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Abstract

In this paper, we proposed another extension of inverse Lindley distribution, called extended inverse 
Lindley and studied its fundamental properties such as moments, inverse moments, mean deviation, 
stochastic ordering and entropy. The flexibility of the proposed distribution is shown by studying 
monotonicity properties of density and hazard functions. It is shown that the distribution belongs to the 
family of upside-down bathtub shaped distributions. Maximum likelihood estimators along with 
asymptotic confidence intervals are constructed for estimating the unknown parameters. An algorithm is 
presented for random number generation form the distribution. The property of consistency of MLEs 
has been verified on the basis of simulated samples. The applicability of the extended inverse Lindley 
distribution is illustrated by means of real data analysis.
Keywords: Extended inverse Lindley distribution, upside-down bathtub shaped hazard rate, 
Moments, Maximum likelihood estimation.

1. Introduction

In 1958, Prof. D.V. Lindley (Lindley (1958)) investigated a probability distribution in con-text of
fiducial statistic as a counter example of Bayesian theory. Later, this distribution is called as the Lindley 
distribution (LD). Ghitany et al. (2008) discussed the fundamental properties of the LD with application 
to waiting time data. Mazucheli and Achcar (2011) worked on the Lind-ley distribution applied to 
competing risks lifetime data. Krishna and Kumar (2011) estimated the parameter of Lindley 
distribution with progressive Type-II censoring scheme. They also showed that it may be better lifetime 
model than exponential, lognormal and gamma distribu-tions in some real life situations. Since then the 
distribution has been widely discussed in various context. Singh and Gupta (2012) have used the 
Lindley distribution under load sharing sys-tem models. Al-Mutairi et al. (2013) developed the 
inferential procedure of the stress-strength parameter, when both stress and strength variables follow 
Lindley distribution.

It may be mentioned here that the Lindley distribution is useful when the data show increas-ing 
failure rate. This is the property that encourage the use of Lindley distribution in lifetime data 
analysis over exponential distribution. Although the family of Lindley distributions posses very nice 
properties and gained great applicability in various disciplines, its applicability may
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be restricted to non-monotone hazard rate data (bathtub and upside down bathtub (UBT) see
Sharma et al. (2014a)). Therefore, the LD has been extended to various ageing classes and intro-
duced various generalized class of lifetime distribution based on Lindley distribution. Zakerzadeh
and Dolati (2009) introduced three parameters extension of the Lindley distribution. Nadarajah
et al. (2011), Ghitany et al. (2013) proposed two parameter generalizations of the Lindley distri-
bution, called as the generalized Lindley and power Lindley distributions. These distributions
are generated using the exponentiation and power transformations to the Lindley distribution.
Merovci (2013) and Merovci and Elbatal (2014) investigated transmuted Lindley and trans-
muted Lindley-geometric distributions respectively. The beta-Lindley distribution is introduced
by Merovci and Sharma (2014). Statistical and mathematical properties of Kumaraswamy Quasi
Lindley and Kumaraswamy Lindley distributions are discussed by Elbatal and Elgarhy (2013)
and Akmakyapan and Kadlar (2014) respectively. The exponentiated power Lindley distribu-
tion is introduced by Ashour and Eltehiwy (2015). The generalized Poisson-Lindley and another
extension of the Lindley distribution are discussed by Mahmoudi and Zakerzadeh (2010) and
Oluyede and Yang (2015).

In the references cited above, authors mainly focused on the estimation of increasing, de-
creasing and bathtub shaped failure rates data. Nobody has paid attention to the modelling
of the upside down bathtub data. Recently, Sharma et al. (2015) investigated inverted version
of the Lindley distribution that has UBT shaped failure rate. The inverse Lindley distribution
(ILD) is defined by the following probability density function (pdf)

f (x; θ) =

(
θ2

1 + θ

)(
1 + x

x3

)
e−θ/x, x > 0, θ > 0. (1)

The above density (1) can be rewrite as

f (x) = pf1 (x) + (1− p) f2 (x) , (2)

where, p = θ
1+θ , f1 (x) = θx−2e−θ/x, x > 0, θ > 0 and f2 (x) = θ2

Γ2x
−3e−θ/x, x > 0, θ > 0.

