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Abstract: Quick identification of severe injury crashes can help Emergency 

Medical Services (EMS) better allocate their scarce resources  to improve the 

survival of severely injured crash victims by providing them with a fast and timely 

response. Data broadcast from a vehicle’s Event Data Recorder (EDR) provide an 

opportunity to capture crash information and send them to EMS near real-time. A 

key feature of EDR data is a longitudinal measure of crash deceleration. We used 

functional data analysis (FDA)  to ascertain key features of the deceleration 

trajectories (absolute integral, absolute in- tegral of its slope, and residual variance) 

to develop and verify a risk predic- tion model for serious (AIS 3+) injuries. We 

used data from the 2002-2012 

EDR reports and the National Highway and National Automotive Sampling 

System (NASS) Crashworthiness Data System (CDS) datasets available on the 

National Transportation Safety Administration  (NHTSA)  website. We consider 

a variety of approaches to model deceleration data, including non- penalized and 

penalized splines and a variable selection method, ultimately obtaining a model 

with  a weighted  AUC of 0.93.  A novel feature of our approach is the use of 

residual variance  as a measure of predictive risk. Our model can be viewed as an 

important first step towards developing a real- time prediction model capable of 

predicting the risk of severe injury in any motor vehicle crash. 

 

Key words: Clinical prediction modeling, cross-validation, motor vehicle crash 

injuries, precision-recall curve, weighted logistic regression, weighted receiver 

operating characteristic curve. 

 

 

 

1. Introduction 

 
Vehicle crashes are responsible for over 35,000 deaths per year in the United 

States and are among the leading cause of death for people  ages 1-44 (Murphy 
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et al., 2013). Among those fatally injured, most do not die immediately, resulting in the need 

for a fast medical response to prevent a fatal outcome (Clark et al., 

2013). The “Golden Hour” is a term used to indicate the need for fast medical response to 

prevent  fatalities in those who have suffered an acute event.  The evidence for the golden hour 

is mixed (Newgard et al., 2010), but an analysis of crash data by Clark et al. (2013) showed a 

small improvement in survival with Emergency Medical Services (EMS) response  within  30 

minutes and an even larger improvement with early hospital intervention. 

Hence, to improve the survival of victims with severe injury  from motor ve- hicle crashes, 

the ability  to identify these crashes and relay this information to EMS quickly is very important.  

The capability and increasing presence of Event Data Recorders (EDRs) in vehicles provides 

such an opportunity.   The EDR is a “black box” that  records deceleration and other signals 

in the event  of a crash.  (Note:  EDRs technically report acceleration. However, deceleration 

is more natural when describing this trajectory.)  This information can be trans- mitted 

immediately to a dispatcher and then to EMS after a crash, potentially resulting in faster 

deployment of EMS vehicles. 

Although transmission of the information about the crash itself can reduce delays, having 

a prediction model that can identify crashes with a high risk of severe injury  would help 

EMS to allocate scarce resources more efficiently.  A number of researchers have developed 

such algorithms to predict which crashes have a higher probability of resulting in serious injury 

to one or more occupants. For example, Kononen et al. (2011) describe a triage algorithm based 

on EDR- available time independent  data elements that  predicts the presence of severe injury.   

They also included two additional predictors obtained through contact with a vehicle occupant. 

Augenstein et al. (2003) also developed a triage algo- rithm  to predict serious injury, but their 

algorithm uses a number of predictors that cannot be obtained from EDRs. 

Although the algorithms proposed by Kononen et al. (2011) and Augenstein et al. (2003) 

were designed to be used with  EDR data, they were not directly developed from such data 

because there was not enough publicly available EDR data at the time of development. In order 

to compensate for this mismatch, both algorithms used an estimate of the change in velocity of 

the vehicle due to the crash (delta-v) as a primary predictor of injury  outcome rather than 

accelera- tion histories measured by the EDR. This approach is problematic for several reasons. 

