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Abstract:Air pollution shows itself as a serious problem in big cities in Turkey, especially for 

winter seasons. Particulate atmospheric pollution in urban areas is considered to have significant 

impact on human health. Therefore, the ability to make accurate predictions of particulate ambient 

concentrations is important to improve public awareness and air quality management. Ambient 

PM10 (i.e particulate diameter less than 10um in size) pollution has negative impacts on human 

health and it is influenced by meteorological conditions. In this study, partial least squares 

regression, principal component regression, ridge regression and multiple linear regression methods 

are compared in modeling and predicting daily mean PM10 concentrations on the base of various 

meteorological parameters obtained for the city of Ankara, in Turkey. The analysed period is 

February 2007. The results show that while multiple linear regression and ridge regression yield 

somewhat better results for fitting to this dataset, principal component regression and partial least 

squares regression are better than both of them in terms of prediction of PM10 values for future 

datasets. In addition, partial least squares regression is the remarkable method in terms of predictive 

ability as it has a close performance with principal component regression even with less number of 

factors. 
 
Keywords: air pollution, meteorological parameters, model fit, multicollinearity, multiple linear 

regresion, principal component regression, partial least squares regression, ridge regression, 

particulate matter (PM10), prediction. 
 

1. Introduction 

In several linear regression and prediction problems, the independent variables may be many 

and highly collinear. This phenomenon is called multicollinearity and it is known that in the case 

of multicollinearity the ordinary least squares (OLS) estimator for the regression coefficients or 

predictor based on these estimates may give very poor results. Therefore, several biased 

prediction methods have been developed to overcome multicollinearity problem such as ridge 

regression (RR), principal component regression (PCR) and partial least squares regression 

(PLSR). The main goal of biased methods is to decrease the mean squared error of prediction by 

introducing a reasonable amount of bias into the model. In most real systems, exact collinearity 
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of variables in X is rather unusual, because of the presence of random experimental noise. 

Nevertheless, in systems producing nearly collinear data, the solution for regression coefficient 

is highly unstable, such that very small interferences in the original data (for example, because 

of noise or experimental error) cause the method to produce madly different results. In addition, 

the use of highly collinear variables in multiple linear regression (MLR) also increases the 

possibility of overfitting the model. Overfitting means that the model may fit the data very well, 

but fails when used to predict the properties of new samples (Martens and Naes, 1989; Naes et 

al., 2002). 

 
PLSR is a method that extracts the latent variables (LVs), which serve as a new predictors 

and regresses the dependent variables on these new predictors. PLSR comprises of regression 

and classification tasks as well as dimension reduction techniques and modelling tools. Therefore, 

it could be applied as a discrimination tool and dimension reduction method similar to principal 

component analysis (PCA) (Rosipal and Krämer, 2006). PLSR may overcome the collinearity 

problem with fewer factors than PCR. In addition, it requires less computation than PCR. 

Meanwhile simulations tend to show that usually PLSR reaches its minimal mean square error 

(MSE) with a smaller number of factors than PCR (Helland, 1988).  

 

Air pollutants may cause changes in atmospheric composition and chemistry, which results 

in global warming, ozone depletion, dry and wet deposition and unwanted effects to human, 

animal, plant and material. Emissions from mobile sources (i.e. motor vehicles) have been one 

of the major sources of air pollution in some big cities (Tasdemir et al., 2005). Air pollution is 

one of the important issues in urban and industrial areas. The adverse effects of air pollutants 

have become a common problem in environmental sciences because of the major environmental 

risk to health in many developed or developing countries. Many air pollution indicators affect 

human or environment health. Some of them are such as particle pollution (often referred to as 

particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides and Pb 

are defined as criteria air pollutants by the U.S. Environmental Protection Agency (US EPA) 

based on human/environment health impacts and cause property damage (Ozdemir and Taner, 

2014).  

 
Particulate matters (PM) including the solids and liquids dispersed in air are originated from 

different sources. For Example, coarse particles (>10 um) are products of mechanical processes, 

grinding, spraying and wind erosion (Tasdemir et al., 2005). PM10 (i.e. particulate diameter less 

than 10um in size) is one of the major components of air pollution that threatens both our health 

and our environment. Of greatest concern to public health are the particles small enough to inhale 

into the deepest parts of the lung such as PM10. PM10 pollution consists of very small liquid and 

solid particles floating in the air. These particles are less than 10 microns in diameter - about 

1/7th the thickness of a human hair. Due to consuming solid fuel for heating, the amount of PM10 

is increasing during winter seasons (October-March) while decreasing during summer seasons 

(April-September) (Polat, 2009). The ability to accurately model and predict the ambient 
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concentration of PM is essential for effective air quality management and policies development 

(Sayegh et al., 2014). There is an extensive literature on modelling PM10 concentrations for 

different cities of different countries using different models. Ian G. McKendry (2002) compared 

Multi-layer perceptron (MLP) artificial neural network (ANN) models with traditional MLR 

models for daily maximum and average particulate matter (PM10 and PM2.5) forecasting in 

Chilliwack (in the eastern Lower Fraser Valley), in Canada. He found that meteorological 

variables (precipitation, wind and temperature), persistence and co-pollutant data were useful PM 

predictors. He stated that “if MLP approaches are adopted for PM forecasting, training methods 

that improve extreme value prediction are recommended”. Archontoula Chaloulakou et al. (2003) 

evaluated based on a data inventory, in a fixed central site in Athens, Greece, ranging over a two-

year period and using mainly meteorological variables (surface temperature, relative humidity, 

horizontal wind speed and wind direction) as inputs, neural network (NN) models and MLR 

models were developed. Siegfried Hörmann et al. (2005) investigated the influence of 

meteorological as well as anthropogenic factors on PM10 in Graz for the winter seasons 2002/03 

(182 days) and 2003/04 (183 days) by using MLR. Moreover, they introduced a prediction model 

using current information and meteorological forecasts to predict the average concentration of 

PM10 for the next day. They found that PM10 concentration in Graz was highly influenced by 

three meteorological factors inversion, precipitation, wind and by human impacts like traffic, 

industry, households. Salimol Thomas and Robert B. Jacko (2007) developed a linear regression 

model and a NN model to forecast hourly PM2.5 and CO concentrations for Borman Expressway, 

which is a heavily traveled 16-mi segment of the Interstate 80/94 freeway through Northwestern 

Indiana, by using the year 2002 traffic, pollutant and meteorological data (wind speed, wind 

direction and temperature). The performance of these models were evaluated using the year 2003 

dataset. A. Afzali et al. (2008) analyzed the correlation between meteorological parameters 

(temperature, wind speed, relative humidity and solar radiation) and PM10 concentrations by 

using MLR and ANN. This study presented the results of predicting ambient PM10 concentration 

and the influence of meteorological parameters based on the data sampled from 2008-2010 in an 

industrial area of PasirGudang, Johor. N. F. F. Md Yusof et al. (2008) investigated the 

relationship between the weather parameters such as wind speed, ambient temperature, relative 

humidity and the level of PM10 emission in Seberang Perai, Penang in different season (wet and 

dry season). Haze events had occurred in 2004. Therefore, hourly PM10 concentration data for 

that year were used for this analysis. The hourly PM10 datasets were then modeled using linear 

regression models to predict future PM10 concentration which incorporate with the weather 

parameters. The effects of haze event to the prediction were also investigated. The results of 

linear regression model indicated that PM10 concentration was affected by the weather 

parameters as well as haze event. M. Demuzere et al. (2009) studied the relations between 

meteorological actors and air quality on a local scale based on observations from four rural sites 

in the Netherlands and these relations were determined by a comprehensive correlation analysis 

and a MLR analysis in 2 modes, with and without air quality variables as predictors. I. 

