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 CONDITIONAL INDEPENDENCE TEST FOR CATEGORICAL DATA 
USING POISSON LOG-LINEAR MODEL 
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Abstract: We demonstrate how to test for conditional independence of two 
variables with categorical data using Poisson log-linear models. The size  of the 
conditioning set of variables can vary from 0 (simple independence) up to many 
variables. We also provide a function in R for performing the test. Instead of 
calculating all possible tables with for loop we perform the test using the log-
linear models and thus speeding up the process. Time comparison simulation 
studies are presented. 
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1. Introduction

When testing for (conditional independence) with categorical variables, the most famous
test is the tt2 which is calibrated against a χ2 distribution with the appropriate degrees of 
freedom (Tsamardinos et al., 2006). But why is this issue so important? The reason is that when 
building Bayesian networks with categorical variables, conditional independence testing is a 
cornerstone (Neapolitan, 2004). 

All textbooks regarding categorical data analysis we came across, do mention the concept 
of independence and conditional independence.  In addition, all of them have examples of 
testing whether two categorical variables are independent conditioning on another categorical 
variable. Agresti (2002) mentions an example where two variables compose belong in the 
conditioning set, but with not much details. We have tracked down two papers regarding 
Poisson log-linear models (Cheng et al., 2006; Cheng et al., 2007), but they do not convey the 
message we want to convey with this paper. 

The R package pcalg (Kalisch et al., 2012) offers the tt2 test of conditional independence 
for categorical data. But, the implementation of the test two draw- backs. It calculates the tt2 
test but not the relevant degrees of freedom. Secondly, it becomes slower as the sample size and 
or the conditioning set of variables in- creases.  For  these  reasons,  we  decided  to 
demonstrate  how  one  can  perform  the tt2  and the χ2  test of conditional independence and 
in addition how both of them     can  be implemented  in  R  using  the  MASS  library  which 
is  already  installed  in R. 
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The R package coin (Zeileis et al., 2008) offers conditional independence tests, but the 
cardinality of the conditioning set is limited to 1, hence it is not considered any further in this 
work. 

Section  2  describes  the  two  tests  of  conditional  independence  and  how  they can be 
performed using  log-linear  models.  Section 3  contains  some  simulation studies and finally 
Section 4 concludes the    paper. 
2. G2  and χ2  tests of conditional independence

2.1 G2 and χ2 tests of independence between two variables

The χ2 and G2 tests of independence between two categorical variables X and Y are defined
as 

respectively. Both of them follow an asymptotic χ2 distribution with (|X| − 1) (|Y | − 1), where 
|.| denotes the number of values of the variable. Since we can cross-tabulate the two variables, it 
is easier to see the observed frequencies of all the pairs of the values  of  X  and  Y ,  Nxy  and  
calculate  their  corresponding  expected  frequencies Exy  under the assumption of 
independence   as 

where 

Note that N++ = N, the total sample size. 
An alternative way to calculate the expected frequencies and thus the values of     χ2  and G2  in 
(1) is via the Poisson log-linear models, hereafter denoted by PLL  models for convenience
purposes. If  we  fit  a  PPL  model  where  the  dependent variable is the obeserved frequencies
N  and the variables X  and Y  play the role      of the predictor variables we   get

The deviance of this model is equal to the value of the χ2 test statistic (Agresti, 2002). If we try 
to fit the model 

the deviance is zero, because this is the saturated model. It has as many pa- rameters as 
observed frequencies in the contingency table (cross-tabulation of X and Y ). So, if the two 
variables are independent, the deviance of (2) should be small, meaning that the simple model 
is enough to predict the observed frequen- cies and so it fits adequately. Consequently, this 
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leads to the conclusion that no interaction is significant and hence the two variables X and Y 
can be assumed independent. 

In order to calculate the value of the G2 test statistic, we must use the predicted  values  of 
the  simple  model  (2)  Exy  =  N�= expa+βX+γY  and plug them into the G2  test formula in (1).  If 
we plug them into the χ2  formula we get   the deviance. So there is no reason to do it, since we 
already have the answer. 

2.2 G2 and χ2 tests of conditional independence between two variables 
conditioning on a third variable 
If we have a third variable Z upon which we want to condition the independence of X and 

Y the two tests in Eq. (1) become (Tsamardinos and Borboudakis, 2010) 

respectively.  Both of them follow an asymptotic  χ2  distribution with (|X| − 1) (|Y | − 1) 
|Z| degrees of freedom and the expected frequencies are calculated as 

where Nx+z, N+yz  and N++z  are the same as before and are calculated for every    value of  Z. 
The  difference  from  before  is  that  now  instead  of  one  contingency table we have |Z| 
tables. We can have of course a 3-way table if we want. 