Delta-v estimates in crash databases have been shown to underestimate EDR-based delta-v by as 

much as 23% (Hampton and Gabler, 2010). Second, pa- rameters derived from deceleration histories 

(e.g. average deceleration) have been shown to have better linear correlation with the occurrence 

of injury  compared to the database estimated delta-v (Mizuno et al., 2014). In addition, aspects 

of 
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the deceleration history, for example the rapid changes in the deceleration, may provide 

additional information about the seriousness of the injury. 

In this paper, we present a new triage algorithm, developed using EDR data rather than data 

from crash databases.  We use functional data analysis (FDA) techniques (Ramsay et al., 2009) 

designed for analyzing time histories, to de- velop a prediction model of serious injury  in 

crashes. We applied FDA to the EDR-reported deceleration and tested four FDA approaches to 

estimate this de- celeration.  Because deceleration trajectories have different  duration and time 

stamp intervals, we summarized  each trajectory using a measure for overall de- celeration, a 

measure for the deceleration fluctuation, a measure of the residual variability  in deceleration 

after removing the mean trend, and a measure of the length of time the force of the crash affected 

the vehicle. We then combined these statistics with the limited set of time-invariant variables 

available from the EDR to obtain our prediction model. We also considered the degree to which 

the use of deceleration statistics improves the prediction capability of our model compared to a 

model with only time-invariant variables. 

The remainder of this article is organized  as follows. Section 2 summarizes the crash history 

data and EDR data available in the National Automotive Sampling System Crashworthiness 

Data System (NASS-CDS). Section 3 describes the vari- ous forms of functional data analysis 

(FDA) we used to estimate the deceleration data and the analyses we conducted. In Section 4 

we present the results of our analyses while Section 5 discusses the strengths and limitations of 

our model and future extensions. 

 
2. Data 

2.1.  NASS-CDS data 

 
NASS-CDS (National Highway and Traffic Safety Administration,  2008) is an annual 

representative three-stage probability sample of passenger vehicle crashes sponsored by the 

National Highway and Transportation Safety Authority (NHTSA). To be eligible for inclusion, 

a crash must: (1) be police reported, (2) involve a harmful event (property damage and/or 

personal injury)  resulting from a crash, and (3) involve at least one towed passenger car or light 

truck or van in trans- port on a traffic way. When a crash is selected, NASS-CDS investigators 

obtain police reports and conduct interviews with the occupants to collect information such as 

driver’s age and sex, vehicle curb weight, type of vehicle, severity of in- jury measured using 

the Abbreviated Injury  Scale (AIS) score (Association  for the Advancement of Automotive 

Medicine, 1990), and the principal direction of impact from the crash. 

Because sampling  in NASS-CDS was a multi-stage design with probability of selection based 

on model year and the severity of injury, subjects in less serious 
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crashes were underrepresented in the study sample. To account for this potential bias, we 

used case weights  equal to the inverse of the probability of selection and adjusted to known crash 

totals to account for the oversampling of serious crashes in NASS-CDS. These weights are 

provided with the data. Thus for all the vari- ance estimates and tests of association reported 

below, Taylor series linearization estimates were used to account for the complex sample design 

of the NASS-CDS (Binder, 1983; Rao and Scott, 1981). 

 
2.2.  EDR data 

Electronic data records (EDRs) are devices installed in motor-vehicle to continu- ously 

record technical vehicle and occupant information before, during, and after a crash. Examples 

of key variables recorded by all EDRs include vehicle longitu- dinal acceleration/deceleration, 

seat belt use, vehicle speed, brake use, and airbag deployment. Newer EDRs can record acceleration 

data at higher frequencies, ad- ditional events, acceleration and roll angle data from multiple 

crash directions, and activation of collision notification  systems. Vehicle identification  

number (VIN)  is also contained in EDRs. VINs can be decoded to identify standard and 

equipment (both safety and otherwise) in a vehicle. 