Barmpadimos et al. (2011) investigated the trends of PM10 and the effect of meteorology for 13 

air quality stations in Switzerland for the period between 1991 and 2008 by constructing 

Generalised Additive Models (GAMs) which incorporate non-parametric relationships between 
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PM10 and meteorological and time variables. These relationships were based on quality-checked 

meteorological and PM10 long-term observations including a wide spectrum of meteorological 

variables with good spatial and temporal coverage. A. Z. Ul-Saufie et al. (2011a) compared a 

MLR model and Feedforwad Backpropagation ANN for predicting PM10 concentration in 

Seberang Perai, Pulau Pinang. Pulau Pinang state is situated on the north-western coast of 

peninsula Malaysia. Annual hourly observations for PM10 from January 2004 to December 2007 

were selected for predicting PM10 concentration level. The hourly observations were 

transformed into daily data by taking the average PM10 concentration level for each day. Since 

the data for September 2007 was missing, not included in the analysis. Relative humidity, wind 

speed, nitrogen dioxide (NO2), temperature, carbon monoxide (CO), sulphur dioxide (SO2), 

ozone (O3) and previous day PM10,t-1 were used as independent variables. Assessment of model 

performance indicated that NN could predict PM better than multiple regressions. However, 

models adequacy checked by various statistical methods showed that the developed multiple 

regression models could also be used for prediction of PM10. A. Z. Ul-Saufie et al. (2011b) aimed 

to to improve the predictive power of MLR models using principal components (PCs) as input 

for predicting PM10 concentration for the next day. The developed model was compared with 

MLR models. Annual hourly observations for PM10 in Seberang Prai from January 2004 to 

December 2007 were selected for predicting PM10 concentration level as in their previous study 

(2011a). As in their previous study (2011a), they selected the same independent variables except 

O3 to study the influence on PM10 concentration. MLR was used to predict the next day PM10 

concentration using as predictors air pollutant (NO2, SO2, CO and PM10,t-1) and meteorological 

parameters. Two different approach were used, considering original data and PCs as inputs. The 

result showed that the usage of PCs as input provides more accurate results than original data 

because it reduced the number of inputs and therefore decreased the model complexity. Besides 

that, the use of PCs based models was considered more efficient, due to elimination of collinearity 

problem and reduction of the number of predictor variables. Assessment of model performance 

indicated that PCR can predict PM better than multiple regressions. However, models adequacy 

checked by various statistical methods showed that the developed multiple regression models can 

also be used for prediction of PM10. Voukantsis et al. (2011) also analyzed the PM2.5 and PM10 

concentrations. However, they proposed a methodology consisting of specific computational 

intelligence methods, i.e. PCA and ANNs, in order to inter-compare air quality and 

meteorological data, and to forecast the concentration levels for environmental parameters of 

interest (air pollutants). They demonstrated these methods to data monitored in the urban areas 

of Thessaloniki and Helsinki in Greece and Finland, respectively. The dataset used in this study 

corresponded to the time period 2001–2003. Doreena Dominick et al. (2012) aimed to determine 

the influence of meteorological parameters (ambient temperature, relative humidity and wind 

speed) based on a daily average computation of air pollutants PM10 at three selected stations in 

Malaysia, namely Shah Alam and Johor Bahru on the Peninsular Malaysia, and Kuching on the 

island of Borneo. A three-year (2007-2009) database was statistically analysed using the Pearson 

correlation and MLR methods. The results obtained through these analyses show that at all the 

three stations, PM10 has a negative relationship with relative humidity and wind speed, but a 
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positive relationship with ambient temperature. Said Munir et al. (2013) modelled PM10 

concentrations with the aid of meteorological variables and traffic-related air pollutant 

concentrations, such as CO, SO2, NO, NO2 and lagged PM10, employing GAMs. They identified 

that meteorological variables, such as temperature and wind speed largely controlled PM10 

concentrations. Arwa S. Sayegh et al. (2014) evaluated several approaches including linear, non-

linear and machine learning methods for the prediction of urban PM10 concentrations in the City 

of Makkah, Saudi Arabia. The models employed are MLR(MLRM), Quantile Regression Model 

(QRM), GAM, and Boosted Regression Trees1-way (BRT1) and 2-way (BRT2). Several 

meteorological parameters (wind speed, wind direction, temperature, and relative humidity) and 

chemical species measured during 2012 are used as covariates in the models. Arie Dipareza 

Syafei et al. (2015) investigated the prediction of each of air pollutants as dependent variable 

using lag-1(30 minutes before) values of air pollutants (NO2, PM10 and O3) and meteorological 

factors and temporal variables as independent variables by taking into account serial error 

correlations in the predicted concentration. Alternative variables selection based on independent 

component analysis (ICA) and PCA were used to obtain subsets of the predictor variables to be 

imputed into the linear model. The data was taken from five monitoring stations in Surabaya City, 

Indonesia with data period between March-April 2002. The regression with variables extracted 

from ICA was the worst model for all pollutants NO2, PM10 and O3 as their residual errors were 

highest compared with other models. The prediction of one-step ahead 30-mins interval of each 

pollutant NO2, PM10, and O3 was best obtained by employing original variables combination of 

air pollutants and meteorological factors. 

 

As is the case with all environmental problems, the two primary causes of air pollution in 

Turkey are urbanization which has been rapid since the 1950s and industrialization. Before 

industrialization, more than 80 % of the population lived in rural areas, now most of the 

population live in the cities and industrial complexes. Among the developments contributing to 

air pollution in the cities are incorrect urbanization for the topographical and meteorological 

conditions, incorrect division of urban land into lots, low quality fuel and improper combustion 

techniques, a shortage of green areas, an increase in the number of motor vehicles and inadequate 

disposal of wastes (Polat, 2009). There is an extensive literature on modelling PM10 

concentrations for different cities of Turkey using different models. Mucahit Egri (1997) 

investigated the effects of meteorological conditions on daily SO2 and PM levels which belonged 

to 1996-1997 winter session in Malatya, the city in Turkey. Analyses of dataset were performed 

by using multiple regression technique. SO2 and PM were chosen as dependent variables, while 

temperature, relative humidity, air pressure, wind speed and rainfall were chosen as independent 

variables. Out of wind speed all of explanatory variables were significantly associated with SO2 

levels. While rainfall and wind speed effects were limited on PM levels, relative humidity, air 

pressure and temperature variables significantly changed with it. İhsan Cicek et al. (2004) showed 

that by using the MLR analysis that there were moderate relations between SO2, PM10, NO, 

NO2, CO and the climatic factors such as temperature, wind speed and humidity for Ankara, 

capital of Turkey. Yucel Tasdemir et al. (2005) analyzed the temporal changes in concentrations 

of criteria air pollutants such as CO, NOx (NO+NO2), SO2 and PM by using meteorological 
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factors such as air temperature, relative humidity and wind speed. All of the variables measured 

in the period of May 2001 and April 2003 in the city of Bursa, Turkey. Correlations among 

pollutant concentrations and meteorological parameters showed weak relations nearly in all 

dataset. Lower concentrations were observed in the summer months while higher concentrations 

were measured in the winter months. S. Cukurluoglu and U. Guner Bacanli (2012) investigated 

the relationship between monthly average concentrations of SO2 and PM10 measured in the city 

of Denizli, situated in the southwest part of Turkey, with meteorological factors such as 

temperature, precipitation, humidity, and wind velocity for the period of 1994-2009. Air pollution 

is one of the most important environmental problems in Denizli especially during the winter 

periods because of the increasing of energy consumption, usage of inappropriate fuels and 

topography of the city. MLR analysis method was utilized to evaluate the relationships among 

variables. The correlation coefficients between the meteorological dataset and the SO2 and PM10 

concentrations showed small relationships. Probably, other factors (i.e., traffic loadings, fugitives) 

may mask the relationships. Utkan Ozdemir and Simge Taner (2014) investigated prediction 

capacities of MLR and ANN onto coarse PM10 concentrations. Different meteorological factors, 

which were hourly air temperatures, wind speed, wind direction, air pressure and relative 

humidity, effecting on particulate pollution were chosen for operating variables in the model 

analyses. Two different regions (urban and industrial) were identified in the region of Kocaeli, 

Turkey. Regression equations explained the effects of the meteorological factors in MLR 

analyses. In the ANN model, backpropagation network with two hidden layers had achieved the 

best prediction efficiency. ANN models displayed more accurate results compared to MLR. 

