression models, respectively. In this paper, therefore, we propose a case deletion 
formula to detect influential points in LE for semiparametric models. We assess the 
global influence of obser-vations on the LE using the method of case deletion 
suggested by Walker and Brich (1988). The key to making deletion diagnostics usable 
is the development of efficient computational formulas, allowing one to obtain the case 
deletion di-agnostics by making use of basic building blocks, computed only once 
for the full model. The goal of this paper is to supplement the work of Walker and 
Brich (1988) with such information and extend some ordinary linear regression 
influence diagnostics approach to LE in the linear semiparametric models. In the 
following sections, it is shown graphically how the influence of some case can be 
modified when LEs are used to reduce the level of collinearity. In section 2 the 
semiparametric models with LEs are introduced, the relevant notation and some 
inferential results are also given. Section 3 derives some type of Cook dis-tance and 
case-deletion formulas for LEs in semiparametric regression models. Statistical 
properties and motivation of these measures are discussed. In section 4 the proposed 
methods are illustrated through a simulation study and a real data set. A discussion is 
given in the section 5.

2. background and definition
Considered the semiparametric regression model

yi = xi′ β + f (ti) + εi 1 ≤ i ≤ n, (1)
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where β is a p-vector of regression coefficients, xi is a p-vector of explanatory
variables, ti is a scalar (a ≤ ti, . . . tn ≤ b), and t′is are not all identical, f is a
smooth curve and the errors εi are uncorrelated with zero mean and constant
variance σ2. the model (1) has been used in discussion of many methods, e.g.,
penalized least square (see Fung et al. (2002)), smoothing spline (see Speckman
(1988), Green and Silverman (1994)). In matrix-vector notation, model (1) is
written as

y = Xβ + f (t) + ε, (2)

where y = (y1, . . . , yn), X′ = (x1, . . . , xn), f = ( f (t1), . . . , f (tn))′, ε = (ε1, . . . , εn).
There are several ways of estimating β and f . Let S ≡ S(t1, . . . , tn) be n× n pos-
itive definite smoother matrix and let ỹ = (I − S)y and X̃ = (I − S)X, then the
estimator of β and f suggested by Speckman (1988) are given by

β̂ = (X̃′X̃)−1X̃′ỹ (3)

and
f̂ = S(y− Xβ̂). (4)

The estimator of σ2 is s2 = e′e/(n − p), where e is the vector of residuals e =
y− ŷ.

2.1. Liu estimators (LEs)
The multicollinearity is a problem when the primary interest is in the estima-
tion of the parameters in a regression model. In the case of multicollinearity we
know that when the correlation matrix has one or more small eigenvalues, the
estimates of the regression coefficients can be large in absolute value. The least
squares estimator performs poorly in the presence of multicollinearity. Some
biased estimators have been suggested as a means to improve the accuracy of
the parameter estimate in the model when multicollinearity exists. In semipara-
metric regression models to combat multicollinearity LEs of β and f are defined
as

bd = (X̃′X̃ + Ip)
−1(X̃′ỹ + dβ̂) 0 ≤ d ≤ 1, (5)

and
f̂d = f (t, d) = S(y− Xbd), (6)

which are obtained by minimizing the penalizing sum of square function, namely,

‖ỹ− X̃β‖2+‖dβ̂− β‖2, (7)

where Ip is identity matrix with order p and d is tuning parameter (see Duran et
al. ( 2012)). If d = 1, and assume X̃′X̃ is of full rank then LEs became a two-step
estimators of semiparametric model. Let f (t) ≡ 0. Then (5) becomes LE of a
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linear model. Several methods have been motivated by Liu (1993) to find an
estimate for the parameter d in the LE of linear regression. All these methods
are similar to those for the choice of k in the ridge regression.

