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Abstract: In this paper, we introduce a Bayesian analysis for bivariate geometric 

distributions applied to lifetime data in the presence of covariates, censored data 

and cure fraction using Markov Chain Monte Carlo (MCMC) methods. We show 

that the use of a discrete bivariate geometric distribution could bring us some 

computational advantages when compared to standard existing bivariate 

exponential lifetime distributions introduced in the literature assuming continuous 

lifetime data as for example, the exponential Block and Basu bivariate distribution. 

Posterior summaries of interest are obtained using the popular OpenBUGS software. 

A numerical illustration is introduced considering a medical data set related to the 

analysis of a diabetic retinopathy data set. 
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1. Introduction 

In medical, engineering or other lifetime data applications, we could have more than one 

lifetime associated to each unit. A special situation is the presence of two lifetimes X1 and X2 

associated to each unit. This is the case, for example, considering X1 and X2 the timing of failure 

of paired organs like kidney, lungs, eyes, ears, dental implants among many others. In this 

situation, we could consider some existing bivariate lifetime distributions that has been 

introduced in the literature for continuous bivariate lifetime data (see for example, Arnold and 

Strauss, 1988; Marshall and Olkin, 1967; Sarkar, 1987; Block and Basu, 1974).  

Usually these bivariate lifetime distributions generalize some popular existing lifetime 

distributions as exponential, Weibull, gamma or a log-normal distributions (see for example, 

Lawless, 1982). 

Other parametrical lifetime distributions also could be generalized for the bivariate case. One 

of these models is given by the generalized exponential distribution (see for example, Gupta and 

Kundu, 2007, Mohsin et al., 2013). A bivariate generalized exponential distribution also was 

introduced by Kundu and Gupta (2008). 
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Among all these continuous bivariate lifetime distributions, one model has been very well 

explored in the literature: the Block and Basu (1974) bivariate exponential distribution, whose 

marginals are mixtures of exponentials and having an absolutely continuous joint distribution 

with positive correlation coefficient. This distribution was derived originally by omitting the 

singular part of the Marshall and Olkin (1967) distribution. The Marshall and Olkin distribution 

is not absolutely continuous but satisfies the lack of memory property. 

It is important to point out that censoring is a key aspect of survival analysis. In this way, 

many recent papers related to the analysis of bivariate lifetime data are related to the presence of 

censored data (see for example, Hanagal, 2010; Hanagal and Ahmadi, 2008; Davarzani and 

Parsian, 2010; Santos and Achcar, 2011; Davarzani et al., 2014). 

As an alternative for the use of bivariate parametrical distributions for bivariate continuous 

lifetime data, we could assume that the lifetimes X1 and X2 are discrete random variables 

assuming any positive integer that is, we round the lifetimes given with decimal part to an integer. 

It is important to point out, that despite discrete measuring of medical or engineering lifetime 

data is very common in applications, few papers related to discrete lifetime data are introduced 

in the literature, (see for example, Grimshaw and et al., 2005; Davarzani and Parsian, 2013). 

In this way, Arnold (1975) introduced a general multivariate geometric distribution which 

showed that it leads in a natural way to the Marshall-Olkin multivariate exponential distribution. 

Nair and Nair (1988) studied the characterizations of bivariate exponential distributions and 

geometric distributions. 

In this paper, we explore the use of a bivariate geometric distribution to analyze bivariate 

lifetime data. The bivariate geometric distribution proposed by Arnold (1975) has joint mass 

probability given by, 

           (1) 

where the marginal probability mass functions are respectively, given by standard geometric 

distributions starting at one, that is,  

 
and 

 
which means, variances, covariance and correlation given respectively, by 

 

 

 



 
 N. Davarzani, J.A. Achcar, E.N. Simirnov, R. Peeters                                  757 

 

 
where r = 1 – θ1 – θ2 ; 0 < θ1 < 1 and 0 < θ2 < 1. 

 

From (1), we observe that this bivariate discrete model assumes that P (X1 = X2) = 0, but in 

applications we could have this probability very small, but different of zero, a restrictive property 

of the model. In some cases, however, like studying the time of blindness of eyes or infection of 

kidneys, this probability practically is zero. In such cases the proposed model will be more fit to 

the data rather that the models with positive probability of X1 = X2. 