 

With increasing energy consumption, the air pollution has become an important issue. 

Ankara which is the second largest city and capital of Turkey is also affected by air pollution. 

MLR and ANN models have been commonly used in previous studies to investigate the 

relationship between the concentration of air pollutants and meteorological parameters. In this 

study, the relationship between PM10 concentrations and meteorological parameters such as 

press, solar radiation, cloudiness, humidity, wind speed, temperature, rainfall has been analysed 

statistically for Ankara. The aim of this study is to compare the performance of four linear models: 

MLR, RR, PCR and PLSR both in terms of modelling and predictive abilities of the PM10 

concentration levels by using meteorological parameters as explanatory variables in case of 

dataset having a multicollinearity problem. The rest of the paper is organized as follows. In 

Section 2, theoretical aspects of MLR, RR, PCR and PLSR methods are presented. Section 3 

presents model validation and determination of the ideal number of components retaining in PCR 

and PLSR models. In Section 4, the methods are compared in terms of model fit and prediction 

using a real air pollution dataset of Ankara city of Turkey for the period February 2007 and the 

results of the applications are discussed. Conclusions are reported in Section 5. 

 

2. Multiple Linear Regression, Ridge Regression, Principal Component Regression and 

Partial Least Squares Regression 
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In this section, MLR, RR and PCR methods are briefly outlined while PLSR method is 

presented in more detail. The emphasis here is on the algebraic derivation of the vector (or matrix) 

of coefficients in the linear regression models for these four methods. Throughout this paper, 

matrices are denoted by bold capital letters and vectors are denoted by bold lowercase letters. 

 

2.1. Multiple Linear Regression 

 
Firstly, the regression model used for this method is defined by the equation (2.1). 

 

εXβy                                                             (2.1) 

 

Traditionally, the most frequently used method for finding 
β

 is the OLS. If X has a full rank 

of p (number of independent variables) then the OLS estimate of 
β

 given by equation (2.2). 

OLSβ̂
 gives unbiased estimates for the elements of 

β
. The corresponding vector of fitted values 

obtained as in equation (2.3) (Phatak and De Jong, 1997). 

 

  yXXXβ 
1

OLS
ˆ                                                         (2.2) 

 

  yΗyXXXXβXy x

1

OLSOLS
ˆˆ 


                                         (2.3) 

 

In order to estimate 
β

, by using the OLS method, requires that the X variables must be 

linearly independent and the number of independent variables, p, must be equal or smaller than 

the number of observations, n 
 np   (Trygg, 2002).  

 

If there is a multicollinearity problem, the variance of the least squares (LS) estimator may 

be very large and subsequent predictions rather inaccurate. However, if insisting on unbiased 

estimators given up, biased methods can be used to overcome the problem of inaccurate 

predictions. For this reason, biased methods such as RR, PCR and PLSR are used with the 

consequent trade-off between increased bias and decreased variance. The idea behind PCR and 

PLSR methods is to discard the irrelevant and unstable information and to use only the most 

relevant part of the x-variation for regression. Hence, the collinearity problem could be solved 

that more stable regression equations and predictions obtained. There are number of ways to 

detect or diagnose the multicollinearity. One of the most common techniques in statistics for 

detecting multicollinearity is the Variance Inflation Factor (VIF). The larger the VIF value, the 

more serious the collinearity problem. In practice, if any of the VIF values is equal or larger than 

10, there is a near collinearity. In this case, the regression coefficients are not reliable (Naes et 

al., 2002). 
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2.2. Ridge Regression 

 

The OLSβ̂
 estimator is an unbiased and has a minimum variance. However, when 

multicollinearity exists, the matrix XX  becomes ill-conditioned (singular). Since 

    12

OLS σˆVar


 XXβ
 and the diagonal elements of   1

XX  become quite large, this makes 

the variance of OLS
̂

 to be large. This leads to an unstable estimate of 
β

 and and some of 

coefficients have wrong sign. In order to prevent these difficulties of OLS, Hoerl and Kennard 

(1970) suggested RR as an alternative procedure to the OLS method in regression analysis, 

especially, multicollinearity exists. The ridge technique is based on adding a biasing constant k 

to the diagonal elements of XX . The RR estimator is given by equation (2.4). Here, a 

standardized X is used and a small positive constant k is added to the diagonal elements of XX  

(Hoerl and Kennard, 1970; Myers, 1990; Salh, 2014). 

 

  0k,kˆ 1



YXIXXβRR

                                            (2.4) 

 

Here, k is ridge parameter, I is pp  identity matrix and XX  is the correlation matrix of 

independent variables. Values of k lie in the range 0-1. Note that if k=0, the ridge estimator ( RRβ̂ ) 

becomes as the OLS estimator ( OLSβ̂
) (Myers, 1990; Salh, 2014). 

 

The trick in RR is to determine the optimum value of k for developing a predictive model. 

There are many procedures in the literature for determining the best value. Hoerl, Kennard and 

Baldwin (1975) suggested to use the criterion given in equation (2.5) in order to choose the 

optimum k value (Rawlings, 1988). 

 

   




 

 0β0β OLSOLS
ˆˆ/psk 2                                             (2.5) 

 

Here, p is the the the number of regression vectors except the constant term ( 0 ), 
2s  is the 

estimated residual mean of squares in OLS method. The denominator of equation (2.5) shows the 

sum of squares of classic OLS regression parameters 
 0βOLS

ˆ
, which are calculated from 

centered and scaled independent variables and the constant term is excluded in the calculation. 

The simplest way to determine the optimum value of k is to plot the values of each RRβ̂  versus 
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k (in the range 0-1), which is called as ridge trace (Myers, 1990). In ridge trace graph, a trace or 

a curve is formed for each of the coefficients. From the ridge trace the minimum k value that 

makes the RRβ̂ stable is could be chosen and in this chosen k value the residual sum of squares 

could converge its minimum value (Hoerl and Kennard, 1970; Polat, 2009). However, Van 

Nostrand (1980) stated that since the determination of what is the stability in ridge trace is 

subjective and hence the selection of k is arbitrary, there is a tendency to choose a very big value 

of k while choosing k based on the ridge trace. Hence, the selection of k based on equation (2.5) 

could be better (Rawlings, 1988).  

 

2.2. Principal Component Regression 

 
PCR approaches the collinearity problem from the point of view of eliminating from 

consideration those dimensions of the X-space that they are causing the collinearity problem 

(Rawlings, 1988). The aim in PCR is to obtain the number of principal components (PCs) 

providing the maximum variation of X, which optimizes the predictive ability of the model. PCR 

is actually a linear regression method in which the dependent variable is regressed on the PCs. 

The ith PC, iξ , is equal to iXγ . The weight vectors, iγ ’s 
 p,,1i   satisfy equation (2.6) 

with equation (2.7) as shown in below.  

 

,iii γλXγX   p,,1i                                                      (2.6) 

 



 


ij,0

ji,1
jiγγ                                                              (2.7) 

 

In equation (2.6) iλ 's are the eigenvalues of the variance–covariance matrix XX . The iγ ’s 

are the unit-norm eigenvectors of XX . If the both sides of equation (2.6) are multiplied by iγ , 
it is easy to obtain equation (2.8), therefore, the variance of a PC is proportional to its 

corresponding eigenvalue. Furthermore, a given PC is orthogonal to all other PCs shown as in 

equation (2.9) (Phatak and De Jong, 1997). 