3. Influence Diagnostic in LEs
3.1. Leverage and Residuals
From LE estimator in relations (5) and (6) the vector of fitted values can be writ-
ten as

ŷd = Xbd + f̂d

= (H̃d + H∗d )y
= Hdy,

where H̃d = X(X̃′X̃ + Ip)−1[Ip + d(X̃′X̃)−1]X̃′(I− S) and H∗d = S(I− H̃d). Hd =
{hij,d} is the hat matrix which is given by

Hd = S + (I − S)X(X̃′X̃ + Ip)−1[Ip + d(X̃′X̃)−1]X̃′(I − S).

The hat matrix Hd plays the same role as the hat matrix in ordinary least square

(OLS). The ith fitted value can be written in term of Hd as yi =
n
∑

j=1
hij,dyj, con-

sequently ∂ŷi
∂yi

= hii,d. The hat diagonal hii,d of semiparametric model with LEs
can be interpreted as leverage in the same sense as the hat diagonals in semi-
parametric model with regular estimator. Using the single value decomposition
(SVD), the matrix X̃ can be decomposed as X̃ = UDV, where the columns of U
are orthonormal eigenvectors of X̃′X̃; the columns of V are orthonormal eigen-
vectors of X̃X̃′ and D is a p× p diagonal matrix containing the squared roots of
eigenvalues (γj) of matrix X̃′X̃. The LEs leverage for the ith observation can be
written as

hii = sii +
n
∑

r=1

p
∑

j=1

(γj+d)
1+γj

uijujrari,

in which uij and aij are the ijth element of matrix U and I− S respectively. Now,
the LEs residual vector can be evaluated as

êd = y− ŷd

= y− Xb̂d

= (In − Hd)y

3.2. Case Deletion

To consider the effect of dropping the ith case from the data set in a cost-effective
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manner requires the use of simple, inexpensive updating formulas. In this sec-tion, 
we provide such formulas. When properly expressed, the updating for-mulas are 
remarkably similar to the approximate updating formulas used in parametric linear 
regression (Asar and Erisoglu (2016)). It is common to com-
pare the estimates (bd, f̂d) with the estimates (bd(i), f̂d(i)) which correspond to the case 
deletion model with the ith case deleted.
Theorem 3.1: The approximate updating formula for bd(i) and f̂d(i) under case deletion 
are

bd(i) = bd − 
(
X̃ ′X̃ + Ip)−1(X̃ ′X̃ ′ + dIp)(X̃ ′X̃ )−1X̃ ′(I − S)ξied,i

1 − hii,d
, (8)

f̂d(i) = f̂d −
Hd
∗ξied,i

1 − hii,d
, (9)

where ξi is an n × 1 vector with 1 at ith position and zero elsewhere, edi is the ith 
element of the LEs residual vector ed.
Proof: Let y∗ = (y1

∗, . . . , y∗n)′ and

yj∗ =
{
yi
∗ j = i
yj j 6= i

=where yi
∗ = xi′bd(i) + f̂d(i). Let ỹ∗ M (I − S)y∗, for any β and smooth curve f , from the 

definition of bd(i) and f̂d(i) we have

X̃ ˆ‖ỹ∗ − β‖2+‖dβ(i) − β‖2 = (ỹi∗ − x̃i ′ β)2 + ∑
j6=i

ˆ(ỹ j − x̃j ′ β)+‖dβ(i) − β‖2

≥ ∑
j

ˆ(ỹ j − x̃j ′ β)2+‖dβ(i) − β‖2

X̃ ˆ
6=i

≥ ‖ỹ∗ − bd(i)‖2+‖dβ(i) − bd(i)‖2

where x̃i ′ is ith row of X̃ . It follows that bd(i) minimizes‖

ỹ∗ − X̃ β‖2+‖dβ̂(i) − β‖2,

β̂ (i) minimizes ‖ỹ(i) − X̃ X̃
(i) β‖2 or approximately minimizes ‖ỹ∗ − β‖2 which

give us β̂(i) = (X̃ ′X̃ )−1 X̃ ′ ỹ∗ so that

′

bd(i) = (X̃ X̃ + Ip)−1(X̃ ′X̃ ′ + dIp)(X̃ ′̃X )−1 X̃

= bd − ( ′X̃X̃ + Ip)−1(X̃ ′X̃ ′ + dIp)(X̃ ′̃X )−1 X̃ ′

′ ỹ∗

(I − S)ξi(yi − yi∗)
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and

f̂d(i) = S(y∗ − Xbd(i))