In the presence of right censored data and covariates, a common situation in applications, we 

could have some computational difficulties to get standard classical inferences for the parameters 

of bivariate lifetime distributions, as for example, using maximum likelihood approach. As an 

alternative for the use of standard classical inference methods, the use of a Bayesian approach is 

becoming very popular in the analysis of bivariate lifetime data (see for example, Achcar and 

Leandro, 1998; or Santos and Achcar, 2011). 

This paper is organized as follows: in section 2, we introduce the presence of censored data; 

in section 3, we introduce the presence of cure fraction; in section 4, we introduce an analysis of 

a diabetic retinopathy data set; finally, in section 5, we present some concluding remarks. 

 

2. Presence of Censored Data 

Let (X11, X21), … , (X1n, X2n ) be a bivariate random sample of size n from ordinary bivariate 

geometric (OBG) distribution with joint (pmf) in (1). Suppose that we have the following 

situations: X1 and X2 are complete observations, X1 and X2 could be either censored or both X1 

and X2 are censored at Y1 or Y2 , respectively, and that censoring is independent of the lifetimes. 

Let us subdivide the n observations into four classes: 

 

C1: X1i < Y1i and X2i < Y2i , thus both x1i or x2i are the real lifetimes; 

C2: X1i < Y1i and Y2i < X2i , that is, we observe x1i and y2i ; 

C3: Y1i < X1i and X2i < Y2i , we observe y1i and x2i ; 

C4: Y1i < X1i and Y2i < X2i , we observe y1i and y2i ; 

 

Now based on the above definitions, the likelihood function of bivariate right censored 

lifetime in this model is given by  

 

                                                       (2) 

where,  
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and 

 
and 

 
 

To simulate samples for the joint posterior distribution for θ1, θ2 and r we use MCMC 

methods (see for example, Gelfand and Smith, 1990). In this way we could simulate samples for 

the joint posterior distribution from the conditional distributions g(θ1 |θ2 , r, x1, x2 ), g(θ2 |θ1, r, x1, 

x2), and g(r|θ1, θ2, x1 , x2), where x1 = (x11, x12, ..., x1n), x2 = (x21 , x22 , ..., x2n ) using the Gibbs 

sampling algorithm or the Metropolis-Hastings algorithm. 

In the presence of a covariate vector z = (z1, z2, ..., zp) associated to each bivariate lifetime 

(X1, X2), we could assume the following regression model: 

 

                                                   (3) 

 

where, β𝑗
′ =  (βj1, βj2, . . . , βjp ), j =  1, 2,  is the regression parameter vector and 𝑧𝑖 =

(𝑧1𝑖 , 𝑧2𝑖 , . . . , 𝑧𝑝𝑖 ), 𝑖 =  1, . . . 𝑛. Observe that the assumed model (3) guarantees that 0 < θ1 < 1 

and 0 < θ2 < 1. We also assume Normal prior distributions for the regression coefficient βj1 . 

Notice that the regression parameters are defined for all real values which justifies the choice of 

normal prior. 

 

3. Presence of cure fraction 

In lifetime data analysis the presence of censored observations is very common in 

applications. The censored data could be related to individuals lost to follow-up or that will never 

experience the event of interest. This situation could occur in different areas, such as in cancer 

studies where the researchers are interested in the proportion of patients cured and where many 

individuals will die of other causes. In practical work we should carefully interpret the results 

using a cure fraction model when this situation is not true. As an example of this case, disease 
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recurrence in primary breast cancer; even after many years, the condition can recur. A detailed 

discussion on the presence of cure fraction is introduced by Lambert (2007). As pointed out by 

this author, information of cure at the individual level will rarely be available, and so in these 

models we are concerned with population (or statistical) cure. If reliable information on cause of 

death is available, then one can perform a cause-specific analysis where deaths not due to the 

disease of interest can be treated as censored observations. In many situations, the cause of death 

may either not be recorded or obtained from death certificates, which are often inaccurately 

recorded (Begg and Schrag, 2002). A possibility in this case: to obtain the expected survival 

and/or the expected mortality rate from national mortality statistics, and such is usually calculated 

after matching for age, sex, year of diagnosis, and possibly other covariates (Coleman et al,1999).  