 

iiiii XX                                                    (2.8) 

 

,0ji 
jiξξXγXγ  i j                                                (2.9) 

 
Since neither of the PCR or PLSR methods is invariant to changes of the scale of the             x-

variables, PCR operates on the centered and scaled independent variables, Z. If the units of some 

of the variables are changed, the estimated parameters and the regression vector also will be 

changed. Therefore, if x variables used in the model are measured on very different scales, it may 
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be wise to standardize the variables before modeling (Martens and Naes, 1989; Naes et al., 2002; 

Rawlings, 1988). The singular value decomposition (SVD) of Z has been used in the analysis of 

the correlational structure of the X-space. The SVD of Z matrix is given as in equation (2.10). 

Here U 
 pn  and V 

 pp  are matrices containing the left and right eigenvectors, 

respectively and L1/2 is the diagonal matrix of singular values. The singular values and their 

eigenvectors are ordered so that, p1 λλ 
. The eigenvectors are pairwise orthogonal and 

scaled to have unit length so that IVVUU  . 

 

VULZ  2/1
                                                      (2.10) 

 

The PCs of Z are defined as the linear functions of the jZ
 specified by the coefficients in the 

column vectors of V. The first eigenvector in V defines the first PC, the second eigenvector in V 

defines the second PC and so on. Each PC is a linear combination of all the independent variables. 

The matrix of PCs can be written as in equation (2.11). 

 

ZVW                                                           (2.11) 

 
The linear model in equation (2.12) can be written in terms of the PCs W as shown in equation 

(2.13). 

 

εZβy                                                          (2.12) 

 

εWγy                                                         (2.13) 

 

IVV   is used to transform 
Zβ

 into 
Wγ

 as shown in equation (2.14), 

 

WγβVZVZβ                                                  (2.14) 

 

where 
βVγ 

 is the vector of regression coefficients for the PCs and 
β

 is the vector of 

regression coefficients for the Z’s. The translation of γ  back to 
β

 is as in equation (2.15). 

Therefore, the estimate of 
β

 is obtained as γVβ ˆˆ  . If all PCs are used, the results of γVβ ˆˆ   

are equivalent to MLR (Rawlings, 1988). 

 

Vγβ                                                             (2.15) 

 

2. 3. Partial Least Squares Regression 
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PLSR is probably the least restrictive of the various multivariate extensions of the MLR 

model. This flexibility allows it to be used in situations where the use of traditional multivariate 

methods is severely limited, such as when there are fewer observations than independent 

variables. In these situations, the MLR approach is not feasible due to the multicollinearity 

between the explanatory variables (Pires et al., 2008). PLSR originated in the social sciences, 

especially in economy, by Herman Wold (1966). It was first presented as an algorithm akin to 

the power method (used for computing eigenvectors). To regress the Y variables on the X 

variables, PLSR attempts to find new factors that will play the same role as the X variables. These 

new factors often called LVs or components. Each component is a linear combination of 

independent variables. There are some similarities of PLSR with the PCR. In both methods, some 

attempts are made to find some factors that will be regressed with the Y variables. The basic 

difference is, while PCR uses only the variation of X to construct new factors, PLSR uses both 

the variation of X and Y to construct new factors which will play the role of independent variables 

(Phatak and De Jong, 1997). In PLSR LVs are chosen in such a way that provides maximum 

correlation with dependent variable. Thus, PLSR model contains the smallest necessary number 

of factors (Pires et al., 2008). 

 
PLSR derives its usefulness from its ability to analyze data with many, noisy, collinear and 

even incomplete variables in both X and Y. PLSR method became popular first in chemometrics 

due in part to Herman’s son Svante Wold (2001). Chemometrics (i.e., computational chemistry) 

is the use of statistical and mathematical procedures to extract information from chemical and 

physical data. Since its introduction into chemometrics as a tool for solving regression problems 

with highly collinear predictor variables, PLSR has become a common, unless standard 

regression method (Martens and Naes, 1989). The success of PLSR in chemometrics resulted in 

a lots of applications in other scientific areas including bioinformatics, food research, medicine, 

pharmacology, social sciences and physiology etc. Much work has gone into clarifying its 

mathematical and statistical properties. All these efforts have helped to clarify the diverse aspects 

of PLSR and shed light on what was it, while considering it only as an algorithm. Although PLSR 

is heavily improved and used by chemometricians, it used to be overlooked by statisticians and 

it is considered rather an algorithm than an exact statistical model for a long time. In a regression 

analysis, the correlation between independent variables (multicollinearity) may pose a serious 

difficulty in the interpretation of which independent variables are the most influential to the 

dependent variables. One way to remove such multicollinearity is using PCA or Partial Least 

Squares (PLS) analysis. Even though these methods have their own approach, the goal is similar 

is to build components that are statistically independent with each other. In regression analysis, 

this is particularly very useful and become good input as predictors in a regression model since 

they optimize spatial patterns and remove complexity due to multicollinearity (Syafei et al., 2015). 

Hence, the use of PLSR method for regression problems began in the early 80’s. Since that time 

PLSR is also used as a multivariate regression method, which gives stable estimates especially 

in case of multicollinearity problem. Hence, PLSR method also used in modelling air pollution 

data. For Example, J. C. M. Pires et al. (2008) compared five linear models to predict the daily 
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mean PM10 concentrations. The linear models proposed were: MLR, PCR, independent 

component regression (ICR), quantile regression (QR) and PLSR. The study was based on dataset 

from an urban site in Oporto Metropolitan Area and the analysed period was from January 2003 

to December 2005. The linear models evaluated with two datasets of different sizes belonging to 

the analysed period. Environmental data (SO2, CO, NO, NO2 and PM10 concentrations) and 

meteorological data (temperature, relative humidity and wind speed) were used as PM10 

predictors. During the training step, QR presented the lowest residual errors for the two datasets. 

ICR was the worst model using the large dataset. MLR, PCR and PLSR presented the similar 

results for both datasets. During the test set, ICR and QR showed bad performance, while MLR, 

PCR and PLSR presented similar results using the larger dataset. For the smaller dataset, the 

models that remove the correlation of the variables (PCR, ICR and PLSR) presented better results 

than MLR and QR. ICR was the linear model with the lowest value of residual error. Concluding, 

the dataset size is also an important parameter for the evalaution of the models concerning the 

prediction of variables. The prediction of the daily mean PM10 concentrations was more efficient 

when using ICR for the smaller dataset and PLSR for the larger datasets. It is obvious from this 

study that PLSR is one of the forefront methods in terms of prediction ability also for air pollution 

datasets studies since it removes the correlation of the variables. 

 

2.3.1. Partial Least Squares Regression Model 

 
The PLSR model finds a few new variables, which are estimates of the LVs or their rotations. 

These new variables are called X-scores and denoted by 
 A,,1aa t

. The X-scores are few 

(A in number) and orthogonal. They are estimated as linear combinations of the original variables 

kx
 with the weights 

 A,...,1aka 
w

. These weights sometimes denoted by kar
. Formulas are 

shown both in element and matrix form (the latter in parentheses): 

 

ik
k

kaia xwt 
        XWT                                          (2.16) 

 
The X-scores (ta’s)  have the following properties: 

 

a. They are multiplied by the loadings, akp
 which are good summaries of X, so that the X-

residuals, ike
 in equation (2.17) are small.  

 

ikak
a

iaik eptx        EPTX                                      (2.17) 

 
With multivariate Y, the corresponding Y-scores (ua) are multiplied by the weights, cam 

which are good summaries of Y, so that the residuals, img
 in equation (2.18) are small. 
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im
a

amiaim gcuy        GCUY                                       (2.18) 

 

b. the X-scores are good predictors of Y, shown as in equation (2.19). 

 

 
a

imiamaim ftcy       FCTY                                       (2.19) 

 

The Y-residuals, imf , express the deviations between the observed and modeled dependent 

variables and form the elements of the Y-residual matrix, F. Using the equation (2.16), equation 

(2.19) can be rewritten to look as a multiple regression model as in equation (2.20). So that the 

PLSR coefficients, 
 Bbmk , could be written as in equation (2.21). 

