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Abstract: A new distribution, called Odds Generalized Exponential-Exponential 

distribution (OGEED) is proposed for modeling lifetime data. A comprehensive 

account of the mathematical properties of the new distribution including estimation 

and simulation issues is presented. A data set has been analyzed to illustrate its 

applicability. 
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1. Introduction 

There are several ways of adding one or more parameters to a distribution function. Such an 

addition of parameters makes the resulting distribution richer and more flexible for modeling 

data. Proportional hazard model (PHM), Proportional reversed hazard model (PRHM), 

Proportional odds model (POM), Power transformed model (PTM) are few such models 

originated from this idea to add a shape parameter. In these models, a few pioneering works are 

by Box and Cox (1964),Cox (1972), Mudholkar and Srivastava (1993), Shaked and Shantikumar 

(1994), Marshall and Olkin (1997), Gupta and Kundu (1999), Gupta and Gupta (2007) among 

others. 

Many distributions have been developed in recent years that involves the logit of the beta 

distribution. Under this generalized class of beta distribution scheme, the cumulative distribution 

function (cdf) for this class of distributions for the random variable   is generated by applying the 

inverse of the cdf of   to a beta distributed random variable to obtain, 
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where is the cdf of any other distribution. This class has not only generalized the beta 

distribution but also added parameter(s) to it. Among this class of distributions are, the beta-

Normal [Eugene et al. (2002)]; beta-Gumbel [Nadarajah and Kotz (2004)]; beta-Exponential 

[Nadarajah and Kotz (2006)]; beta-Weibull [Famoye et al. (2005)]; beta-Rayleigh [Akinsete and 

Lowe (2009)]; beta-Laplace [Kozubowski and Nadarajah (2008)]; and beta-Pareto [Akinsete et 

al. (2008)], among a few others. Many useful statistical properties arising from these distributions 

and their applications to real life data have been discussed in the literature.  
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In the generalized class of beta distribution, since the beta random variable lies between 0 

and 1, and the distribution function also lies between 0 and 1, to find out cdf of generalized 

distribution, the upper limit is replaced by cdf of the generalized distribution. 

Alzaatreh et al. (2013) has proposed a new generalized family of distributions, called T-X 

family, and the cumulative distribution function (cdf) is defined as 
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where, the random variable  , for   and   be a function of the cdf   so that   satisfies the following 

conditions:   

 

(i).   ],[))(( baxFW   

(ii).  ))(( xFW    is differentiable and monotonically non-decreasing,  

(iii).  axFW ))((    as x   and  bxFW ))((   as x  .  

 

 We have defined a generalized class of any distribution having positive support. Taking 
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The support of the resulting distribution will be that of (.)F . here,
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The resulting distribution is not only generalized but also added with some parameter(s) to 

the base distribution. We call this class of distributions as Odds Generalized family of 

distributions (OGFD). 

Throughout this paper we use the following notations. We write upper incomplete gamma 

function and lower incomplete gamma function as 



x

wp dwewxp 1),(   and  




x
wp dwewxp

0

1),( , for x ≥ 0, p > 0 respectively. The jth derivative with respect to p is 

denoted by 

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≥ 0, p > 0 respectively. 
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In the present paper, we choose particular choice of 
xexF 


1=)(  i.e. the exponential 

distribution and 
xexF 


1=)(  i.e. also the exponential distribution in (1. 2 ). Hence, we call 

this distribution as Odds Generalized Exponential-Exponential distribution (OGEED). 

The paper is organized as follows. The distribution is developed in section 2. A 

comprehensive account of mathematical properties including structural and reliability of the new 

distribution is provided in section 3. Maximum likelihood method of estimation of parameters of 

the distribution is discussed in section 4. Simulation study results have been presented and 

dicussed in section 5.A real life data set has been analyzed and compared with other fitted 

distributions with respect to Akaike Information Criterion (AIC) in section 6. Section 7 concludes. 

 

2. The Probability Density Function of the OGEED 

The c.d.f. of the OGEED is given by the form as 
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where 
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Also the p.d.f. of the OGEED is given by the form as  
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with range (0,  ). 
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Figure 1: The probability density function of OGEED with θ=1 and 2 with λ= 1,2,3. 

 

 
Figure 2: The probability density function of OGEED with λ =1 and 2 with θ = 1,2,3. 