A key feature of the EDR is that, in the event of a crash, airbag deployment timing  and 

300 ms during a crash event  is locked in memory, for up to two events.  These data, along 

with “baseline” measures of belt use and basic vehicle information obtainable from VINs, can 

be broadcast in real time to emergency responders. 

 
2.3.  Crash data eligible for analysis 

Our analysis relies on the 2002-2012 NASS-CDS  and associated EDR datasets. We  first 

merged the NASS-CDS datasets and crash data extracted from EDR reports.  Next, we 

removed crashes where the driver’s age and sex were both missing, resulting in 5,736 crashes. 

We then restricted the crashes to 3,460 frontal crashes defined as those crashes where the 

principal direction of force was 0◦  to 40◦  and 320◦  to 350◦.   We  removed 3,198 unusable  

crashes that  were missing crash pulse data or that recorded a constant crash pulse throughout 

the crash duration.   We  then removed one crash that  involved a vehicle type  that  was neither 

a car, SUV, pickup, nor van.  Finally, we removed  12 crashes that had missing injury outcomes 

(including unknown AIS scores) to arrive at 249 crashes eligible for analysis. Figure 1 shows 

the  flowchart of our selection criteria for eligible crashes. 

 
2.4.  Variables used in analysis 

Our dataset of 249 eligible crashes included seven baseline variables:  maximum 

Abbreviated Injury  Scale (AIS)  in vehicle (VMAIS),  sampling weight, vehicle 
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EDR  2002-2012 unique crashes with 

driver’s age and sex non-missing. (n = 

5,736) 
 

Non-frontal crashes. 
(n = 2,276) 

 
 

Frontal crashes. 
(n = 3,460) 

 
 

Unusable crashes.* 
(n = 3,198) 

 
 

Valid crashes. 
(n = 262) 

 
 

Out of range body type. 

(n = 1) 
 

 

Within range body type. 

(n = 261) 
 

 
Missing injury  outcomes. 

(n = 12) 
 

 

Eligible for analysis. 

(n = 249) 
 
*Includes  pre-crashes (time<0), constant  crashes (crash pulse constant  throughout), and crashes that  

did  not record longitudinal acceleration. 

 

Figure 1: Flow chart of crashes available for analysis. 
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type,  curb weight (kgs), EDR driver belt status (Yes/No/Not reported),  EDR front-seat 

passenger belt status (Yes/No/No front-seat passenger/Not reported), NASS-CDS total delta-v, 

multiple event indication (Yes/No), and two crash pulse variables: time (milliseconds) and 

longitudinal (frontal) deceleration (m/s2).  The sampling weight and VMAIS were obtained 

from NASS-CDS datasets while the seat-belt statuses and crash pulse were obtained from the 

EDR datasets. Presence of multiple  events was derived from EDR reports.  Although curb 

weight  and vehicle type were obtained from NASS-CDS datasets, these two variables could, 

in principle, be derived easily using the VIN. 

We modified two of the time-invariant variables as follows. For the vehicle type,  we re-

categorized  the 64 different  vehicle types  to three new categories: cars (category 0-9), SUVs 

(category 14-19), and pickups or vans (category 20-33). We grouped pickups and vans together  

because the number of severe injuries in the pickup category was small. VMAIS was recorded 

from 0 (no injury)  to 6(maximum injury).  We considered crashes with VMAIS ≥  3 as having 

a severe injury in the vehicle. Finally, if two events were reported in the same crash report, the 

multiple crash indicator was coded as “Yes”. 

 
2.5.  Comparing  demographics of eligible and ineligible crashes 

From Figure 1, we observed that nearly 92.8% of our frontal crashes were ineligi- ble. This 

ineligibility  is largely due to the fact that early EDRs usually provided a cruder velocity change 

that is not easily converted to a continuous acceleration measure; nonetheless, this high 

percentage of ineligible crashes could create po- tential bias in our prediction model. To verify 

that our prediction model would still be valid, we compared six NASS-CDS demographic 

variables from the eli- gible and ineligible crashes.  The six variables compared were: driver’s 

age, sex, belt use (from crash investigation), intrusion, front-seat passenger belt use (again from 

crash investigation), and maximum vehicle injury severity. 