Thus, inverse Lindley distribution is a two component mixture of inverse exponential dis-
tribution and special case of inverse gamma distribution. Sharma et al. (2015) discussed the
properties of inverse Lindley distribution with application to stress strength reliability analysis.
Sharma et al. (2014b) introduced two parameter extension of inverse Lindley distribution using
power transformation to inverse Lindley random variable. Recently, Alkarni (2015) proposed
three parameter inverse Lindley distribution with application to maximum flood level data.

In this article, we proposed another extension of inverse Lindley distribution which offers
more flexibility with a effective shape parameter. The pdf of the extension is defined by

f (x;α, θ) = p InverseGamma(α− 1, θ) + (1− p) InverseGamma(α, θ), α > 1, θ > 0, (3)

where p = θ
1+θ , and InverseGamma(α, θ) stands for inverse gamma distribution with shape

parameter α and scale parameter θ i.e. f(x) = θα

Γα
e−

θ
x

x(α+1) , x > 0, θ > 0, α > 0. The pdf of the
EILD is given by

f (x;α, θ) =
θα

(1 + θ)Γ(α)

(1 + x(α− 1))

xα+1
e−θ/x , x > 0, θ > 0, α > 1. (4)

The corresponding cumulative distribution function of (3) is given by

F (x;α, θ) = p CDFInverseGamma(α− 1, θ) + (1− p) CDFInverseGamma(α, θ), α > 1, θ > 0, (5)
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where, CDFInverseGamma(α, θ) = Γ(θ/x,α)
Γα , Γ(t, α) = ∫∞

t
xα−1e−xdx and Γ(α) = ∫∞

0
t(s−1)e−tdt.

We call the distribution in (3) as the extended inverse Lindley distribution and denote the density as 
EILD(α, θ). Note that if X follows EILD(α, θ), then Y = X−1 follows the generalized Lindley 
distribution by Abouammoha et al. (2015).

Rest of the article is organized in the following sections. The distributional properties such as 
moments, skewness, kurtosis, mean deviation, stochastic ordering and Reyni entropy are 
investigated in section 1. The maximum likelihood estimation along with asymptotic distribution is 
discussed in section 2. Section 3 consists algorithm for random sample generation form the EILD. 
Simulation study has also been carried out study the performances of the MLEs. A set of real data 
is used for illustration purposes in section 4. The paper is concluded in section 5.

2. Distributional properties

In this section, we discuss the fundamental properties of the EILD. Mainly the properties to be
discussed include measures of central tendency, dispersion and shapes of the frequency 
distribution from EILD. First, we study the shapes of the pdf and hazard function in the following 
section.

2.1. Shapes of Density and Hazard functions
The pdf of extended inverse Lindley distribution is given by

f (x; α, θ) = θα (1 + x(α − 1))
e−θ/x , x > 0, θ > 0, α > 1.(1 + θ)Γ(α) xα+1

The first derivative of the pdf with respect to x is readily obtained as

f
′
(x) = θα

(
θ − (α − θ + 1) x − αx2

)
e−θ/x.(θ + 1)Γ(α) x(α + 3)

By putting f ′ (x) = 0, we get the mode of EILD which is given by

xmode =
−(αθ − θ + α + 1) ±

√
(αθ − θ + α + 1)2 + 4(αθ − α2θ)
2(α − α2)

.

For various shapes of the pdf of EILD, see Figure 1a. The survival function of the density is given by S 
(x) = 1 − F (x). The survival function of EILD have been plotted in Figure 1b for various combination
of α and θ.

The hazard function of extended inverse Lindley distribution is given by

h(x) = θαΓ(α)e−(θ/x) (1 + x(α − 1))
xα−1 [(θ + 1)Γα − {γ(α, θ/x) + θ(α − 1)γ(α − 1, θ/x)}]

. (6)

The hazard function of EILD for various choices of α and θ is shown in Figure 2 indicates that the 
hazard function is upside down bathtub shaped.
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Figure 1: Density and survival functions of EILD(α, θ).

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

x

H
az

ar
d
 f

u
n
ct

io
n

θ=0.5, α=3.0
θ=0.5, α=2.0
θ=1.5, α=2.0
θ=1.5, α=3.0 

Figure 2: The hazard function of the EILD(α, θ).
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2.2. Moments, inverse moments and associated Measures
The rth moment can be defined by,

E [X r] =
∫∞
0

xrf (x; α, θ) dx.