 

 


k
imikmkimik

k
ka

a
maim fxbfxwcy       FXBFCXWY              (2.20) 

 


 ka
a

mamk wcb       CWB                                             (2.21) 

 

After each component, a, the X-matrix is deflated by subtracting aapt 
 from X. This makes 

the PLSR model alternatively be expressed by weights wa referring to the residuals after previous 

dimension, 1aE
, instead of relating to the X-variables themselves. Therefore, instead of equation 

(2.16), equation (2.22) can be written. The relation between the two weights is given as in 

equation (2.25) The Y-matrix can also be deflated by subtracting aact 
, but this is not necessary. 

The results are equivalent with or without Y-deflation (Wold et al., 2001). 

 

 
k

1a,ikkaia ewt                     a1aa wEt                                 (2.22) 

 

k,1a1a,i2a,ik1a,ik   ptee       1a1a2a1a 
 ptEE                      (2.23) 

 

ik0,ik xe                                   XE 0                                   (2.24) 

 

  1  WPWW                                                   (2.25) 

 

2.3.2. Partial Least Squares Regression Algorithms 
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There are several ways to calculate PLSR model parameters. Perhaps the most intuitive 

method known as Non-Linear Iterative Partial Least Squares (NIPALS), which is also called as 

a classical algorithm. NIPALS calculates scores, T and loadings, P and an additional set of vectors 

known as weights, W (with the same dimensionality as the loadings P). The addition of weights 

in PLSR is required to maintain orthogonal scores (Wold et al., 2001). The simple NIPALS 

algorithm of Wold et al. (1984) is shown as below. It starts with optionally transformed, scaled, 

centered data (X and Y) and proceeds as follows. If there is a single       y-variable, the algorithm 

is non-iterative. 

 

A. Get a starting vector of u, usually one of the Y columns. With a single y, u=y. 

 

B. The X-weights, w: uuuXw  / . Scale w to be of length one. 

C. Calculate X-scores, t: Xwt  . 

 

D. The Y-weights, c: tttYc  / . 

 

E. Finally, an updated set of Y-scores, u: ccYcu  / . 

 

F. Convergence is tested on the change in t, i.e.,  newnewold / ttt . Where ε is very small 

positive number, e.g., 10-6 or 10-8. If convergence has not been reached, return to B, otherwise 

continue with G and then A. If there is only one y-variable, the procedure converges in a 

single iteration and one proceeds directly with G. 

 

G. Remove (deflate) the present component from X and Y and then use these deflated matrices 

as new X and Y, while computing the next component. Here the deflation of Y is optional, 

the results are equivalent whether Y is deflated or not. 

 

X-loadings:  tttXp  /  

Y-loadings:  uuuYq  /  

Regression (u upon t):  tttub  /  

Residual matrices: ptXX   and cbtYY   

 

H. Continue with next component (back to step A) until CV (see below) indicates that there is 

no more significant information in X about Y.  

 
The next set of iterations of algorithm starts with the new X and Y matrices as the residual 

matrices from the previous iteration. The iterations can continue until a stopping criteria is used 

or X becomes the zero matrix (Höskuldsson, 1988; Wold et al., 2001).  

 

The major drawback of NIPALS algorithm is that the columns of score matrix T are obtained 

as linear combinations of deflated data matrix X. Since one looses sight of what is in the deflated 
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data, the interpretation of the components becomes complicated. Hence, the other significant 

algorithm for PLSR, Straightforward Implementation of a Statistically Inspired Modification of 

the Partial Least Squares Method (SIMPLS), was proposed by Sijmen De Jong (1993). This 

algorithm aims to derive the PLS factors, T, directly as linear combinations of the original X 

variables that causing many advantages for it. Firstly, the deflation of the data matrices X and/or 

Y as in NIPALS becomes unnecessary, which may result in faster computation and less memory 

requirements. Secondly, all factors are equally easy to interpret because of occurring as simpler 

linear combinations of the original variables. Another advantage is that the final PLSR model can 

be derived very easily when the factors are already expressed as linear combinations of the 

original variables. SIMPLS deflates the cross-covariance matrix, 
YXS xy , whereas NIPALS 

deflates the original data matrix X to obtain orthogonal components. Hence, this method is very 

non-intuitive but very fast and accurate. It gives the exact same result as NIPALS for univariate 

y, but a slightly different solution for multivariate Y. The SIMPLS algorithm is a very fast PLSR 

algorithm for all kinds of shapes of data matrices. This approach does not always give the same 

model as NIPALS, but the difference is very small and for most cases not significant (De Jong, 

1993; Lindgren and Rännar, 1998). 

 

 

3. Model Validation and Determination of the Ideal Number of Components Retaining 

in PCR and PLSR Models 

 
In literature there are several measures of a model’s fit to the data and predictive power. In 

all of the measures investigated, to estimate the average deviation of the model from the data is 

attempted. The root mean square error (RMSE) is a measure of how well model fits the data. It 

is defined as,  

 

 

n

ŷy

RMSE

n

1i

2

ii





                                              

(2.26) 

 

where iŷ  are the values of the predicted variable when all samples included in the model 

construction and n is the number of observations (Wold et al., 2001). 

 

Root-mean-square error of cross-validation (RMSECV), however, is a model’s ability to 

predict new samples that is in contrast to RMSE. RMSECV is defined as RMSE, the only 

difference is that i,CVŷ
 are predictions for samples not included in the model formulation. In 

RMSECV, i,CVŷ
 contains the values of the y variable that are estimated by cross-validation (CV) 

(Naes et al., 2002; Wise et al., 2006).  

 



 

678  THE COMPARISON OF PARTIAL LEAST SQUARES REGRESSION, PRINCIPAL COMPONENT 

REGRESSION AND RIDGE REGRESSION WITH MULTIPLE LINEAR REGRESSION FOR 

PREDICTING PM10 CONCENTRATION LEVEL BASED ON METEOROLOGICAL PARAMETERS 

 

n

ŷy

n

PRESS
RMSECV

n

1i

2

i,CVi 

 

                              
(2.27) 

 
CV is a method used for selecting the optimal number of components, which maximize 

model's predictive ability, for PCR and PLSR methods. Hence, as shown in equation (2.27) 

RMSECV is related to the prediction sum of squares (PRESS) value for the number of 

components (k) included in the model for both of PCR and PLSR methods. Of course, the exact 

value of RMSECV depends not only on k for both PCR and PLSR methods, but for all the 

methods (MLR, RR, PCR, PLSR) on how the CV subsets (test sets) were formed. PRESS 

statistics is a measure, which assesses model's validation and predictive ability. In general, the 

smaller the PRESS value, the better the model's predictive ability (Naes et al., 2002; Wise et al., 

2006; Polat, 2009).  

 

The performance of CV approach naturally could be changed in connection with the number 

of removed observations. For a given dataset, CV involves a series of experiments, hereby called 

‘sub-validation experiments’, each of which involves the removal of a subset of objects from a 

dataset (the test/validation set), construction of a model using the remaining objects in the dataset 

(the model building set) and subsequent application of the resulting model to the removed objects. 

This way, each sub-validation experiment involves testing a model with objects that they are not 

used to build the model. A typical CV procedure usually involves more than one sub-validation 

experiment, each of which involves the selection of different subsets of samples for model 

building and model testing. As there are several different modeling methods, there are also 

several different CV methods and these vary with respect to how the different sample subsets are 

selected for these sub-validation experiments. For example, Leave one out cross-validation 

(LOOCV) performs CV each time leaving out one observation out of the model formulation and 

predicting once. LOOCV method is generally reserved for small datasets (n not greater than 20). 

When using LOOCV with more than 20 samples, the CV may be biased and report errors lower 

than might be expected. Hence, it is preferred to consider using another CV method in these cases. 