We observed no significant difference between eligible and ineligible crashes for the 

weighted mean and proportion of driver’s age, sex, and belt use, front- seat passenger belt use, 

maximum vehicle injury severity, and sampling weights. (Note that the analysis of the sampling 

weights was unweighted.) The weighted proportion of driver intrusion was significantly 

different between eligible and inel- igible crashes, with the excluded cases having somewhat 

greater rates of intrusion, suggesting that our analytic dataset may contain somewhat  less 

severe crashes than the set of frontal crashes as a whole (Table 1). We would address this issue 

in the discussion section. 

 
3. Statistical  methods 
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Table 1: Comparing demographics of eligible versus ineligible crashes. 
 

Demographics Eligible (sd) Ineligible (sd) p-value 

Driver’s Age 39.48 (2.72) 38.93 (1.19) 0.85 

Driver’s Sex   0.49 

Male (%) 47 (8) 53 (3)  

Female (%) 53 (8) 47 (3)  

Driver belt use   0.71 

Yes (%) 87 (4) 85 (1)  

No (%)  13 (4)  15 (1) 

Driver intrusion:   0.03 

x < 2 cm (%) 96 (1) 89 (3)  

3 cm ≤ x < 8 cm (%) 1 (1) 3 (1)  

8 cm ≤ x < 15 cm (%) 2 (1) 2 (1)  
15 cm ≤ x < 30 cm (%) 1 (1) 2 (1)  
30 cm ≤ x < 46 cm (%) 0 (-) 1 (1)  
46 cm ≤ x < 61 cm (%) 
61 cm ≤ x (%) 

0 (-) 

0 (-) 

3 (3) 

0 (-) 
 

Front-seat passenger belt use: 0.24 

Yes (%) 12 (3) 18 (2)  

No front-seat passenger (%) 83 (4) 78 (2)  

No (%) 5 (2) 4 (1)  

Maximum vehicle injury severity:   0.56 

AIS3+ (%) 2 (1) 3 (1)  

AIS≤ 2 (%) 98 (1) 97 (1)  

Sampling weight* 352.16 (868.61) 425.59 (1,149.09) 0.23 

* Un-weighted    

 

 

3.1.  Functional  Data  Analysis 

Figure 2 provides a typical example of the deceleration data available from an EDR report.  

To utilize these crash pulses in a regression model, we employed FDA. We considered the 

deceleration for the ith crash to be a continuous and smooth function of t, yi(t), observed with 

error Eij  at time tij , where j = 1, . . . , mi for the mi  observations of the ith crash, i = 1, . . . , n.  

Let yij  be the observed deceleration. FDA  attempts to convert  yi1, yi2, . . . , yimi    
to the function 

yi(t). This means that  for a given time tij , yij   = yi(tij ) + Eij   where yi(tij ) is the

value of yi(t)  evaluated at tij  and yij  is estimated using  ŷij   = yi(tij ). This conversion can be 

accomplished  using several methods (Ramsay et al., 2009). For this study, we considered four 

approaches:  two methods using unpenalized splines, the “3-millisecond” (3mil) method and 

“combinatorial”  (combi) method; 
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Figure 2: Example of a crash pulse. 

 

and two  methods using penalized splines, the “penalized natural cubic spline” (PCS) 

method, and “mixed-model” (MM)  method. 