On putting the density function, we get

E [X r] =
∫∞
0

xr θα

(1 + θ)Γ(α)
(1 + x(α − 1))

xα+1 e−θ/xdx.

Using the definition of inverse gamma, we obtain

E[X r] =
θr [(θ + 1)(α − 1) − r] Γ(α − r − 1)(θ + 

1) Γ(α)

The rth inverse moment E
[ 1

Xr

]
can be obtained by

E
[ 

1
X r

]
=
∫∞
0

1
xr fX (x)dx.

After substituting the pdf of the ILD, we have

E
[ 

1
X r

]
=
∫∞
0

1
xr

θα

(1 + θ)Γ(α)
(1 + x(α − 1))

xα+1 e−θ/xdx.

On some simplifications, we get

E
[ 

1
X r

]
=

[(α − 1)(1 + θ) + r] Γ(α + r − 1)(θ 
+ 1)θrΓ(α)

.

[ 1
X
]
.The harmonic mean of the EILD can be computed using the first inverse moment as 1/E The first 

four moments of EILD are given by

µ′1 = E[x] = 
θ[(θ + 1)(α − 1) − 1]

(θ + 1)(α − 1)(α − 2)
, α > 2,

µ′2 =
θ2[(θ + 1)(α − 1) − 2] , α > 3,

µ′3 =

(θ + 1)(α − 1)(α − 2)(α − 3) 

θ3[(θ + 1)(α − 1) − 3]
, α > 4,

µ′4 =

(θ + 1)(α − 1)(α − 2)(α − 3)(α − 4) 

θ4[(θ + 1)(α − 1) − 4]
(θ + 1)(α − 1)(α − 2)(α − 3)(α − 4)(α − 5)

, α > 5.

The variance of the EILD can be computed using the following relation,

σ2 = µ2′ − µ1′2.
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Figure 3: Plots for skewness and kurtosis of EILD(α, θ).

The variance of the EILD random variable is given by

σ2 =
[(θ + 1)2(α− 1)2 − 2(θ + 1)(α− 1)− (α− 3)]

(θ + 1)2(α− 1)2(α− 2)2(α− 3)
, α > 3.

The coefficients of the skewness and kurtosis measures can now be computed from the following
expression,

skewness(γ1) =

[
µ3′ − 3µ1′µ2′+ 2(µ1′)3

]
[µ2′ − (µ1′)2]3/2

, α > 3

kurtosis(γ2) = β2 − 3

where,

β2 =

[
µ4′ − 4µ1′µ3′+ 6µ2

1′µ2′ − 3µ4
1′
]

[µ2′ − (µ1′)2]2
, α > 4.

The skewness for EILD is shown in Figure 3a for various choices of α and θ. From the figure
it can be observed that the γ1 > 0 so the EILD is positively skewed. The kurtosis is shown in
Figure 3b for various values of α and θ. It can be observed from the figure that γ2 > 0. EILD
is more peaked than normal curve so it is leptokurtic.

2.3. Mean Deviation and Median Deviation

Lemma 1. Let

I (x;A) =

∞∫
A

xf(x)dx

then

I (x;A) =
θ

(1 + θ)Γα

[
Γ

(
θ

A
, α− 1

)
+ θ(α− 1)Γ

(
θ

A
, α− 2

)]
, α > 2.
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Proof Consider the given integral,

I (x; A) =
∫∞
A

xf(x)dx = θα

(1 + θ) Γα
∫∞
A

(1 + x(α − 1)) 
xα e−θ/xdx.

I(x; A) =

On some simplifications, we get θ [
Γ
( 

θ , α − 1
)

+ θ(α − 1)Γ
( 

θ
A

, α − 2
)]

.
(1 + θ)Γα A

The mean deviation about mean and median are defined by,

M1(x) =
∫∞
0

(x − µ)fX (x)dx = M1(x) = 2µF (µ) + 2
∫∞
µ

xfX (x)dx − µ − 1,

and

M2(x) =
∫∞
0

(x − m)fX (x)dx = M2(x) = 2
∫∞
m

xfX (x)dx − 1,

respectively, where µ and m represent the mean and median of the EILD. Using the Lemma 1, we 
get

M1(x) = 2µF (µ) + 2I(x; µ) − µ − 1

and
M2(x) = 2I(x; m) − 1.