In this study, the number of components retaining in the PCR and PLSR models is determined 

by RMSECV values and ‘venetian blinds CV method’ is used for calculating these values. The 

‘venetian blinds CV method’ is an alternative CV method given in MATLAB PLS_Toolbox. In 

this method, by using ‘venetian blinds’ approach the dataset is divided into several subgroups. In 

this approach, the data is not divided to random parts. n is the total number of objects in the 

dataset and s, which must be less than n/2, is the number of data splits specified for the CV 

procedure. For ‘venetian blinds CV method’, each subset is determined by selecting every sth 

object in the dataset, starting at objects numbered 1 through s. Hence, s shows the number of 

subsets. Then, one of the obtained s subsets is left out for validaton analysis and remained    (s-

1) subsets are used for constructing the model. The prediction performance of obtained model is 

evaluated by using this removed sth subset. This process is repeated until all the subsets is left 

out once and in order to obtain the last validality measure the mean of the obtained prediction 
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errors are calculated. This method is simple and easy to implement, and generally safe to use if 

there are relatively many objects that are already in random order. The number of subsets for this 

method is automically selected in PLS_Toolbox by taking the nearest integer to the square root 

of the number of observation in the dataset (Wise et al., 2006, Eigenvector website). For Example, 

since in this study we use the period of February 2007 there are 28 observations in the analysis. 

When we choose ‘venetian blinds CV method’ in PLS_Toolbox this 28 observations is 

partitioned in to 5 subsets as shown in below: 

 

Subset 1: 1, 6, 11, 16, 21, 26 

Subset 2: 2, 7, 12, 17, 22, 27 

Subset 3: 3, 8, 13, 18, 23, 28 

Subset 4: 4, 9, 14, 19, 24 

Subset 5: 5, 10, 15, 20, 25 

 
Since it directly addresses the collinearity problem, PCR is less susceptible to overfitting than 

MLR. However, one could still overfit a PCR model, through the retention of too many PCs. 

Therefore, an important part of PCR is the determination of the optimal number of PCs to retain 

in the model. For problems in which there are more observations than variables a PCR model, 

which has the maximum possible number of PCs (which is equal to the number of variables), 

becomes identical to the MLR model built using the same set of dependent variables. In a sense, 

the PCR model converges to the MLR model as PCs are added. However, in real applications, it 

is almost always the case that the optimal number of PCs retaining in the model is much fewer 

than the number of original independent variables (Rawlings, 1988). Hence, the optimal number 

of components retaining in PCR/PLSR model depends on the specific objectives of the modeling 

project, but it is typically the number at which the addition of another component does not greatly 

improve the prediction performance of the model (Wise et al., 2006). In practice, PCR and PLSR 

generally have similar performance; the main advantage of PLSR is often computational speed. 

In addition, PLSR models generally require fewer factors than PCR models for the same set of 

data, hence, PLSR has advantages in both model implementation and model interpretation. 

Recalling that each PC is constrained to be orthogonal to all previous ones. This constraint can 

make interpretation of the loadings and scores for PCR progressively more difficult as the number 

of components increases (Wise et al., 2006).  

 
In this study, the Wilcoxon signed rank test is also employed to compare the predictive 

performance of pairs of four models (MLR, RR, PCR, PLSR) calculated with the air pollution 

dataset. Let the set of prediction errors associated with the first model is denoted as 

 n11211 e,,e,e 1e
. Let the set of prediction errors associated with the second model is 

denoted as 
 n22221 e,,e,e 2e

. The prediction errors are assumed to be independent within 

a set. Also, let 
   jn2j1jjn2j11j e,,e,ea,,a,a  ja

 for j=1,2 represent the absolute 

values of the prediction errors. The set of n paired comparisons between matched errors (i.e. i1e
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and i2e ) is used as the basis for making statistical inference about the relative performance of 

two competing models. Hypothesis testing using non-parametric statistical methods (sign test and 

Wilcoxon signed rank test) is proposed as a way to statistically compare the two sets of prediction 

errors and hence determine whether one model significantly outperformed the other for the 

dataset of interest. For each observation, preference is given to the model that produces the 

smallest absolute value of the prediction error. A very simple method for making pairwise 

comparisons is the sign test. However, more powerful (and complex) method for comparison is 

the Wilcoxon signed rank test (Lehmann, 1975; Thomas, 2003). Because while the sign test 

considers only the sign of the differences between absolute errors (i.e.  i2i1 aasign  ), the 

Wilcoxon signed rank test considers the magnitude of those differences. Let, i2i1i aaf 
 and 

ir  be the integer rank (from 1 to n) of if  among 
 n21 f,,f,f  . Thus 

 n21 r,,r,r   is a 

permutation of the integers from 1 to n. Also, let 
 i2i1i aasigng  . Let   VUgrd ii , 

where U is the sum of the positive ranks (i.e. when 1g i  ) and V is the sum of the negative 

ranks (i.e. when 1g i  ). Preference for model 2 is exhibited when d>0. On the other hand, 

preference for model 1 is exhibited when d<0. Noting that the equation (2.28), the Wilcoxon 

signed rank statistic is given as in equation (2.29). Under the assumption that the two models are 

of equal quality, the expected value and variance of nV  are showed as in equation (2.30) and 

equation (2.31), respectively (Thomas, 2003).  

 

  2/1nnVU                                                     (2.28) 

 

 
2

d2/1nn
Vn


                                                     (2.29) 

 

 
 

4

1nn
VE n


                                                     (2.30) 

 

 
  

24

1n21nn
VV n


                                                (2.31) 

 
For the general case with an arbitrarily large value of n the exact distribution of Vn is 

generally unavailable owing to the prohibitive enumeration required. For purposes of statistical 

inference, 
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 

 

 

  
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







                                      (2.32) 

equation (2.32) is approximately normally distributed with mean zero and variance one 

(Lehmann, 1975; Thomas, 2003). Thus, assuming that the two models are of equal quality, the 

probability of observing a smaller value for z is  z , where  .  is the cumulative normal 

distribution. If  z  is sufficiently small (say less than 0.05), then we conclude that the first 

model has outperformed the second model. If 
 z  is sufficiently large (say greater than 0.95), 

then we conclude that the second model has outperformed the first model (Thomas, 2003). 

 

4. Applications on a Real Airpollution Dataset 

 
Considering the studies and thesis about air pollution, it is noticed that the meteorological 

parameters affecting the air pollution. Therefore, in this study, a real dataset of meteorological 

parameters measured by The Rebuplic of Turkey Ministry of Environment and Forestry Turkish 

State Meteorological Service used. In addition, PM10 measured by The Rebuplic of Turkey 

Ministry of Environment and Forestry Refik Saydam Hygiene Center used also. Ankara city is 

taken as the study area for the dataset. In the dataset, February 2007 considered as the period. 

The dataset consists of eleven meteorological parameters used as independent variables and 

PM10 used as the dependent variable. The air pollution dataset for this study is given in Table 1. 

For the dataset, eleven of the meteorological parameters that affect the forming of the PM10 

(µg/m3) are given as below immediately under the Table 1 (Polat, 2009). 

 

Table 1. Air pollution dataset for the period February 2007. 
Ob

s. 