 

 

3. Statistical and Properties 

3.1  Limit of the Probability Distribution Function 

Since the c.d.f. of this distribution is   
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3.2   Descriptive Statistics of OGEED 

The mean of this OGEED is as follows: 
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The median of the OGEED is given by  
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The mode of the OGEED is given as:  

 

mode= argmax(f(x)) 
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The rth order raw moment of this OGEED is as follows: 
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Now putting suitable values of r in the above equation, we get Variance, Skewness, Kurtosis 

and Coefficients of variation of the Odds Generalized Exponential - Exponential 

Distribution(OGEED). 

 
Figure 3: The distribution function of OGEED 

 

 
Figure 4: The mean, median, mode and variance of OGEED with λ = 0.5 and different values of θ. 
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Figure 5: The Skewness and Kurtosis of OGEED with θ =1 and different values of λ. 

 

Moment Generating Function(MGF):  
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Characteristic Function(CF):  
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Cumulant Generating Function(CGF):  
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Mean Deviation:  
The mean deviation about the mean and the mean deviation about the median is defined by  
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Conditional Moments:  

The residual life and the reversed residual life play an important role in reliability theory and 

other branches of statistics. Here, the r-th order raw moment of the residual life is given by  
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The r-th order raw moment of the reversed residual life is given by  
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L- Moments:  

Define nkX :  be the 
thk  smallest observation in a sample of size n. The L-moments of X are 

defined by  
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Now for OGEED with parameter   and  , we have  
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So the first four L- Moments are,  
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Quantile function:  

Let X denote a random variable with the probability density function 2.4. The quantile 

function, say 
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3.3   Bonferroni curve, Lorenz curve and Ginis index 

The Bonferroni and Lorenz curves are defined by  
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After some algebraic simpification, we have,  
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 represents lower incomplete Gamma function. 

 

Integrating Eqs. 3.18 and 3.19 with respect to p , we can calculate the Bonferroni and Gini 
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3.4   Order Statistics 

 Suppose nXXXX ,......,,, 321  is a random sample from the  distribution in (2.4). Let 
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respectively. 

3.5   Entropies 

An entropy of a random variable X is a measure of variation of the uncertainty. A popular 

entropy measure is Renyi entropy (Renyi 1961). If X has the probability density function f(x), 

then Renyi entropy is defined by  

  dxxfH R )(ln
1

1
=)(

0
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
 




                                          (3.24) 

where 0>  and 1 . Suppose X has the probability density function 2.4. Then, one can 

calculate  
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So Renyi entropy is  
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Shannon measure of entropy is defined as  
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After some algebraic simplification, we have  
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3.6   Loss reserves data for Queensland, Australia 

The Reliability function of OGEED is given by the form as:  
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and the Hazard rate of OGEED is given by the form as:  
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For 0> , 0>  and 0>x ,  0<)(ln
2

2

xf
dx

d
. 

So, the distribution is log-concave. Therefore, the distribution posses Increasing failure rate 

(IFR) and Decreasing Mean Residual Life (DMRL) property. 

 

Mean Residual Life (MRL) function is defined as  
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Reversed Hazard rate: 
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Expected Inactivity Time (EIT) or Mean Reversed Residual Life (MRRL) function is defined as  
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Figure 6: The Hazard rate am Reversed Hazard rate of OGEED with λ=1 and different values of θ. 

 

 
Figure 7: The Mean Residual Life and Mean Reversed Residual Life of OGEED with θ =1 and 

different values of λ 

 

3.7   Stress_Strength Reliability 

The Stress-Strength model describes the life of a component which has a random strength X 

that is subjected to a random stress Y. The component fails at the instant that the stress applied 

to it exceeds the strength, and the component will function satisfactorily whenever YX > . So, 

Stress-Strength Reliability is )<(= XYPrR . 

Let ),(~ 11 OGEEDX  and ),(~ 22 OGEEDY  be independent random variables. 

Then Stress-Strength Reliability  

)<(= XYPrR  
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4. Maximum Likelihood Method of Estimation of the Parameters 

Using the method of Maximum Likelihood, we estimate the parameter of the OGEED. 

Since 
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The MLEs of λ and θ are the roots of 
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From these equations, we have 
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And 
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Estimation of two parameters λ and θ are obtained by solving the two equations numerically. 

 

5. Simulation Study 

Here we use the inversion method for generating random data from the Odds Generalized 

Exponential-Exponential Distribution. 