 
3.1.1.  3 Millisecond Method 

The first unpenalized method we used was based on basis splines (de Boor, 2001). Let 

 

𝑦𝑖𝑗 = ∑ 𝑐𝑖𝑙𝜙𝑙(𝑡𝑖𝑗) + 𝜖𝑖𝑗, 𝜖𝑖𝑗~𝑁(0, 𝜎𝑖
2)

𝑚𝑖

𝑙=1

(1) 

where 𝑦𝑖(𝑡𝑖𝑗) = ∑ 𝑐𝑖𝑙𝜙𝑙(𝑡𝑖𝑗)
𝑚𝑖
𝑙=1  , 𝜙𝑙(𝑡𝑖𝑗) ≡ 𝜙𝑙,𝑑(𝑡𝑖𝑗) are basis splines matrices of 

degree d, and𝜙𝑙,𝑑(𝑡𝑖𝑗) is obtained by the recursion relation: 

 

𝜙𝑙,𝑑(𝑡𝑖𝑗) =
𝑡𝑖𝑗 − 𝑘𝑖𝑙

𝑘𝑖,𝑙+𝑑 − 𝑘𝑖𝑙
𝜙𝑙,𝑑−1(𝑡𝑖𝑗) +

𝑘𝑖,𝑙+1+𝑑 − 𝑡𝑖𝑗

𝑘𝑖,𝑙+1+𝑑 − 𝑘𝑖,𝑙+1
𝜙𝑙+𝑑,𝑑−1(𝑡𝑖𝑗) 

(2) 

𝑘𝑖𝑙 are the 𝑚𝑖  internal knots of the basis splines, and

 

and choice of the κil .  We chose a cubic spline d = 4 and defined κil at equally spaced 

intervals of k.  Our objective in determining k was to choose an interval so that the least squares  
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estimator ŷi  was smooth and yet followed the original crash pulse closely. Based on a 

visual inspection of the resulting curves for a variety of crash pulses,  we chose to define k = 3 

(i.e., knots at every at every 3 milliseconds) to retain as much potential information from the 

original crash pulse as possible while still smoothing crash pulse to some degree. 

 

3.1.2.  Combinatorial Method 

As an alternative to defining κil at fixed intervals, we could fix the number of κil minus the 

two boundaries  as  𝑚𝑖  ≡ o, and allow κil  to be freely placed anywhere along the interval [ti2, 

ti,mi −1]. By defining o as a small value, we induce additional smoothing while hopefully still 

being able to find strong data signals by allowing the placement  of κil to vary.  To maintain 

a reasonable number of submodels to consider, we defined the potential interval [ti2, ti5, . . . , 

ti,mi −1], corresponding to the knots for the 3mil model, for the o κij s  to be placed.  We  set o 

= 5 to allow as much complexity in the fitted  curve  as possible  while still  keeping the 

computation manageable. We considered all possible combinations of  κij on  the reduced 

interval [ti2, ti5, . . . , ti,m   1], and calculated ∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)2𝑚𝑖
𝑗=1 combination. We then chose the 

combination that minimized ∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)2𝑚𝑖
𝑗=1  for the 𝑖𝑡ℎcrash 

 

 

3.1.3.  Penalized Cubic Spline Method 

To reduce the risk of overfitting, we considered a penalized spline approach that 

downweighted values of ĉil that lead to highly variable values of ŷij  by introducing a penalty 

in the objective function to be minimized

 

∑ [𝑦𝑖𝑗 − ∑ 𝑐𝑖𝑙𝜙𝑙(𝑡𝑖𝑗)

𝑚𝑖

𝑙=1

]

2

𝑗

+ 𝜆𝑖 ∫ ∑{𝑐𝑖𝑙𝐷𝑞[𝜙𝑙(𝑡)]}2

𝑚𝑖

𝑖𝑙

𝑑𝑡 

(3) 

 

Where 𝑦𝑖(𝑡𝑖𝑗) = ∑ 𝑐𝑖𝑙𝜙𝑙(𝑡𝑖𝑗)
𝑚𝑖
𝑙=1  and 𝐷𝑞[𝑔(𝑢)] is the 𝑞𝑡ℎ  derivative of function 𝑔. The first 

term in (3) is the objective function that minimizes the least squares estimation of ci   in (1);  

the  second term induces a penalty for large amounts of “acceleration” or “deceleration” when 

estimating the function yi(t).   Least- squares estimation can be adapted to accommodate (3) by 

rewriting as 

 