No 

PM10 

(µg/m
3) 

PRES

S 

(mb) 

SOLA

R 

(cal/cm
2) 

HUMIDI

TY (%) 

WIN

D 

(m/sn

) 

MI

N 

(°C

) 

MA

X 

(°C) 

AV

G 

(°C) 

RAI

N 

(mm

) 

FIRST

- 

CLOU

D (8/8) 

SECON

D- 

CLOUD 

(8/8) 

THIR

D- 

CLOU

D (8/8) 

1 29.00 915.5 107.25 65.3 3.67 -4.9 5.0 0.2 0.0 6.00 1.00 5.4 

2 26.00 911.0 333.95 86.1 7.78 0.4 2.4 1.1 3.8 8.00 8.00 7.0 

3 21.50 908.4 396.59 80.4 7.67 -2.6 0.0 -1.3 7.2 8.00 7.00 5.4 

4 19.00 905.9 322.89 80.3 3.00 -3.0 0.0 -2.1 0.4 8.00 7.00 8.0 

5 48.00 907.7 167.33 73.2 6.33 -8.5 0.6 -3.8 0.2 3.00 5.00 5.4 

6 19.40 908.1 301.69 62.4 6.00 -6.8 2.0 -2.4 0.0 4.86 5.00 5.4 

7 52.00 917.4 108.72 69.5 6.00 -9.8 2.6 -3.6 0.0 4.86 5.00 5.4 

8 58.25 918.5 132.32 70.7 3.00 -6.6 5.9 -1.3 0.0 2.00 4.83 5.4 

9 54.32 916.7 256.67 69.1 5.00 -4.7 7.1 0.8 0.0 6.00 5.00 5.4 

10 76.00 915.8 120.23 66.2 4.00 -3.7 9.6 2.4 0.0 2.00 4.83 5.4 

11 77.00 915.7 140.12 71.7 4.33 -2.6 8.4 1.7 0.0 4.00 6.00 4.0 

12 93.50 912.8 241.17 73.5 4.25 -2.5 7.6 2.0 0.0 4.00 6.00 2.0 

13 79.50 910.1 329.90 75.3 3.00 -0.1 9.0 3.6 0.0 7.00 7.00 4.0 

14 68.25 907.4 298.43 85.5 5.00 1.5 8.6 3.7 0.0 6.00 7.00 3.0 

15 54.32 909.7 233.63 80.1 3.25 1.9 9.7 5.8 4.8 4.86 6.00 6.0 
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16 81.00 913.9 447.32 78.9 3.50 1.3 9.1 5.2 0.0 2.00 6.00 5.4 

17 49.00 914.3 138.49 71.9 7.00 0.6 11.3 5.8 0.0 4.86 3.00 5.4 

18 48.50 917.7 483.36 67.1 5.33 2.3 8.8 4.8 0.0 6.00 6.00 6.0 

19 39.50 915.8 167.67 63.4 6.00 -0.4 11.1 5.7 0.0 4.86 2.00 5.4 

20 54.32 914.6 117.98 66.6 3.50 1.4 13.8 7.1 0.0 3.00 1.00 5.4 

21 88.50 913.8 126.86 65.8 3.00 1.1 14.7 7.9 0.0 4.86 2.00 5.4 

22 82.00 913.9 168.46 58.6 4.00 3.1 12.5 7.8 0.0 6.00 2.00 5.4 

23 50.50 908.6 302.18 66.1 3.67 1.6 12.7 6.6 0.0 7.00 7.00 7.0 

24 24.50 912.3 99.99 54.0 9.00 1.5 9.0 3.6 0.0 2.00 2.00 5.4 

25 32.00 913.1 91.88 44.4 4.79 -6.4 6.8 -0.7 0.0 4.86 4.83 5.4 

26 55.50 911.6 100.11 39.0 4.50 -5.9 8.7 1.4 0.0 4.00 3.00 5.4 

27 83.00 910.0 110.80 41.8 5.00 -3.7 11.9 4.5 0.0 2.00 4.83 5.4 

28 56.50 908.5 640.32 78.0 2.50 3.0 8.0 5.3 0.0 6.00 7.00 7.0 

 

 

 
PRESS: Daily average press (mb) 

SOLAR: Daily average solar radiation (cal/cm2) 

HUMIDITY: Daily average humidity (%) 

WIND: Daily average wind speed (knot) (1knot=1.852 km/hour=0.514 m/seconds) 

MIN: Daily minimum temperature (°C) 

MAX: Daily maximum temperature (°C) 

AVG: Daily average temperature (°C) 

RAIN: Daily total rainfall (mm) 

FIRSTCLOUD: Cloudiness at 6.00 am (8/8) 

SECONDCLOUD: Cloudiness at 12.00 am (8/8) 

THIRDCLOUD: Cloudiness at 18.00 am (8/8) 

 

Firstly, MLR analysis applied on the dataset and it is found that the model obtained by using 

OLS method is significant with a probability of 95% (F=8.83; p=0.000). According the MLR 

analysis, 85.9 % of variation occurring in PM10 variable is explained by these eleven 

meteorological parameters. 

 
Even though the MLR model fits the data well, multicollinearity may severely prohibit 

quality of the prediction. Table 2 shows that all independent variables except WIND, MIN, AVG, 

TWOCLOUDINESS and THREECLOUDINESS are not significant as an indicator of 

multicollinearity problem. The existence of collinearity problem also could be seen by examining 

the VIF values. The VIF values for MIN, MAX and AVG are 17.8, 71 and 102.9, respectively. 

Hence, there is a near-collinearity problem for this dataset. 

 

Table 2. The estimated regression coefficients and VIF values for the MLR model. 

Model Coefficients 
Standart Error 

of Coefficients 
T P VIF 

Constant -975.4 722.1 -1.35 0.196  
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PRESS 1.2163 0.8122 1.50 0.154 1.9 

SOLAR -0.06034 0.03708 -1.63 0.123 6.0 

HUMIDITY -0.0805 0.3221 -0.25 0.806 3.4 

WIND -4.516 1.701 -2.66 0.017 1.8 

MIN -6.285 2.378 -2.64 0.018 17.8 

MAX -8.641 4.300 -2.01 0.062 71.0 

AVG 18.501 6.122 3.02 0.008 102.9 

RAINFALL -2.910 1.870 -1.56 0.139 2.3 

FIRSTCLOUDINESS -2.834 1.462 -1.94 0.070 1.7 

TWOCLOUDINESS 7.454 2.202 3.38 0.004 4.6 

THREECLOUDINESS -9.610 2.218 -4.33 0.001 1.5 

 
Although MLR model fits to dataset well, since it has a near-collinearity problem the 

predictive ability of it could be not well. In that case, by using biased methods such as RR, PCR 

and PLSR, better models in terms of predictive ability could be obtained that cope with 

multicollinearity. On this dataset, by using MATLAB PLS_Toolbox MLR, RR, PCR and PLSR 

methods are applied. Then the models obtained by these four methods are compared in terms of 

their fitting ability to this dataset by using their calculated RMSE values and in terms of predictive 

ability for future datasets by using their RMSECV values and additionally Wilcoxon signed rank 

test results.  

 

 
The number of PCs/LVs giving the minimum RMSECV value is chosen as the optimal for 

the models. Since the model having less components and small RMSECV value always preferred, 

as seen from Figure 1 the PCR model with four PCs have been chosen. Table 3 presents the 

percent X and Y variance captured by the PCR model. For the optimal number of PCs in PCR 

77.08 % of the variance is captured by the new predictors. These four PCs could explain 69.37 

% of the variation in the dependent variable. 

 

Figure 1. RMSECV values for PCR and PLSR models on the air pollution dataset. 
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Table 3. The percent variance captured by PCR model for the air pollution dataset 

 X-block Y-block 

PC PC Cum PC Cum 

1 32.44 32.44 19.14 19.14 

2 24.43 56.87 14.00 33.13 

3 10.69 67.56 25.44 58.57 

4 9.51 77.08 10.81 69.37 

5 6.96 84.04 1.55 70.93 

6 5.18 89.22 0.60 71.53 

7 4.73 93.94 2.35 73.88 
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8 3.40 97.35 3.04 76.92 

9 2.11 99.46 1.09 78.01 

10 0.49 99.95 1.15 79.15 

11 0.05 100.00 6.71 85.86 

 
By default, MATLAB PLS_Toolbox uses SIMPLS algorithm for PLSR because of it is speed. 

However, the NIPALS algorithm could be used as an option by using the menus. Both of the 

algorithms give same results in terms of RMSE and RMSECV statistics and the same figure for 

determination of the numbers of components retaining in the PLSR model. Therefore, only the 

results of SIMPLS algorithm are given in this study. The number of LVs retaining in the PLSR 

model is determined as a same manner in PCR model. As seen from Figure 1, the maximum 

number of LVs retaining in the PLSR model could be chosen as two. Table 4 presents the percent 

X and Y variance captured by the PLSR model. For the optimal number of LVs in PLSR 44.14 

% of the variance is captured by the new predictors. These two LVs could explain 74.48 % of the 

variation in the dependent variable.  