= f̂d − S[I − X(X̃′X̃ + Ip)
−1(X̃′X̃′ + dIp)(X̃′X̃)−1X̃′(I − S)]ξi(yi − y∗i ).

Also we can verify that

yi − y∗i = ξi(y− Xbd(i) − f̂d(i))

= ξ ′i(y− Hdy∗) = ξ ′i [y− Hdy + Hd(y− y∗)]
= ξ ′i(y− Hdy) + ξ ′i Hdξi(yi − y∗i ),

solving for yi − y∗i we have

yi − y∗i = ei,d/(1− hii,d),

from which Theorem 3.1 follows. If the non-parametric component f is not
present in the model, equation (1) reduces to the to the updating formula of
Cook distance for ordinary ridge regression (see Walker and Brich (1988)).

3.3. Measuring Influence in LEs
Some version of Cook’s distance for the component of semiparametric regres-
sion models is suggested by Eubank (1985) and Kim et al. (2001, 2002). An
analogous definition of Cook’s distance can be given for LEs in semiparametric
regression model (1) as follows:

3.3.1. Influence on bd
At least two versions of Cook’s distances can be constructed for LE of β, namely,

Dbi =
(bd − bd(i))

′X′X(bd − bd(i))

p1s2 (10)

and

D∗bi =
(bd − bd(i))

′K[X̃′(I − S)(I − S)′X̃]−1K(bd − bd(i))

p1s2 , (11)

in which p1 =
n
∑

i=1

n
∑

j=1
h̃2

ij, where h̃ij is ijth element of matrix H̃d and K = (X̃′X̃ +

I)−1(X̃′X̃ + dI), D∗bi is direct generalization of Cook’s distance, and D∗bi is based
on the fact that var(β̂k) = K

′−1(X̃′X̃)K
′−1.

The mean squared error is a function of the fitted values and the responses,
neither of which depends on individual eigenvalues of X̃′X̃. Therefore, it is not
affected by collinearity. For this reason, the regular estimators of σ2 [s and s(i)]
will be used as measures of scale. It would be desirable to be able to write these
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measures as functions of leverage and residual. By the theorem we can express
Dbi and D∗bi as a function of ith residual and leverage as follows:

Dbi =

[
n
∑

j=1
h̃2

ij]e
2
di

p1s2(1− hd,ii)2 ,

D∗bi =
h0

iie
2
di

p1s2(1− hd,ii)2 ,

in which h0
ij is ith diagonal elements of matrix (I − S)X̃′(X̃′X̃)−1[X̃′(I − S)(I −

S)′X̃]−1(X̃′X̃)−1X̃′(I − S).

3.3.2. Influence on f̂d
An influence measure for ith observation on f̂d may be defined as a type of
Cook’s distance by

D f i =
( f̂d(i) − f̂d)

′( f̂d(i) − f̂d)

p2s2 . (12)

D f i can be expressed in the form of residuals and leverage’s as

D f i =

[
n
∑

j=1
h∗2ij ]e

2
d,i

p2s2(1− hd,ii)2 ,

where p2 =
n
∑

i=1

n
∑

j=1
h2∗

ij and h∗ij is ijth element of matrix H∗d .