2.4. Stochastic ordering
A random variable X is said to be stochastically greater than Y if FX (x) <= FY (x) for all

x. In the similar way, X is said to be stochastically greater than Y in the

• hazard rate order (Y ≤hr X) if hX (x) ≤ hY (x) for all x.

• mean residual life order (Y ≤mrl X) if mX (x) ≤ mY (x) for all x. 

• likelihood ratio order (Y ≤lr X) if f
Y
X (x)

f (x) is an increasing function of x.

Shaked and Shanthikumar (1994) have stated the results for stochastic ordering of distribution as 
follows:

X ≤lr Y =⇒ X ≤hr Y
X
⇓

≤stY

=⇒ X ≤mrl Y

Following the above relations, to show the above ordering in hr, mlr and lr, it is suffix to show the 
ordering in likelihood only.
Proposition 1: Let X and Y are two independent random variables follow the extended inverse Lindley 
distribution with shape parameters α1 and α2 and scale parameters θ1 and θ2 respectively. If θ2 ≥ θ1, then 
(Y ≤ X) and if α1 ≥ α2, then (Y ≤ X) for all x, while other parameters kept fixed and same.
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Proof It is given that Y ∼ EILD (α1, θ1) and X ∼ EILD (α2, θ2). Then the likelihood ratio
is given by,

fX(x)

fY (x)
=
θα2

2 e−θ2/x(θ1 + 1)xα1−1 {1 + x(α2 − 1)}
θα1

1 e−θ1/x(θ2 + 1)xα2−1 {1 + x(α1 − 1)}
Now for α1 = α2 = α, we have

fX(x)

fY (x)
=

(1 + θ1)

(1 + θ2)

(
θ2

θ1

)α
exp

[
−(θ2 − θ1)

x

]
,

and

log

(
fX(x)

fY (x)

)
= log(1 + θ1)− log(1 + θ2) + α log

(
θ2

θ1

)
− (θ2 − θ1)

x
.

On differentiating, we get
δ

δx

{
log

(
fX(x)

fY (x)

)}
=

(θ2 − θ1)

x2
.

We can easily find that the function above is increasing in x for θ2 ≥ θ1. Which means that X
is stochastically greater than Y with respect to likelihood ratio if θ2 ≥ θ1 and α1 = α2 = α.

If θ1 = θ2 = θ, the likelihood ratio becomes,

fX(x)

fY (x)
=

(
θ

x

)α2−α1 Γα2

Γα1

[1 + x (α2 − 1)]

[1 + x (α1 − 1)]
,

which is increasing in x for α2 ≤ α1. Clearly, for θ1 = θ2 = θ, X is stochastically greater than
Y with respect to likelihood ratio if α2 ≤ α1.

2.5. Renyi Entropy

An entropy is a measure of variation of the uncertainty in the distribution of a random
variable X. For a probability distribution, the expression of the Renyi entropy (Renyi (1961)) is
defined by,

e(γ) =
1

1− γ
log

∫
fγ(x)dx. (7)

where, γ > 0 and γ = 1. Substituting (4) in (7) and after some simplifications, we have

e(γ) =
1

1− γ
log

{
θ(α+1)(1−γ)Γ(γ(α+ 1)− 2)(γα+ γ − 2 + αθγ − θγ)

(1 + θ)Γ(α)γγ(α+1)−1

}
. (8)

3. Maximum likelihood estimation

Suppose X1, X2, X3, ..., Xn are independently and identically distributed random variables of
size n from the extended inverse Lindley distribution. The likelihood function based on observed
sample X = {x1, x2, x3, ..., xn}, is defined as

L =
θnα

(1 + θ)n(Γα)n

n∏
i=1

(1 + xi(α− 1))

xα+1
i

e
−

n∑
i=1

θ
xi . (9)
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The log-likelihood function corresponding to (9) is given by

log L = nα log θ−n log (1 + θ)−n log (Γα)+ ∑n
log (1 + xi (α − 1))−(α + 1) ∑n

log (xi)− ∑n

i=1 i=1 i=1

θ
xi

.