In this situation, after a careful preliminary data analysis, we could have a fraction of 

individuals not expecting to experience the event of interest, that is, these individuals are not at 

risk (”long term survivors” or ”cured individuals”). Different approaches have been considered 

to model cure fraction, especially for univariate lifetime data (see for example, Yu et al, 2004; 

Gamel et al, 1999; Yamaguchi, 1992; Cancho and Bolfarine, 2001; Taylor, 1995; Kannan et al, 

1999). 

Wienke et al (2006) introduced a model for a cure fraction in bivariate time-to-event data. 

Let us assume that the population is divided in two groups of individuals: a group of cured 

individuals with probability 1 − ϕ and a group of susceptible individuals with a proper survival 

function S(x) = P (X > x), where X denotes the discrete lifetime of the individual with probability 

ϕ. In this way, we have a survival function equals to one for all X considering the cured 

individuals. 

Considering univariate lifetimes, a model that incorporates a cure fraction (see for example, 

Wienke et al., 2006) is given by, 

                                                  (4) 

where p ∈ (0, 1) is the mixing parameter and S0(x) denotes a proper survival function for the 

non-cured group in the population.  

 

A generalization of (3) considering bivariate lifetimes X1 and X2 is (see Wienke et al., 2006) 

given by, 

 

                   (5) 

where S(x1, x2) = P (X1 > x1, X2 > x2 ) is the joint survival function; S(x1) = P (X1 > x1) is the 

marginal survival function for X1; S(x2) = P (X2 > x2) is the marginal survival function for X2; ϕ11 

= P (V1 = 1, V2 = 1); ϕ10 = P (V1 = 1, V2 = 0); ϕ01 = P (V1 = 0, V2 = 1); ϕ00 = P (V1 = 0, V2 = 0); 

ϕ11 + ϕ10 + ϕ01 + ϕ00 = 1; V1 and V2 are binary variables such that V1 = 1 if the individual is 

susceptible for lifetime X1 and that V1 = 0 if the individual is immune; in the same way, V2 = 1 if 

the individual is susceptible for lifetime X2 and that V2 = 0 if the individual is immune. 

From the above definitions, the likelihood function (2) in presence of cure function and right 

censoring is given by, 
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where 

 
and 

 
and 

 
and 

 
where,  

 
and 

 
For a Bayesian analysis, we assume a Dirichlet prior for the parameter ϕ11, ϕ10 , ϕ01 and ϕ00. 

The Dirichlet prior is used since ϕ11 + ϕ10 + ϕ01 + ϕ00 = 1. 

 

4. Analysis of a diabetic retinopathy data set 

In this application, we consider a data set introduced by Huster et al (1989). In this study, we 

have 197 patients with ”high-risk” diabetic retinopathy as defined by the Diabetic Retinopathy 

Study (DRS). Each patient had one eye randomized to laser treatment and the other eye received 

no treatment. For each eye, the event of interest was the time from initiation of treatment to the 

time when visual acuity dropped below 5/200 two visits in a row (call it ”blindness”). Thus there 

is a builtin lag time of approximately 6 months (visits were every 3 months). Survival times in 

this dataset are therefore the actual time to blindness in months, minus the minimum possible 

time to event (6.5 months). Censoring was caused by death, dropout, or end of the study (Huster 

et al, 1989). Associated to each individual we have two covariates: Z1 denoting the age at 

diagnosis of diabetes and Z2 denoting the type of diabetes where 1= juvenile (age at diagnosis < 

20) and 0 = for adults.  

 

4.1 A preliminary data analysis 
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In Figure 1, we have the plots of the non-parametrical Kaplan and Meier (1958) estimators 

of the survival functions for both times (X1 = time to blindness for the treated eye and X2 = time 

to blindness for the untreated eye).The non-parametrical estimates for the means (MTTF) of both 

survival functions obtained from the Kaplan-Meier estimates are given, respectively, by 53.7284 

(for X1, with 54 uncensored observations and 143 right censored observations) and 43.5258 (for 

X2 , with 101 uncensored observations and 96 right censored observations). 