(𝑦𝑖 − 𝑐𝑖
𝑇𝛷𝑖)

𝑇
(𝑦𝑖 − 𝑐𝑖

𝑇𝛷𝑖) − 𝜆𝑖𝑐𝑖
𝑇𝑅𝑐𝑖                                           (4) 

 

where R = ∫ 𝐷𝑞(𝜙𝐿(𝑡)) 𝐷𝑞(𝜙𝑙(𝑡))
𝑇

𝑑𝑡 which is minimized with respect to 𝑐𝑖 by ̂bi  = 

(ΦT Φi + λiR)−1ΦT yi, equivalent to ridge regression for a fixed λi.  In our analysis, 

we set q  = 2 (second derivative) and obtained estimates of λi  via generalized 



646    IMPROVING  TRAUMA TRIAGE MODELS FOR  MOTOR VEHICLE  CRASHES USING EVENT  DATA  

RECORDERS AND FUNCTIONAL DATA ANALYSIS 

 
 

cross-validation (Golub et al., 1979), an extension of standard cross-validation procedure 

that predicts the 𝑗−𝑡ℎ observation after leaving out the 𝑗−𝑡ℎ observation in the estimation of 𝑐𝑗. 

 
3.1.4.  Mixed  Model  Method 

Noting that  (4) is equivalent  to the log-likelihood of a random-effects model 𝑦𝑖 = Φ𝑖𝑏𝑖 +

𝜖𝑖  for 𝑏𝑖~𝑁 (0,
𝜎𝑖

2

𝜆𝑖
𝑅−1) and 𝜖𝑖~𝑁(0, 𝜎𝑖

2𝐼) [Speed,  in discussion of Robinson (1991)], it is 

possible to estimate the smoothing parameter 𝜆𝑖 using maximum likelihood.  For this approach, 

we utilized the model proposed by Wang (1998), which we have  found to be  stable and provide 

appropriate trade-offs between smoothness and local features. It is given by

𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + ∑ 𝑍𝑖𝑗𝑝𝑏𝑝𝑖 + 𝜖𝑖𝑗

𝑚𝑖−1

𝑝=1

 𝜖𝑖𝑗~𝑁(0, 𝜎𝑖
2) 

(5) 

Where 𝑦𝑖𝑗(𝑡𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + ∑ 𝑍𝑖𝑗𝑝𝑏𝑝𝑖
𝑚𝑖−1
𝑝=1 , 𝑡𝑖 ∈ [0,1] , (𝑏1𝑖, 𝑏2𝑖, … , 𝑏𝑚𝑖−1,𝑖

)
𝑇

~𝑁(0, 𝜏𝑖
2𝐼), 

𝑍𝑖𝑍𝐼
𝑇 = 𝛺𝑖and 𝛺𝑖 is an 𝑚𝑖 × 𝑚𝑖 matrix with the rows and columns defined as 

 Ω𝑘,𝑙 = ∫ (𝑡𝑘 − 𝜇) + (𝑡𝑙 − 𝜇) + 𝑑𝑡 =
1

2
[𝑚𝑖𝑛 (𝑡𝑘 , 𝑡𝑙)]2 𝑚𝑎𝑥(𝑡𝑘 , 𝑡𝑙) −

1

6
[𝑚𝑖𝑛(𝑡𝑘 , 𝑡𝑙)]31

0

The tuning parameter �̂�𝑖  is estimated by  �̂�𝑖 =  
�̂�𝑖

2

𝑚𝑖�̂�𝑖
2 . Note that 𝑡𝑖𝑗 is a transformation from 

the original time �̃�𝑖𝑗 ,  given by 𝑡𝑖𝑗 =

�̃�𝑖𝑗−min(�̃�𝑖𝑗)

𝑗

max(�̃�𝑖𝑗)−min (�̃�𝑖𝑗)

 𝑗                      𝑗         

 so that 𝑡𝑖1 = 0 < 𝑡𝑖2 < ⋯ < 𝑡𝑖𝑚𝑖
= 1. 