The PLL model to test the conditional independence of X  and Y given Z is 

Again, the deviance of this model is  equal  to  the  value  of  the  χ2  test  statistic (Agresti 
2002).   We  have  included  two  interactions,  one  X  and  Z  and  one  with Y and Z. The 
interaction between X and Y is missing, as this would test  for homogeneous association, but 
we are  not  interested  in  this  one  here.  What  is missing  also  is  the  interaction  of  X,  Y 
and  Z  (X  :  Y   :  Z).   If  the  deviance of the fitted model is small enough to say the model 
fits the data well,  then the  assumption  of  conditional  independence  is  not  rejected.   In  the 
same  spirit, log N  = a+βX +γY +δ1Z : X +δ2Y  : X +e tests for the conditional independence of 
Z and Y  given X and log N = a + βX + γY + δ1Z : Y + δ2X : Y + e tests for  the conditional 
independence of Z  and X  given Y . 

2.3 G2 and χ2 tests of conditional independence between two variables 
conditioning on a set of variables 
Moving  on  to  higher  order  conditional  independence  tests,  the  procedure  is the same, 

calculation of  (3)  where  Z  is  a  set  of  variables  (Z1, . . . , Zk).  This means  that  the 
degrees  of  freedom  of  the  asymptotic  χ2   distribution  become (|X| − 1) (|Y | − 1) 
∏ |𝑍𝑍𝑍𝑍|𝑘𝑘
𝑖𝑖=1 (Tsamardinos et al., 2006). 
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It is clear now that calculation of the test statistics (1) becomes more difficult, since we 
have to make all combinations of the variables and produce the relevant contingency tables and 
so on. For this reason we will use again the PLL models. We could not find how to test for the 
higher order conditional independence in    the textbooks and so we decided to show the way, 
or the general rule if your prefer. 

2.3.1 Two  conditioning variables 
Suppose Z = (Z1, Z2). The PLL we have to fit is 

We  have  included  all  main  effects  (first  row),  all  2-way  interactions  between the 
variables except from the X : Y  (second row) and in the third row we have put  the  main  3-
way  interactions  of  interest.  The 3-way  interactions  of  X  and  of Y  with the conditioning 
set of  variables. 

2.3.2 Three conditioning variables 
If now we have three variables in the conditioning set 

Z = (Z1, Z2, Z3) 
the PLL to be fitted is written  as 

Note that we have included only up to 3-way interactions of X and of Y with  the 
conditioning variables and not more than that. The final row is the row of interest. It is the 4-
way interactions of X and of Y with all the conditioning variables. 

2.3.3 The general rule for k conditioning variables 
The general model for k < ∞ conditioning variables (excluding the regression coefficients 

for convenience purposes) is given below 

The first row contains the main effects and all the 2-way,  3-way,  4-way  up   to k-way 
interactions of the conditioning variables. The second row contains the 2-way, 3-way, up to the 
k-way interactions of the conditioning variables with the variables of interest X and Y. Note
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that up to k − 1 variables are included in the interactions.  Finally, the last row of interest 
contains the k + 1-way interactions    of X and Y with the conditioning variables. 

We believe that our point is  made  clear  now  and  the  interesting  reader  can proceed to 
higher orders should he or she wish to.  For this reason, we will proceed with the time 
comparisons between the functions available in the R package pcalg   and our function (which 
appears in the Appendix). 
3. Time comparisons

The R package pcalg contains two functions, gSquareBin when all the variables are binary
and gSquareDis for all other cases. In addition, the function disCItest. 

which  is  a  wrapper  of  gSquareDis  will  also  be  examined. The test based on the 
Poisson log-linear models will be denoted by PLL. We will focus only in the general case of 
arbitrary categories in each categorical variable and thus use the latter command.    The  time 
comparisons  will  take  into  account,  three  factors: the sample size, the number of times a test 
is implemented and the  number  of conditioning variables.  For each of these cases and their 
combinations of course, 50 repetitions will be made and the average times will be reported. 
The command     in R used for this purpose is proc.time(). We could also use system.time, but 
we found the former one easier. 

The time required for T = (500, 1000, 2000, 3000, 5000) tests was calculated. We  used two  
categorical variables with 3 and 4 levels and conditioned on a) 1 variable with 2 levels (12 
degrees of freedom), b) 2 variables with 2 and 4 levels (48 degrees of freedom) and c) 3 
variables with 2, 4 and 4 levels (192 degrees of freedom). For all of these combinations, 
varying sample sizes n = (3000, 5000, 10000) were chosen. All the results appear in Figure 1. 

When  there  is  one  conditioning  variable,  the  disCItest  is  the  fastest  of  all, for all 
three sample sizes. Note also, that PLL is the second fastest.  When we increase the cardinality 
of the conditioning set to 2, we see that PLL changes    position and becomes the fastest among 
them as the sample size increases.  When  there are three variables in the conditioning set, the 
PLL  is  clearly  the  fastest regardless  of  the  sample  size.  In fact, for a give sample size 
(column-wise) the PLL has the smallest increase as the conditioning set increases. 