(10) 
The maximum likelihood estimates (MLEs) α̂ and θ̂ of α and θ, respectively can be obtained as the 
simulation solution of the following log-likelihood equations,

δ log L
δα

= n log θ − n (α) + ∑n

i=1

xi

(1 + xi (α − 1))
− ∑n

i=1
log xi = 0, (11)

δ log L
δθ

=
nα
θ

− n
(1 + θ)

− ∑n

i=1

1
xi

= 0, (12)

where (α) = δ log Γα
δα . Using equation (12), the MLE of θ can be obtained in terms of α as

θ̂(α) =
− (S − α + 1) +

√
(S − α + 1)2 + 4Sα

2S

where, S = 1
n

n∑
i=1

1
xi

.

The MLE of α can be uniquely determined by solving the following non-linear equation,

n log θ̂(α) − nζ (α) +
∑n

i=1

xi

(1 + xi (α − 1))
− ∑n

i=1
log xi = 0. (13)

(α̂
mo

−αθ̂−θ

Note that the equation (13) cannot be solved analytically. Therefore, we need numerical iteration 
technique to solve the equation. Here, we use Newton-Raphson Method for solving the non-linear 
equations.

3.1. Approximate confidence intervals
Obtaining the exact confidence intervals for α and θ is not an easy task since the MLE’s of α and θ are 

not in closed forms. We, therefore, can use the asymptotic behaviour of the maximum
likelihood estimator to obtained the asymptotic confidence intervals for the )del parameters.

−Using large sample theory of MLE, the asymptotic sampling distribution of is N2(0, ∆ 1)

where (α̂, θ̂) are the MLEs of (α, θ), and ∆ is the observed Fisher’s information matrix. The elements of 
∆ are given by∣
∆11 = ∣∣− δ2

δα
log

2 
l

∣∣∣
α=α̂

∣
, ∆12 = ∆21 = ∣∣− δ

δ
2

αδ
log

θ 
l

∣∣∣
α=α̂,θ=θ̂

∣
and ∆22 = ∣∣− δ2

δθ
log

2 
l

∣∣∣
θ=θ̂

δα, where, δ
2 log

2 
l =

n ′(α) − n∑
i=1

xi
2

[1+xi(α−1)]2 , δ
2 log l
δαδθ = n

θ δθ, δ
2 log

2 
l

θ= − 
2

nα + n
(1+θ)2 .

The estimated variance co ariance matrix of the parameters α and θ can be calculated by

inverting ∆ as follows V −1 =

v{
var̂(α) cov(̂α, θ) 

cov(̂θ, α) var̂(θ)

}
=
{

∆11 ∆12
∆21 ∆22

}−1
.

The diagonal elements var̂(α) and var̂(θ) of this matrix are the asymptotic variances of the 
estimators of α and θ, respectively. Thus, the asymptotic 100(1 −  )% confidence intervals for α and θ 
are given by
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α̂L = α̂− Zψ/2
√
v̂ar(α), α̂U = α̂+ Zψ/2

√
v̂ar(α)

θ̂L = θ̂ − Zψ/2
√
v̂ar(θ), θ̂U = θ̂ + Zψ/2

√
ˆvar(θ)


where, Zψ/2 is the upper 100× (ψ/2)th percentile of a standard normal distribution.

4. Simulation Study

In this section, we investigate the properties of the MLEs of α and θ with respect to sample
size n. For this purpose, we need to simulate the random sample from the EILD. Since the
EILD is two component mixture of inverse gamma distributions, we can use the definition of
the mixture distribution for generating the random numbers from the distribution. Algorithm
for sample generation from the EILD is given by
Algorithm 1:

Step 1. Set n, α,& θ.

Step 2. Generate an inverse gamma random variable, Vj ∼ IG (α− 1, θ) for j = 1, 2, ..., n.

Step 3. Generate an inverse gamma random variable, Wj ∼ IG (α, θ) for j = 1, 2, ..., n.

Step 4. Generate a Uniform random variable, Uj ∼ U (0, 1) for j = 1, 2, ..., n.