 

 
Figure 1: Kaplan-Meier estimates for the survival function of X1 (time1) and X2 (time2)-times in 

months. 

 

From the plots of Figure 1, we observe some indication of cure fraction, or an indication that 

a great number of individuals that will never become blind. 

 

4.2  A Bayesian analysis 

To analyse the diabetic retinopathy data set under a Bayesian approach, let us first assume 

the bivariate geometric distribution with density (1) since both responses (X1 = time to blindness 

for the treated eye and X2 = time to blindness for the untreated eye) are associated to the same 

individual. Observe that in this case, we are transforming both continuous lifetimes to discrete 

lifetimes to assume a bivariate geometric distribution. As a first analysis, we do not consider the 

presence of the covariates Z1 denoting the age at diagnosis of diabetes and Z2 denoting the type 

of diabetes where 1= juvenile (age at diagnosis < 20) and 0 = for adults and not considering the 

presence of cure fraction. Let us denote this model as ”model 1”.  

For a Bayesian analysis of ”model 1”, let us assume a Dirichlet prior distribution for θ1, θ2 

and r with hyper parameter values α1 = α2 = α3 = 1, given by; 

           (6) 
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Using the OpenBUGS software (Spiegelhalter et al, 2003) in the simulation of samples of 

the joint posterior distribution for θ1, θ2 and r we discarded the first 10,000 simulated Gibbs 

samples (burn-in-samples) to eliminate the effect of the initial values for the parameters of the 

model. Choosing every 50th simulated Gibbs sample, we obtained a final sample of size 1,000 

to get the posterior summaries of interest. Convergence of the Gibbs sampling algorithm was 

monitored using existing methods as time series plots for the simulated samples. 

 

Table 1: Posterior summaries “model 1”. 

 
 

In Table 1, we have the posterior means, the posterior standard-deviations and 95% credible 

intervals for the parameters for θ1, θ2 and r. We also have in Table 1, the posterior summaries for 

the means, standard-deviations and for the correlation coefficient (see (1)) for the lifetimes X1 

and X2. 

In the presence of the covariates Z1 denoting the age at diagnosis of diabetes and Z2 denoting 

the type of diabetes where 1=juvenile (age at diagnosis < 20) and 0 = for adults, we now assume 

the bivariate geometric distribution with density (1) and the following logistic regression model 

for the parameters θ1 and θ2, given by, 

 

                               (7) 

 

where i = 1, 2, ..., 197; logit(θ) = log[θ/(1 − θ)], Z̅1 is the average of the covariate age. Let us 

denote this model as”model 2”. Observe that ri = 1 − θ1i - θ2i. Assuming normal prior distributions 

N (0, 10) for the regression parameters βj0, j = 1, 2, and normal prior distributions N (0,1) for the 

regression parameters βjl , j = 1, 2; l = 1, 2, and using the OpenBUGS software also considering 

a ”burn-in-sample” of size 10,000 and final sample of size 1,000 taking every 50th sample, we 

have in Table 2, the posterior summaries of interest. 

It is important to point out that using the approximately normal non-informative N(0,10) for 

the regression parameters βj0, j = 1, 2, and N (0, 1) for the regression parameters βjl , j = 1, 2; l = 

1, 2, using the OpenBugs software, we obtained very good convergence of the MCMC simulation 

algorithm as observed in trace plots of the simulated Gibbs samples. Other very non-informative 
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priors also have been considered as normal N (0, 10) priors for all regression parameters but the 

obtained posterior summaries were very close to the obtained results given in Table 2, that is, the 

obtained posterior summaries are not sensible to the choice of other priors, leading to the same 

inference results. 

 

Table 2: Posterior summaries “model 2”. 

 
 

From the results of Table 2, we observe that zero is included in the 95% credible interval for 

β11, β12, β21, and β22, that is, the lifetime X1 and X2 are not affected by the covariates Z1 denoting 

the age at diagnosis of diabetes and Z2 denoting the type of diabetes where 1=juvenile (age at 

diagnosis < 20) and 0 = for adults. 