Tables 1, 2 and 3 contain the normalised time results, in which case the base     time is that 
of PLL. When the number for a given test is higher than 1 it means that the time required by 
that test is higher than the time required by PLL. The       big differences appear in Table 3, 
where gSquareDis and disCItest are from 2 up to nearly 5 times slower than   PLL. 
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Table 1: Normalised times of gSquareDis and disCItest with one conditioning variable. The PLL has 
the value of 1. 

One conditioning variable 

Two  conditioning variables 



Three conditioning variables 

Figure 1: Each point in all graphs corresponds to the average time (over 100 repetitions) for a 
given number of tests. The horizontal axis is the number of tests. The first row is the tt2 test 
conditioning on one variable, the second row conditioning on two variables and the third row 
conditioning on three variables. The green line with the triangle refers to the PLL, the black line 
with the circle refers to the gSquareDis and the red line with the diamond refers to the disCItest. 

Table 2: Normalised times of gSquareDis and disCItest with two conditioning variables. The PLL 
has the value of 1. 

Table  3: Normalised  times of gSquareDis  and disCItest with  three conditioning variables. The 
PLL has the value of 1. 
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4. Conclusions

We  have demonstrated, mathematically, how Poisson log-linear models can be  used to test
conditional independence.  In addition, we have provided the relevant  R function (see 
Appendix) which is based upon ready built-in functions in R. Both the χ2 and the G2 tests are 
provided. The time comparisons have clearly favoured our function over the two functions 
available in the R package pcalg. 

However, there is still room for improvement without moving to matlab, where the tt2 test 
is much faster.  The PC algorithm (Spirtes et al., 2000) and the MMPC and MMHC algorithms 
Tsamardinos et al., 2006) are three classical examples where the tt2 test of independence is 
used. In all three algorithms the first step requires computation of all pairwise univariate 
associations.  Performing the PLL in parallel, the first step only, will decrease the 
computational cost required by  these algorithms for the network construction. 

The goal of the present manuscript was to point out that even with smart implementation 
and use of fast commands from other R packages and parallel computation, functions written in 
Java, Fortran or C++ will, obviously, be still faster than R. R may never reach these languages 
in terms of speed, yet functions can certainly be made to run faster.  Indeed, the R package 
Rfast (Papadakis   et al.,  2017) is another example of speed.   The code is written in C++ and 
the     user calls it directly from R. This makes it extremely faster in comparison to R’s 
commands.  The time differences can be really extreme when many tests are to    be performed, 
especially when many variables are present and all pairwise tests  are required. 
Appendix:  R function to calculate the G2  and χ2    tests 
Below is the R function to perform the G2 and χ2 tests of (conditional) independence using PLL 
models.  Note that the MASS  library is required for the command loglm. For a univariate 
(uncoditional) association between two variables Pearson’s chi squared test is performed. 

cat.ci <- function(xi, yi, cs, dataset)  { 
## the xi and yi are two numbers, 1 and 2 for example 
## indicating the two variables whose conditional independence 
## will be  tested 
## xi, yi and cs must be different, non over-lapping numbers 
##  cs  is one  or  more  numbers  indicating  the  conditioning variable(s) 
## it is et to 0 by default. In this case an unconditional test of 
## independence is performed 
## dataset is the whole dataset, and is expected to be a matrix 

dataset  =  as.matrix(dataset) ## makes sure it is a   matrix 
if ( sum(cs == 0) > 0    ) { ##  There  are  no  conditioning variables 
## a1 below contains the chi-square  test, 
a1  <-  chisq.test(dataset[,  xi], dataset[,  yi], correct  = FALSE) 
## faster than deriving it from PLL stat  <-  as.numeric(  a1$statistic  ) dof <- 

as.numeric( a1$parameter ) 
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pval <- pchisq(stat, dof, lower.tail = FALSE, log.p = TRUE)  res <- c( as.numeric(stat), 
pval, dof ) 

} else { ## There are conditioning variables dat <- cbind( dataset[, c(xi, yi, cs)]  ) 
pa  <- ncol(dat) 
colnames(dat)  <-  paste("V",  1:pa,  sep  = "") 
xnam  <-  paste("V",  3:pa,  sep  =  "") 
form <- as.formula( paste("~ V1  +  V2  ", paste(xnam, collapse =  "+"), sep  =  "+") )   mod  

<- xtabs(form , dat) ## creates all the contingency  tables 
forma <- as.formula(paste( paste("~", "V1*", paste(xnam, collapse= "*"), 

sep  =  ""),  paste("V2*",  paste(xnam,  collapse  =  "*"),  sep  =  ""),  sep  =  "+"  )  ) b1 <- 
summary( MASS::loglm(forma, mod)  )$tests[1, 1:2] ## PLL model 

} 
names(res)  <-  c("Chi-squared  test",  "logged  p-value",  "df") res 
} 
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