Step 5. If Uj ≤ (θ/(θ + 1)), then set Xi = Vi, otherwise, set Xi = Wi for j = 1, 2, ..., n.

On the basis of simulated samples, we study the behaviour of biases, absolute biases and mean
squared error (MSE) of MLEs of α and θ with varying sample size n. We also investigated the
coverage probability for the asymptotic confidence intervals. Simulation algorithm consists the
following steps:
Algorithm 2:

Step 1. Generate 10,000 samples of size n from the EILD(2, 2) by using the Algorithm 1.

Step 2. Compute the MLEs for the 10,000 samples,say α̂i, θ̂i for i = 1, 2, . . . , 10,000.

Step 3. Compute the standard errors of the MLEs for the 10,000 sample say sα̂i , sθ̂i . The
standard errors were computed by inverting the observed information matrices.

Step 4. Compute average estimate (AE) as

AE(Θ̂) =
1

n

n∑
i=1

Θ̂i

Step 5. Compute the biases, absolute biases (AB) and mean squared error (MSE) using the
following formulae,

BΘ(n) =
1

10, 000

10,000∑
i=1

(
Θ̂i −Θ

)

ABΘ(n) =
1

10, 000

10,000∑
i=1

|
(

Θ̂i −Θ
)
|

MSEΘ(n) =
1

10, 000

10,000∑
i=1

(
Θ̂i −Θ

)2

for Θ = {α, θ}.
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Figure 4: Mean squared error (MSE) and Biasedness of α̂ an θ̂ with varying n.

Step 6. Compute the coverage probabilities (CP) and coverage widths (CW) given by

CPΘ(n) =
1

10, 000

10,∑000

i=1
I
(

Θ̂i − 1.959964s Θ̂i
≤ Θ ≤ Θ̂i + 1.959964sΘ̂i

)

CWΘ(n) =
3.919928
10, 000

10,∑000

i=1
sΘ̂i

for Θ = {α, θ}, where I (.) denotes the indicator function.

We repeat these steps for n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 1000 with α = 2 and θ 
= 2 , and computed BiasΘ(n), MSEΘ(n), CPΘ(n) and CWΘ(n). Trends for the results have also been 
shown graphically in Figures 4, 5, 6. From the results, it can be observed that the biases and MSEs of 
the MLEs of α and θ decrease as sample size n increases. That proves the consistency of the MLEs. In 
general, the CP for the CIs of α and θ decrease with increasing sample size. However, it stabilizes at 
approximately 0.95 for large sample size. The average width of CIs for α and θ decreases as sample size 
increase.

5. Real data analysis

In this section, we use a set of real data (given in table 1) of flood levels to demonstrate the 
applicability of the extended inverse Lindley distribution. The data were obtained in a civil engineering 
context and gives the maximum flood level (in millions of cubic feet per second) for the Susquehanna 
river at Harrisburg, Pennsylvania over 20 four-year periods from 1890 to 1969. These data have been 
widely discussed by many authors and were initially reported by Dumonceaux and Antle (1973). First, 
we use the likelihood ratio (LR) test statistic to check
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Figure 5: Coverage width of asymptotic confidence intervals of α̂ an θ̂ with varying n.
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Figure 6: Coverage probability of asymptotic confidence intervals of α̂ an θ̂ with varying n. Table 1: 

Flood level data

0.654 0.654 0.315 0.449 0.297
0.324 0.269 0.74 0.418 0.412
0.338 0.392 0.484 0.265 0.379
0.423 0.379 0.402 0.494 0.416
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whether the shape parameter associated with extended inverse Lindley distribution improves its
applicability. The hypothesis can be stated as

null hypothesis; H0 : X ∼ ILD(θ) (i.e. α = 1)
versus

alternative hypothesis; H1 : X ∼ EILD(α, θ) (i.e. α 6= 1).