As a third modeling approach, not considering the presence of the covariates Z1 denoting the 

age at diagnosis of diabetes and Z2 denoting the type of diabetes where 1= juvenile (age at 

diagnosis < 20) and 0 = for adults, we assume the bivariate geometric distribution with density 

(1) considering the presence of cure fraction (see, section 3). Let us denote this model as”model 

3”. 

Table 3: Poterior summaries “model 3”. 

 
 

For a Bayesian analysis of ”model 3”, let us assume a Dirichlet prior distribution (6) for θ1 , 

θ2 and r with hiperparameter values α1 = α2 = α3 = 1 and another Dirichlet prior distribution for 

ϕ11, ϕ10 , ϕ01 and ϕ00 with hyper-parameter values α1 = α2 = α3 = α4 = 1. Note that with these values 

of hyper-parameters, we are assuming approximately non-informative priors for θ1, θ2 and r and 

for ϕ11, ϕ10 , ϕ01 and ϕ00 .Using the OpenBUGS software also considering a ”burn-in-sample” of 

size 10,000 and final Gibbs sample of size 1,000 taking every 50th sample, we have in Table 3, 

the posterior summaries of interest. 

From the results of Table 3, we observe that the Monte Carlo estimate for the posterior mean 

for ϕ10 (probability of observations pairs with V1 = 1 for susceptible and V2 = 0 for immune) 
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based on the 1,000 simulated Gibbs samples is approximately equal to 0.67 and for ϕ11 

(probability of V1 = 1 and V2 = 1) is approximately equal to 0.28 with large 95% credible intervals. 

It is important to point out that more accurate Bayesian inferences could be obtained using more 

informative priors for the parameters ϕ0 , ϕ01, ϕ10 and ϕ11 based on expert opinions or using 

empirical Bayesian methods. 

Finally, considering the presence of the covariates Z1 denoting the age at diagnosis of diabetes 

and Z2 denoting the type of diabetes where 1 = juvenile (age at diagnosis < 20) and 0 = for adults, 

we assume the bivariate geometric distribution with density (1) and regression model (3) 

considering the presence of cure fraction (see, section 3). Let us denote this model as ”model 4”. 

For a Bayesian analysis of ”model 4”, let us assume a Dirichlet prior distribution for ϕ11, ϕ10, 

ϕ01 and ϕ00 with hyper parameter values α1 = α2 = α3 = α4 = 1 and the regression model (3) with 

the following priors for the regression parameters: β10 ∼ N (−5, 1), β11 ∼ N (0.005, 1), β12∼ N (0.5, 

1), β20 ∼ N (−4, 1), β21 ∼ N (−0.02, 1) and β22 ∼ N (−0.4, 1). Observe that we are using informative 

priors for the regression parameters based on the information obtained from ”model 2” (Use of 

empirical Bayesian methods, see for example, Carlin and Louis, 2000.) 

Using the OpenBUGS software also considering a ”burn-in-sample” of size 10,000 and a 

final Gibbs sample of size 1,000 taking every 50th sample, we haveing Table 4, the posterior 

summaries of interest. 

Table 4: Posterior summaries “model 4” 

 
From the results of Table 4, we also observe that zero is included in the 95% credible interval 

for β11 , β12 , β21, and β22 , that is, the lifetime X1 and X2 are not affected by the covariates Z1 

denoting the age at diagnosis of diabetes and Z2 denoting the type of diabetes where 1= juvenile 

(age at diagnosis < 20) and 0 = for adults. Similar Bayesian inferences were obtained for the 

parameters ϕ00, ϕ01, ϕ10 and ϕ11 (see Table 3). 

As a comparison for the four proposed models, we could use a Bayesian discrimination 

criterion, as for example, the DIC (Deviance Information Criterion) introduced by Spiegelhalter 

et al. (2002), (see the appendix) and given automatically by the OpenBUGS software. 