3.3.3. Influence Measure for ŷd

Among the most popular single-case influence measures is the difference in
fit standardized DFFITS (Belsley et al. (1989)), which can be defined for model
(1) as

DFFITSd =
x′i(bd − bd(i)) + ( f̂d − f̂d(i))

se(ŷd)
, (13)

the denominator is an estimator of the standard error of the LEs fitted value. It
can be shown that se(ŷd) = s[

n
∑

j=1
h2

d,ij]is an estimator of the standard error of the

fitted values. Based on the relations in (7) and (8), the relation in (13) can be
written as

DFFITSd =

[
hd,ii

1− hd,ii

]
ed,i

s[
n
∑

j=1
h2

d,ij]
.
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An influence measure for the ith observation on the vector of fitted values can
be similarly defined by

Dyi =
(ŷd − ŷd(i))

′(ŷd − ŷd(i))

p3s2(1− hd,ii)2 , (14)

we may express it as

Dyi =

n
∑

j=1
h2

d,ije
2
d,i

p3s2(1− hd,ii)2 ,

where p3 =
n
∑

i=1

n
∑

j=1
h2

d,ij.

3.4. Relationship between the Cook’s distances
Here we shall investigate the relationships between Dyi, Dbi and D f i. We have

p3s2Dyi = (ŷd − ŷd(i))
′(ŷd − ŷd(i))

= {X(bd − bd(i)) + ( f̂d − f̂d(i))}′{X(bb − bd(i)) + ( f̂d − f̂d(i))}
= (bd − bd(i))X′X(bd − bd(i)) + ( f̂d − f̂d(i))

′( f̂d − f̂d(i))

+2(bd − bd(i))
′X′( f̂d − f̂d(i))

= p1s2Dbi + p2s2D f i + 2(bd − bd(i))
′X′( f̂d − f̂d(i))

In the presence of cross product term 2(bd − bd(i))
′X′( f̂d − f̂d(i)), Dyi might not

be large even though both Dbi and D f i are large. Conversely Dyi could be large
even though both Dbi and Dbi are small. This is reason we should compute the
influence of an observation on each estimator separately(see Kim et al. (2001,
2002)).

3.4.1. Reference values
In non-parametric or partial linear regression models, a general guideline for
reference values for the Cooks distances is out of reach. After finding proper
tuning parameter d, we suggest take the data-specific method based on a boot-
strap idea proposed by Kim and Storer (1996). We take this bootstrap idea as
follows:
1. Fit the observed data to model (1),
2. Generate n random number ε∗i ∼ N(0, s2),
3. With known d, generate n pseudo-response ŷ∗i = x′i b̂d + f̂d(ti) + ε∗i
4. Based on (xi, ti, ŷ∗i ), compute n numbers of the Cook’s distances defined in
relations (10)-(13).
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5. Repeat steps of 1-4 r times, and
6. Obtain the average of r maximum values.

3.5. Selecting the Smoothing Parameter
Both local-polynomial regression and smoothing splines have an adjustable smooth-ing 
parameter, say λ. This parameter may be selected by visual trial and error, picking a value 
that balances smoothness against fidelity to the data. More for-mal methods of selecting 
smoothing parameters typically try to minimize the mean-squared error of the fit or by 
some form of cross-validation. Here, the cross-validation or the generalized cross-
validation, which might be used to es-timate smoothing parameter, can be written as a 
function of the residuals and LEs leverages by

CV(λ) =
n

∑
i=1

{ei,d/1 − hii,d}2,

GCV(λ) =
n

∑
i=1

{ei,d/1 − 1
n tr(Hd)}

2.

4. Numerical Example
4.1. Simulation study

In this section, we will discuss the simulation study to investigate the effect of

influence observations in multicollinear data sets. Adopting the model (1.1) we 
simulate the response from the following model:

y = Xβ + f (t) + ε

where X ∼ N10(0, Σ) and the coefficient vector β is the normalized eigenvector corresponding 
to the largest eigenvalue of X̃ ′X̃ . We selected a smooth function
of the form f (t) = mn f0(t) where f0 = 4.26 [exp(−3.25t) − 4exp(−6.5t) + 3exp(−9.7t)] with max 
| f (t)| = 9 (i.e mn = 9). The vector t and ε generated from U(0, 1) and
N(0, 0.05), respectively. Three different set of data corresponding to Σ = Σ1, Σ =
Σ2 and Σ = Σ3 are considered to show the weakly, strong and severely collinear between the 
explanatory variables, respectively. For this, the off-diagonal ele-ments of covariance matrix of 
Σ1,Σ2 and Σ3 are set to be cov(xi, xj) = 0.7σxi σxj ,
cov(xi, xj) = 0.9σxi σxj and cov(xi, xj) = 0.99σxi σxj , i, j = 1, . . . , 10, respectively, where σxi = 4i/5. 
For each data set, 5th, 10th and 15th observations are replaced
as influential observations. With given Σ1,Σ2 and Σ3 the samples of 15, 50 and
100 units are produced for 5000 times. Dyi, Dbi and D f i are calculated for each
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data set. Table1 shows the mean and standard error (in parenthesis) of the val-
ues of Dyi, Dbi and Df i . It can be seen that at least 2 influence measures clearly 
identify the 5th, 10th and 15th observations as influential observations. The per-
centage of the correct detection of the influential observations by influence mea-sures 
are given in Table 2.

4.2. Real data
The Longley (1967) data is a data frame with 7 economical variables, x1 = GNP 
implicit price deflator, x2 =Gross National Product ,x3 = number of people in the 
armed forces , x4 =number of unemployed, x5 =Population , x6 = Year and y 
=number of people employed. This data has been used to explain the effect of 
extreme multicollinearity on the ordinary least square estimation. The scaled condition 
number (see Belsley et al. (1989), p. 100) of this data set is 43,275. This large 
value suggests the presence of an unusually high level of collinearity. Cook (1977) 
applied Cook’s distance to this data and found that cases 5, 16, 4, 10, and 15 (in this 
order) were the most influential observations in OLS. Walker and Brich (1988) 
analysed the same data to find anomalous observations in ridge regression using the 
method of case deletion influential measures. They found that cases 16, 10, 4, 15 and 
5 (in this order) were the most influential observations in Cook’s and DFFITS 
measures. Shi and Wang (1999) detected the five same cases as Walker and Brich 
(1988) did but with another order, i.e., 10, 4, 15, 16, and 1, using local influence 
method. Recently Asar and Erisoglu (2016) and Jahufer and Chen (2011) used this 
data set and applied case deletion formula and local influence respectively on LE in 
ordinary linear regression. They found the five case i.e., 4, 6, 15 and 16 and found 
that the order of influence is changed respect to different d. In leverage and residual 
measures Asar and Erisoglu (2016) found the same influential observations but the 
order is changed. In this paper we used the same data set to assess the influential 
observations in LEs by using the method of case deletion influential measures such as 
Cook’s distances, DFFITS and Leverages. For simplicity of the numerical study we 
consider the following semiparametric model

yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + f (xi6) + εi. i = 1, 2, . . . 16

b̂

The smoothing spline was used and the tuning parameter λ =0.006 was selected by 
minimizing the cross-validation criterion. The LE biasing parameter is es-timated for 
this data set with d = 0.962. Table 1 show the three type Cook’s distances, Dbi, Dgi 
and Dyi for d = 0 and d = 0.962 model respectively. The ref-erence values are 
evaluated based on the algorithm described in Section 4 with r =100. It can be seen that 
cases 5, 6, 10, and 15 in this order are most influential points on d and f̂d. In both
influential measures the detected influential cases exactly same but only, the influence 
of observation 15 on f̂d is not significant.
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b̂