 

Table 4. The percent variance captured by PLSR model for the air pollution dataset 

 X-block Y-block 

LV LV Cum LV Cum 

1 27.60 27.60 58.16 58.16 

2 16.54 44.14 16.32 74.48 

3 21.67 65.80 2.28 76.76 

4 5.99 71.79 1.73 78.49 

5 6.91 78.70 0.52 79.02 

6 5.14 83.85 0.70 79.72 

7 4.20 88.05 0.94 80.66 

8 3.80 91.84 0.83 81.49 

9 2.96 94.80 0.68 82.17 

10 2.49 97.30 2.09 84.25 

11 2.70 100.00 1.61 85.86 

 
While comparing the models, fit and prediction are different sights of a model performance. 

For example, whether the aim is the selection of a model that best fits the dataset, then the model 

having the smallest RMSE value should be chosen. If the aim is the selection of a model giving 

the best prediction, instead of RMSE a different measure must be used. The best way of 

controlling a model’s predictive ability is of course validation of that model on a new validation 

set. However, an independent and representative validation set is rare. In the absence of a real 

validation set, one reasonable way of model validation is given by CV, which simulates how well 

the model predicts new data. Hence, in this study, RMSECV values have been used in order to 

compare the methods in terms of prediction performance. 
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As seen from Table 5, the smallest RMSE values belong to MLR and RR models, 

respectively. Under the condition of no collinearity in the independent variables, MLR and RR 

models fit the data better than PCR and PLSR models. Due to the existence of the collinearity in 

the dataset used, this interpretation would not be true at all. For comparison of models intended 

for prediction, it is inadequate to look just at model fit. Hence, RMSECV values for all of the 

methods must be considered also. The best models in terms of RMSECV values are PLSR and 

PCR models, respectively. Therefore, MLR and RR models could be considered as the best 

models for fitting to dataset, however, PLSR and PCR models could be considered as the best 

models for prediction. 

 

Table 5. RMSE and RMSECV values of four models for the air pollution dataset 

 MLR RR PCR (4 PCs) PLSR (2 LVs) 

RMSE 8.27317 8.9053 12.1759 11.1149 

RMSECV 16.1115 15.1505 14.8883 14.8503 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Moreover, Wilcoxon signed rank test could be used to compare the predictive performance 

of pairs of these four models. Therefore, in terms of prediction ability the difference between 

pairs of models (especially MLR-RR and PCR-PLSR pairs) could be more clearly distinguishable. 

The results of the full pairwise model comparison made by Wilcoxon test show that in terms of 

predictive ability PCR and PLSR models are equivalent (
  2921.0z 

 for PLSR compared to 

PCR). PLSR model, compared with the MLR and RR models (
  0055.0z 

 for PLSR 
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compared to MLR, 
  0052.0z   for PLSR compared to RR), is one of two models having the 

best predictive ability. PCR model, compared with the MLR and RR models (   0059.0z   

for PCR compared to MLR,   0049.0z   for PCR compared to RR), is the other one of two 

models having the best predictive ability. However, MLR and RR models are equivalent 

(   2617.0z   for MLR compared to RR). These results are also supported the resuts of Table 

5 that PLSR and PCR models could be considered as the best models for prediction. 

 
The regression coefficients obtained for the four methods are given as shown in Table 6. 

From Table 6, it is obvious that the signs of the eleven coefficients are same for both of PCR and 

PLSR methods and these two methods show close performance.  

 

Table 6. The estimated coefficients for MLR, RR, PCR (4PCs), PLSR (2LVs) models 

Independent Variables 
MLR̂  

RR̂  PCR̂  PLSR̂  

PRESS 0.1933 0.11461 0.1399 0.0604 

SOLAR -0.3746 -0.15717 0.0625 0.0340 

HUMIDITY -0.0432 0.04717 0.1661 0.1040 

WIND -0.3362 -0.30595 -0.2705 -0.3363 

MIN -1.0493 -0.59285 0.0741 0.0521 

MAX -1.5921 -0.40279 0.1746 0.2439 

AVG 2.8817 1.3648 0.1165 0.1836 

RAINFALL -0.2234 -0.10389 -0.2146 -0.1129 

FIRSTCLOUDINESS -0.2392 -0.20957 -0.1657 -0.1807 

TWOCLOUDINESS 0.6816 0.47759 0.0962 0.2074 

THREECLOUDINESS -0.4980 -0.43416 -0.4107 -0.3990 

 
The actual and predicted values of dependent variable PM10 for MLR, RR, PCR and PLSR 

models are given in Table 7. It is clear from Table 7 that MLR and RR methods show close 

performances while PCR and PLSR methods give close results in terms of prediction values. As 

we mentioned before, MLR and RR methods are the best ones for fitting to this dataset. Hence, 

these two methods (especially MLR method) predict y values better than the other ones for this 

dataset. However, PCR and PLSR coefficients given in Table 6 must be chosen for prediction of 

PM10 values in future datasets. Because both of these two methods give lower RMSECV values 

and additionally, pairwise comparisons of these two ones with MLR and RR methods by using 

Wilcoxon signed rank test showed their superiority in terms of predicton ability again.  
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Table 7. Actual and predicted values of dependent variable (PM10) for MLR, RR, PCR (4PCs), 

PLSR (2LVs) models. 

y MLRŷ  RRŷ  PCRŷ  PLSRŷ  

29.00 39.6920 37.9832 48.6105 41.6669 

26.00 26.1869 21.7363 19.1402 19.6312 

21.50 13.4200 16.6788 12.8393 16.4868 

19.00 18.4380 17.7519 24.4609 25.1197 

48.00 38.3082 36.0248 35.9082 32.0929 

19.40 31.4783 32.1400 35.5039 32.7205 

52.00 45.3310 43.1841 42.2872 35.0195 

58.25 59.4614 63.6016 66.4663 63.1653 

54.32 47.3381 50.7827 54.2510 50.2945 

76.00 71.0100 71.4882 66.4999 66.8468 

77.00 74.7659 75.4985 74.3442 73.5754 

93.50 96.4118 92.1142 89.0168 88.4626 

79.50 75.4271 76.6705 75.5361 78.8494 

68.25 71.8822 75.1283 79.0276 80.5255 

54.32 66.7426 65.6979 51.8713 61.9706 

81.00 83.6177 78.9910 78.9428 79.4889 

49.00 53.5182 52.2636 54.7529 51.2554 

48.50 50.5548 50.9031 59.6024 56.8340 

39.50 57.4918 53.8575 55.6081 51.8896 

54.32 59.1393 64.1725 71.1283 70.5739 

88.50 71.0454 72.0675 70.8017 72.7478 

82.00 66.0786 60.3443 61.9360 62.2532 

50.50 57.0093 59.7547 51.3824 59.1808 

24.50 19.9835 26.4360 40.9282 36.2788 

32.00 43.3289 46.5406 42.4310 43.5424 

55.50 50.8415 51.0156 43.9300 46.1156 

83.00 80.9522 74.6606 53.8564 60.8610 

56.50 51.4053 53.3718 59.7965 63.4107 

 

5. Conclusion 

 
In this comparative study, MLR, RR, PCR and PLSR methods applied on a real air pollution 

dataset with multicollinearity and they have been compared from the point of view of model fit 

and prediction. The results show that when the model fit is considerable, MLR and RR models 

fit to this dataset best. The dataset used in this paper has also showed that the regression models 
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constructed by PLSR and PCR methods have the highest predictive ability, moreover, PLSR 

shows equal performance with PCR even with the smaller number of components. Although PCR 

and PLSR methods give more analogously results in terms of RMSE and RMSECV values, it is 

significant to mention that the results of these methods in terms of prediction and fitting are very 

sensitive choosing optimal number of components properly. 
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