Algorithm: 

1. Generate U from Uniform (0, 1) 

2. Set 



)
)(1

(1

=

Uln
ln

X




 

A Monte-Carlo simulation study was carried out considering N=1000 times for selected 

values of n, λ and θ. Samples of sizes 20, 40 and 100 were considered and values of θ were taken 

as 0.1, 1.0 and 2 for λ=0.01 and 0.1 respectively. The required numerical evaluations are carried 

out using R 3.1.1 software. The following two measures were computed: 

(i) Bias of the simulated estimates i̂ and i̂ , i = 1, 2… N: 
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(ii) Mean Square Error (MSE) of the simulated estimates i̂ and i̂ , i = 1, 2… N: 
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The result of the simulation study has been tabulated in Table 1 and Table 2 below. In Table 

1 we take λ=0.01 for θ = 0.1, 1.0 and 2. In Table 2 we take λ=0.1 for θ = 0.1, 1.0 and 2. The 

resulting values relating to Odds Generalized Exponential-Exponential Distribution (OGEED) 

have been presented in first row and that relating to Gamma Distribution (GD), Exponentiated 

Exponential Distribution (EED), Weibull Distribution (WD) and Pareto Distribution (PD) in 

second, third, fourth and fifth row. 
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Observations: 

(i) Table 1 and 2 shows that the bias is positive in case Odds Generalized Exponential-

Exponential Distribution (OGEED). Table 1 and 2 also shows that bias and MSE 

decreases as n increases. 

(ii) In terms of bias and MSE, the parameter λ and θ of the Odds Generalized Exponential 

-Exponential Distribution is efficiently estimated compared to that of the other 

distribution. 

 

Table 1: Bias and MSE of the ML estimators for different λ and θ 

 
 

Table 2:Bias and MSE of the ML estimators for different λ and θ 

 
 

6. Data Analysis 

In this section, we fit the exponential exponential model to a real data set obtained from Smith 

and Naylor (1987). The data are the strengths of 1.5 cm glass fibres, measured at the National 
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Physical Laboratory, England and have been shown in Table 3. Histogram shows that the data 

set is negatively skewed. We have fitted this data set with the Odds Generalized Exponential -

Exponential distribution. We have also fitted this data set for some other probability distributions 

with two parameters like Gamma, Exponentiated Exponential, Weibull and Pareto. The 

summarized results have been presented Table 4 and it is noticed that the OGEED is the better 

fit for minimum Akaike Information Criterion (AIC). Histogram and fitted Odds Generalized 

Exponential-Exponential curve to data set have been shown in Figure 8. 

 
Table 3: Strengths of glass fibres data set 

 

0.55  0.93  1.25  1.36  1.49  1.52  1.58  1.61  1.64  1.68  1.73  1.81  2.00  0.74  1.04  1.27  1.39  1.49  1.53  

1.59  1.61 

1.66  1.68  1.76  1.82  2.01  0.77  1.11  1.28  1.42  1.50  1.54  1.60  1.62  1.66  1.69  1.76  1.84  2.24  0.81  

1.13  1.29 

1.48  1.50  1.55  1.61  1.62  1.66  1.70  1.77  1.84  0.84  1.24  1.30  1.48  1.51  1.55  1.61  1.63  1.67  1.70  

1.78  1.89 
 

Table 4: summarized results of fitting differnet distributions to data set of Smith and Naylor(1987) 

Distribution Estimate of the parameter Log-likelihood AIC 

OGEED 
        3.647411=ˆ0.002418,=ˆ   -14.81   33.616 

Gamma 

Distribution 

        

17.43957=ˆ ,0.08640267=ˆ   

-23.95   51.903 

Exponentiated 

Exponential 

Distribution 

        

19.89626=ˆ,2.231604=ˆ   

-32.70   69.409 

Weibull 

Distribution 

        

5.780701=ˆ,11.628113=ˆ   

-15.21   34.414 

Pareto 

Distribution 
        1.021557=ˆ0.55,=ˆ   -85.66 175.326 
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Figure 8: Plots of the fitted paf and estimated quantiles versus observed quantiles of the OGEED. 

 

7. Concluding Remark 

In this article, we have studied a new probability distribution called Odds Generalized 

Exponential - Exponential Distribution. This is a particular case of T-X family of distributions 

proposed by Alzaatreh et al. (2013). The structural and reliability properties of this distribution 

have been studied and inference on parameters have also been mentioned. The proposed 

distribution has been compared with some standard distributions with two parameters through 

simulation study and the supiriority of the proposed distribution has been established. The 

appropriateness of fitting the odds generalized exponential - exponential distribution has also 

been established by analyzing a real life data set. 
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