Assuming ”model 1” (bivariate geometric distribution without the presence of covariates and 

cure fraction), we have a Monte Carlo estimate for DIC given by the value 1684.0; 

assuming ”model 2” (bivariate geometric distribution in presence of covariates but not 

considering presence of cure fraction) the DIC value is given by 1679.0; assuming ”model 3” 

(bivariate geometric distribution not considering the presence of covariates but considering the 

presence of cure fraction) the DIC value is given by 1553.0 and assuming ”model 4” (bivariate 
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geometric distribution considering the presence of covariates and the presence of cure fraction) 

the DIC value is given by 1556.0. That is, ”model 3” and ”model 4” (presence of cure fraction) 

give better fit for the diabetic retinopathy data set (smaller value for DIC). Since both covariates 

do not show significant effects on the lifetimes X1 and X2, and the DIC values for ”model 3” 

and ”model 4” are very similar, we could conclude that ”model 3” is the best model to be fitted 

by the data set. 

 

5. Concluding remarks 

The search for new lifetime models is of great interest for researchers in statistics and in 

different areas of applications as medical or engineering studies. In some situations, we have 

bivariate lifetime data, that is, two lifetimes are measured for each unit where it is important, to 

have a model that captures the possible dependence between both responses. Assuming 

continuous lifetimes, the literature presents many bivariate parametrical distributions, as for 

example, the popular Block-Basu (1974) and the Marshall Olkin (1967) distributions among 

many others. A Bayesian analysis of the Block and Basu distribution in presence of cure fraction 

is introduced by Achcar et al., 2013. As an alternative, we propose the use of a bivariate geometric 

distribution which could be a new and suitable alternative for the analysis of bivariate lifetime 

data, especially under a Bayesian approach and using MCMC methods. The use of discrete 

probability distributions still is not well explored in the literature for the analysis of lifetime data. 

This family of distributions could bring us some improvements in the computational work to 

obtain the inferences of interest. In many applications, especially in medical studies, we could 

have the presence of censored data, the presence of one or more covariates and the presence of 

cure fraction, a situation that could bring us great computational difficulties to get the usual 

classical inferences for the parameters of the proposed model like the convergence of the iterative 

numerical algorithm used to get the maximum likelihood estimators for the parameters of the 

model. It is also important to point out that these classical inference procedures are based on the 

asymptotical normality of maximum likelihood estimators (see for example, Lawless,1982).This 

could be a problem when we have small data sizes, a situation very common in medical studies. 

In this way, we use Bayesian methods to analyze bivariate lifetime data assuming a bivariate 

geometric distribution. Also it is important to point out that the use of available Bayesian software 

like the OpenBUGS software, only requires the specification of the distribution for the data and 

prior distributions for the parameters of the model, giving us a great simplification to obtain 

posterior summaries of interest, as it was observed in the application considering a medical data 

set introduced in section 4. These results could be of great interest for applications in medical 

and engineering studies. 

  



 

766                        Bivariate lifetime geometric distribution in presence of cure fraction 

 

References 

[1] Achcar,J.A., Coelho-Barros,E.A. and Mazucheli, J. (2013). Block and Basu bivariate 

lifetime distribution in the presence of cure fraction, Journal of Applied Statistics, 40(9), 

1864-1874. 

 

[2] Achcar, J.A. and Leandro, R.A. (1998). Use of Markov Chain Monte Carlo methods in a 

Bayesian analysis of the Block and Basu bivariate exponential distribution, Annals of the 

Institute of Statistical Mathematics 50, pp. 403-416. 

 

[3] Arnold, B. (1975). A characterization of the exponential distribution by multivariate 

geometric compounding. Sankhya 37, p.164-173. 

 

[4] Arnold, B.C. and Strauss, D. (1988). Bivariate distributions with exponential conditionals, J. 

Amer. Statist. Assoc., 83,pp. 522-527. 

 

[5] Begg, C.B. and Schrag, D. (2002). Attribution of deaths following cancer treatment. J. Natl. 

Cancer Inst. 94, pp. 10441045. 

 

[6] Block, H.W. and Basu,A.P. (1974). A continuous bivariate exponential extension, J. Amer. 

Statist. Assoc., pp. 1031-1037.  