However, the influence observation on ŷd are changed in such a way cases 5, 16, 4 and 
10 (in this order) are the most significant influential observations on ŷd. We note one 
should be careful in comparing the three Cooks distances Dbi, Df i and Dyi. Since 
different normalizing constants p1, p2 and p3 are used, direct comparison may be 
misleading. For example, whenDf 5=0.135 and Dy5=0.561, it
is not reasonable to conclude that the 5th observation is 4 times more influential on ŷd 
than on f̂d. Each Cooks distance should be used and interpreted within the estimator.
For example, when Df 10=0.462 and Df 15=0.191, we may conclude that the 10th 
observation is three times more influential than the 15th observa-
tion on f̂d.
We have also plotted the most influential cases, discovered using (10), (12) and (13), 
to study the impact of d on these cases against various values of d in Fig.1. The 
impact of d on the influence of each case is clear. The influential cases are similar 
in Fig.1(a) and Fig.1 (b) but the order of influence magnitude varies. Specifically, 
we observe that although case 5 is the most influential, with ref-erence to both 
(10) and (12), its influence decreases sharply as d increases. In contrast, the
influence of case 6 increases slowly as d increases. There is little difference in Fig.
(c) the influential observations are 5, 16, 4 and 10 (in this order) and the order of
influence along d is unchanged. The impact of d for influence
observation on ŷd is different from d and f̂d. It is seen that the influence of cases 5 and
4 slowly decreases while influence of case 6 is slowly increases as d grows.The 
influence of the case 10 remains relatively constant in Fig.(a)-(c). DFFITS, leverages 
(hd,i) and residuals are plotted against d in Fig.(3). The influ-
ential observations are the same as those in the Cook’s measures, but the order of 
magnitude is changed. In DFFITS and leverage plot, as the plots shows the DFFITS 
and leverage of case 6 increases as d grows, whereas case 16 and 5 re-mains as the 
highest point. The residual, on the other hand is more constant for all cases relative to 
other plot. The joint effect of leverage and residuals is reflected in the change of 
influence observed in Fig.(1)(c). Fig (3). contain the plot of f̂d when the influential
observations are deleted and when d = 0.962.

5. Summary
In this article, we discussed case omission measures for semiparametric models with
the LE estimators. In general linear model Belsley et al. (1989) noted that biased
estimators are used to reduce the affect of multicollinearity and that the influence of
some cases can be modified. Based on this fact, they suggested that multicollinearity
should be controlled before attempting to measure influence. In this paper, we show
that, in semiparametric regression models when LE is used, the influence of some
case can be changed along d. We found that when the value of d is determined,
influence measures should be computed for that d. The main advantage of deletion
formulas derived in theorem 1 is that, the
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estimator does not have to be computed every time a case is deleted. For a value of d 
all of the elements in (10)-(13) are readily available from a single run of LE. 
Also, these measures, based on deletion formulas, are particularly helpful for large 
data sets. Furthermore,the deletion formulas provide computationally inexpensive 
influence measures for LE in semiparametric regression models.
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Figure 1: (a): Plot of Dbi against d, (b): Plot of Df i against d, (c): Plot of Dyi 
against d
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Table 1: The three most influential observations according to the Dyi, Dbi and Df i 
in the simulation study

Σ n Obs. Dyi Dbi D f i

Σ 1 15 5
10
15

0.0943(0.0281) 
0.0328(0.0176) 
0.1003(0.0139)

0.1941(0.0105) 
0.0997(0.0755) 
0.1203(0.0182)

0.0605(0.1061) 
0.0710(0.1100) 
0.09114(0.0152)

other ≤ .02726(0.0301) ≤ .04174(0.0392) ≤ .0534(0.0608)
50 5

10
15

0.1253(0.0150) 
0.1827(0.0121) 
0.228(0.0151)

other ≤ .0493(0.0107)
100 5

10
15

0.5010(0.0081) 
0.4490(0.0087) 
0.3641(0.0078)

other ≤ .0140(0.0103)

0.1318(0.0194) 
0.101(0.0110) 
0.2027(0.0141) 
≤ .0433(0.0100) 
0.4010(0.0200) 
0.2783(0.0096) 
0.5502(0.0097) 
≤ .0162(0.0091)