In this case, the LR test statistic for testing H0 versus H1 is ζ (l0 − l1), where l1 and l0 are
the log-likelihood functions under H1 and H0, respectively. The statistic ζ is asymptotically
(asn → ∞) distributed as χ2

k with k degree of freedom, where k is the number of parameters.
The LR test rejects H0 if ζ ≥ χ2

k(γ), where χ2
k(γ) denotes the upper 100γ% quantile of the

χ2
k distribution. For given real data set, the log-likelihood under the ILD is l0 = 0.5854 with

θ̂ = 0.6344 and under H1, l1 is 16.1422 with (α̂ = 15.556, θ̂ = 5.7875). Clearly, the shape
parameter α can never be 1 for the data since α̂ = 15.556 which is very far than unity. However,
the LR test statistic is ζ = 31.11 which is greater than χ2

1(0.05) = 3.84. The results indicate
that evidences do not support the null hypothesis. Therefore, the EILD is a better model than
its special case, ILD.

Further, we also applied another statistical tools such as Kolmogorov-Smirnov (KS) statis-
tic, Akaike information criterion (AIC) and Bayesian information criterion (BIC), to choose
the best possible model for the data set among all competitive models. For this purpose,
we consider seven alternative distribution such as inverse Weibull (IW(α, θ)), inverse gamma
(IGM(α, θ)), generalised inverse exponential (GIE(α, θ)), inverse Gaussian (IG(α, θ)), lognor-
mal (LN(µ, σ2)), log-Logistic (LLog(α, β)) and flexible Weibull (FW(α, θ)). The statistical tools
used are described as follows: KS test statistic, Dn = sup

x
|F (x) − Fn(x)|, AIC= −2 logL + 2p,

and BIC= −2 logL+ p log n, where, p is the number of parameters are to be estimated from the
data.

The selection criterion is that the lowest AIC and BIC correspond to the best model fitted.
The MLEs, AIC and BIC are shown in Table 2. From the Table, we can observed that the
extended inverse Lindley distribution shows the smaller AIC and BIC than other competing
distributions. Thus, the EILD fits well the data set. The plots of probability-probability and
the fitted cumulative distribution of the EILD are shown in Figure 7 for maximum flood level
data. Figures also indicate that the EILD is a good fitted model for the data. The fitted density
of EILD is shown in Figure 8.

Table 2: MLEs, AIC, BIC and KS for the fitted models based on real data.

Model MLE LogL AIC BIC KS

EILD(α̂, θ̂) α̂ = 15.556, θ̂ = 5.7875 16.1422 -32.2845 -26.2930 0.1271

IW(α̂, θ̂) α̂ = 4.3140, θ̂ = 0.0119 16.0974 -32.1947 -26.2033 0.1060

IGM(α̂, θ̂) α̂ = 14.578, θ̂ = 5.7383 16.1416 -32.2833 -26.2918 0.1272

GIE(α̂, θ̂) α̂ = 37.7001, θ̂ = 1.645 15.4112 -30.8224 -24.8309 0.1584

IG(α̂, θ̂) α̂ = 0.4231, θ̂ = 5.6410 15.8520 -31.7040 -25.7126 0.1469
LN(µ̂, σ̂2) µ̂ = −0.897, σ̂2 = 0.269 15.8242 -31.6484 -25.6570 0.2843

LLog(α̂, β̂) α̂ = 0.4018, β̂ = 6.5752 15.6859 -31.3717 -25.3803 0.9999

FW(α̂, θ̂) α̂ = 3.6456, θ̂ = 0.8217 13.5886 -27.1773 -21.1858 0.3149
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Figure 7: Probability-probability (PP) and fitted cdf of EILD based on real data.
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6. Summary and conclusion

In this article, we introduced two parameter extension of inverse Lindley distribution, called
extended inverse Lindley distribution (EILD). The distribution shows the upside-down bathtub
shape for its hazard rate. The current extension provides a rather general and flexible framework
for statistical analysis of positive data. The EILD can be expressed as a two component mixture of
the inverse gamma distributions. That provides some expansions for the ordinary moments, mean
deviations, stochastic ordering, inverse moments and Renyi entropy. The estimation of
parameters is approached by the method of maximum likelihood. The confidence intervals for the
parameters of EILD are also obtained by using asymptotic distribution of MLEs. Simulation
study has been carried out to study the behaviours of MLEs of the parameters with respect to
sample size. We considered the likelihood ratio test statistic to compare the model with its
baseline model. An application of the EILD shows that it could provide a better fit than other
alternative inverse distributions. Finally, we hope that our proposed model will attain great
applicability in the real problems encountered in various disciplines such as medical, engineering
and social sciences etc.
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