 

[7] Cancho, V.G., Bolfarine, H. (2001). Modeling the presence of immunes by using the 

exponentiated-Weibull model. Journal of Applied Statistics, 28(6), 659-671. 

 

[8] Carlin, B.P. and Louis, T.A. (2000). Bayes and Emperical Bayes methods for data analysis, 

2nd edition, Chapman and Hall/CRC, London. 

 

[9] Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm, Amer. 

Statist., pp. 327-335. 

 

[10] Coleman, M., Babb,P., Damiecki,P., Grosclaude,P., Honjo,S., Jones,J., Knerer,G., Pitard,A., 

Quinn,M.J., Sloggett,A. and De Stavola, B.: Cancer survival trends in England and Wales, 

1971-1995, deprivation and NHS Region.London: Office for National Statistics, (1999). 

 

[11] Davarzani, N. and Parsian, A. (2010). Bayesian inference in dependent right censoring, 

Communications in Statistics Theory and Methods 39, pp.1270-1288. 

 

[12] Davarzani, N. and Parsian, A. (2013). Inference under right censoring in a discrete setup, 

Communications in Statistics Theory and Methods 42, pp.2362-2375. 

 

[13] Davarzani, N., Parsian, A. and Peeters, R. (2014). Dependent Right Censorship in the 

Marshall-Olkin Bivariate Weibull Distribution. Communications in Statistics Theory and 

Methods, DOI:10.1080/03610926.2013.766342. 



 
 N. Davarzani, J.A. Achcar, E.N. Simirnov, R. Peeters                                  767 

 

 

[14] Gamel, J.W., Mclean, I.W., Rosenberg, S.H. (1999). Proportion cured and mean log-survival 

time as functions of tumor size. Statistics in Medicine 9, 999-1006. 

 

[15] Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculating marginal 

densities, J. Amer. Statist. Assoc., pp. 398-409. 

 

[16] Grimshaw, S.D., McDonald, J., McQueen, G.R., and Thorley, S. (2005). Estimating hazard 

functions for discrete lifetimes. Communications in Statistics, Part B-Simulation and 

Computation 34, pp. 451-463. 

 

[17] Gupta, R.D. and Kundu, D. (2007). Generalized exponential distribution: existing methods 

and recent developments, Journal of the Statistical Planning and Inference, vol. 137, no. 

11, 3537-3547. 

 

[18] Hanagal, D.D. (2010). Modeling heterogeneity for bivariate survival data by the compound 

poisson distribution. Model Assisted Statistics and Applications, 5, 1-9.  

 

[19] Hanagal, D.D. and Ahmadi, K.A. (2008). Estimation of parameters by EM algorithm in 

bivariate exponential distribution based on censored samples. Economic Quality Control, 

20(2), 257-66. 

 

[20] Huster, W.J., Brookmeyer, R. and Self, S.G. (1989). Modelling paired survival data with 

covariates, Biometrics 45, pp. 145-156. 

 

[21] Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. 

Journal of the American Statistical Association, 53: 457-481. 

 

[22] Kannan, N., Kundu, D., Nair, P., Tripathi, R.C. (2010). The generalized exponential cure 

rate model with covariates, Journal of Applied Statistics,37(9-10), 1625-1636. 

 

[23] Kundu, D. and Gupta, R.D. (2009). Bivariate generalized exponential distribution, Journal 

of Multivariate Analysis, vol. 100, no. 4, 581-593. 

 

[24] Lambert, P.C. (2007). Modeling of the cure fraction in survival studies, TheStata Journal, 7, 

pp. 351-375. 

 

[25] Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data,Wiley, NewYork. 

Mohsin, M., Kazianka, H., Pilz, J. and Gebhardt, A. (2013). A new bivariate exponential 

distribution for modeling moderately negative dependence, Stat. Meth. appl., DIO 

10.1007/s10260-013-0246-3. 

 

[26] Marshall, A.W. and Olkin,I. (1967). A generalized bivariate exponential distribution, J. Appl. 

Probab., pp. 291-302. 