0.1967(0.0167) 
0.0979(0.0182) 
0.169(0.0315) 
≤ .0735(0.0089) 
0.2101(0.0092) 
0.2079(0.0099) 
0.3044(0.0105) 
≤ .0094(0.0131)

Σ 2 15 5
10
15

0.129(0.0028) 
0.3914(0.0044) 
0.2149(0.0073)

other ≤ .0621(0.0073)
50 5

10
15

0.3461(0.0055) 
0.3410(0.0098) 
0.2990(0.0048)

other ≤ .0194(0.0097)
100 5

10
15

0.314(0.0064) 
0.2910(0.0083) 
0.2116(0.0076)

other ≤ .0069(0.0081)

0.491(0.0088) 
0.3152(0.0067) 
0.3861(0.0092) 
≤ .0346(0.0290) 
0.2183(0.0083) 
0.2093(0.0074) 
0.2088(0.0081) 
≤ .0504(0.0082) 
0.2100(0.0067) 
0.3094(0.0076) 
0.1512(0.0091) 
≤ .0095(0.0056)

0.1930(0.0087) 
0.2671(0.0061) 
0.2918(0.0092) 
≤ .068(0.0053) 
0.2192(0.0099) 
0.1901(0.0039) 
0.1011(0.0102) 
≤ .0089(0.0069) 
0.1547(0.0066) 
0.2819(0.0086) 
0.1989(0.0043) 
≤ .0080(0.0061)

Σ 3 15 5
10
15

0.1319(0.0027) 
0.2671(0.0082) 
0.2354(0.0028)

other ≤ .0094(0.0079)
50 5

10
15

0.1328(0.0080) 
0.5951(0.0064) 
0.1498(0.0088)

other ≤ .0061(0.0084)
100 5

10
15

0.2891(0.0081) 
0446(0.0078) 
0.2951(0.0075)

other ≤ .0221(0.0049)

0.2852(0.0089) 
0.1845(0.0086) 
0.1839(0.0086) 
≤ .0154(0.0081) 
0.1715(0.0061) 
0.2627(0.0074) 
0.2691(0.0026) 
≤ .0069(0.0083) 
0.2816(0.0099) 
0.2638(0.0066) 
0.2804(0.0029) 
≤ .0086(0.0029)

0.1810(0.0071) 
0.1906(0.0089) 
0.251(0.0059) 
≤ .063(0.0097) 
0.3014(0.010) 
0.2199(0.0076) 
0.2990(0.0094) 
≤ .0076(0.0099) 
0.1107(0.0099) 
0.2091(0.0058 
0.2769(0.0039) 
≤ .0161(0.0097)
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Table 2: The percentage of correct detection in the simulation study with n = 50

Σ % of outliers Dyi Dbi D f i

Σ1 5% 100 100 99
10% 99 98 97
25% 98 99 97

Σ2 5% 98 99 98
10% 97 97 96
25% 96 96 96

Σ3 5% 97 97 95
10% 96 96 94
25% 95 96 94

Table 3: The 6 most influential observations: Longley data.Values with ∗ indi-
cates the cases with values larger than the reference values.

d=0 d=0.962
Case Dbi D f i Dyi Dbi D f i Dyi

4 0.005 0.005 0.378∗ 0.002 0.003 0.337∗

5 1.489∗ 1.284∗ 0.631∗ 0.336∗ 0.135∗ 0.561∗

6 0.262∗ 0.017 0.093 0.621∗ 0.451∗ 0.091
10 0.412∗ 0.545∗ 0.269∗ 0.331∗ 0.462∗ 0.250∗

15 0.147∗ 0.190∗ 0.088 0.191∗ 0.191∗ 0.096
16 0.042 0.047 0.492∗ 0.054 0.059 0.532∗
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Figure 2: (a): Plot of DFFITS against d, (b): plot of leverages against d, (b): Plot
of residuals against d
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Figure 3: Plot of f̂d (solid line) when case 5 is deleted (dashed line) (a), when
case 10 is deleted (b),when case 6 is deleted (c).
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