 

768                        Bivariate lifetime geometric distribution in presence of cure fraction 

 

 

[27] Nair, K.R.M. and Nair, U. (1988). On characterizing the bivariate exponential and geometric 

distributions. Annals of the Institute of Statistical Mathematics, 40(2), pp.267-271. 

 

[28] Santos, C.A. and Achcar, J.A. (2011). A Bayesian analysis for the Block and Basu bivariate 

exponential distribution in the presence of covariates and censored data, Journal of Applied 

Statistics, 38, pp. 2213-2223. 

 

[29] Sarkar, S.K. (1987). A continuous bivariate exponential distribution. Journal of the 

American Statistical Association, (82), 667-675. 

 

[30] Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van der Linde, A. (2002). 

Bayesian measures of model complexity and fit (with discussion). Journal of the Royal 

Statistical Society, B(64), 583-639.  

 

[31] Spiegelhalter, D.J., Thomas, A., Best, N.G., Gilks, W.R. (2003). WinBUGS User Manual 

(version 1.4). MRC Biostatistics Unit, Cambridge, UK. 

 

[32] Taylor, J.M.G. (1995). Semiparametric estimation in failure time mixture models. Biometrics 

51, 899-907. 

 

[33] Wienke, A., Locatelli, I., Yashin, A.I. (2006). The modelling of a cure fraction in bivariate 

time-to-event data. Austrian Journal of Statistics 35(1), 67-76. 

 

[34] Yamaguchi, K. (1992). Accelerated failure-time regression model with a regression model 

for the survining fraction: an application to the analysis of permanent employment in japan. 

Journal of the American Statistical Association 87, 284-292. 

 

[35] Yu, B., Tiwari, R.C., Cronin, K.Z. (2004). Cure fraction estimation from the mixture cure 

models for grouped survival times. Statistics in Medicine, 23, 1733-1747. 

 
Received November 10, 2015; accepted March 10, 2015. 

 

 

  



 
 N. Davarzani, J.A. Achcar, E.N. Simirnov, R. Peeters                                  769 

 

 
Nasser Davarzani 

Department of Knowledge Engineering, Maastricht University 

Maastricht, Netherlands. 

Maastricht University, Maastricht, Netherlands. 

Tel: +31 638190220 

n.davarzani@maastrichtuniversity.nl 

 

Jorge Alberto Achcar 

Departamento de Medicina Social, FMRP, Universidade de Sao Paulo 

Ribeirao Preto, SP, Brazil. 

Universidade de Sao Paulo,Ribeirao Preto, SP, Brazil. 

achcar@fmrp.usp.br.jchan@maths.usyd.edu.au 

 

Evgueni Nikolaevich Smirnov 

Department of Knowledge Engineering, Maastricht University 

Maastricht, Netherlands. 

Maastricht University, Maastricht, Netherlands. 

maastrichtuniversity.nl jchan@maths.usyd.edu.au 

 

Ralf Peeters 

Department of Knowledge Engineering, Maastricht University 

Maastricht, Netherlands. 

Maastricht University, Maastricht, Netherlands. 

ralf.peeters@maastrichtuniversity.nl 

  

mailto:n.davarzani@maastrichtuniversity.nl


 

770                        Bivariate lifetime geometric distribution in presence of cure fraction 

 

Appendix. Deviance Information Criterion (DIC) 

The Deviance Information Criterion (DIC) is a criterion specially useful for selection models 

under the Bayesian approach where samples of the posterior distribution for the parameters of 

the model are obtained using MCMC methods. 

The deviance is defined by 

 
Where θ is a vector of unknown parameters of the model, L(θ) is the likelihood function of 

the model and c is a constant that does not need to be known when the comparison between 

models is made. 

The DIC criterion defined by (20) is given by 

 
Where D(θ̂) is the deviance evaluated at the posterior mean θ̂ =  E(θ|𝑑𝑎𝑡𝑎) and n𝐷  is the 

effective number of parameters of the model given by n𝐷 =  �̅� − 𝐷(𝜃) , where �̅� =

𝐸(𝐷(𝜃)|𝑑𝑎𝑡𝑎) is the posterior deviance measuring the quality of the data fit for the model. 

Smaller values of DIC indicates better models. Note that these values could be negative. 