(Because 𝑦𝑖(𝑡𝑖𝑗) = 𝑦𝑖(�̃�𝑖𝑗), we do not need to convert 𝑦𝑖(𝑡𝑖𝑗)back to the �̃�𝑖𝑗  scale.) 

We obtained 𝑍𝑖  by estimating the Cholesky decomposition of Ω𝑖 using Smith’s(1995) 

method. We then estimated 𝑦𝑖𝑗  as

ŷij = β̂0i + β̂1itij + ∑ 𝑍𝑖𝑗𝑝�̂�𝑝𝑖

𝑚𝑖−1

𝑝=1

 

(6) 

 

where, using standard mixed-model results (Harville, 1976), we have  

�̂�𝑖 = (𝑋𝑖
𝑇�̂�𝑖

−1𝑋𝑖)
−1

𝑋𝑖
𝑇�̂�𝑖

−1𝑦𝑖 , �̂�𝑖 = 𝜏𝐼
2𝑍𝑖

𝑇�̂�𝑖
−1(𝑦𝑖 − 𝑋𝑖�̂�𝑖) for 𝑉�̂� = 𝜏𝑖

2𝑍𝑖
𝑇𝑍𝑖 +

�̂�𝑖
2𝐼𝑖  , where 𝜏𝑖

2 𝑎𝑛𝑑 �̂�𝑖
2 are estimated using restricted maximum likelihood (REML). 

 

 
3.2.  Slope of 𝒚𝒊(𝒕) at 𝒕𝒊𝒋 

In addition to obtaining𝑦𝑖(𝑡), we were interested in calculating the slope of 𝑦𝑖(𝑡) at 𝑡𝑖𝑗. We 

hypothesized that vigorous fluctuations in the crash pulse may be an important predictor for 

severe injury outcomes. For the basis spline methods in 3.1.1-3.1.3, we computed the derivative  

of the least squares estimator as 
𝑑

𝑑𝑡
Φ𝑖�̂�𝑖 where 

 

𝑑

𝑑𝑡𝑖𝑗
𝜙𝑙,𝑑(𝑡𝑖𝑗) = (𝑙 − 1) (

𝜙𝑙,𝑑−1(𝑡𝑖𝑗)

𝑘𝑖,𝑙+𝑑−1 − 𝑘𝑖𝑙
+

𝜙+1𝑙,𝑑−1(𝑡𝑖𝑗)

𝑘𝑖,𝑙+𝑑 − 𝑘𝑖,𝑙+1
) 

(7) 
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For the slope of the MM method in 3.1.4, the first derivative of the equation 6 yields 

 

 

�̂�1𝑖 + ∑ �̅�𝑖𝑗𝑝�̂�𝑝

𝑚𝑖−1

𝑝=1

 

(8)

Where �̅�𝑖𝑗𝑝 was the(𝑗, 𝑝) element of 
𝑑

𝑑𝑡𝑖𝑗
𝑍𝑖 . To obtain �̅�𝑖𝑗𝑝 , we took the first derivative of 

the Ω𝑖  matrix with respect to 𝑡𝑖𝑗 . Then using the fact that 
𝑑

𝑑𝑡𝑖𝑗
Ω𝑖 = (

𝑑

𝑑𝑡𝑖𝑗
𝑍𝑖) 𝑍𝑖

𝑇 + (
𝑑

𝑑𝑡𝑖𝑗
𝑍𝑖)

𝑇

 

we derived �̅�𝑖𝑗𝑝 from 
𝑑

𝑑𝑡𝑖𝑗
Ω𝑖 . Details are provided in Appendix A . 

 

3.3.  Extracting summary measures from the crash pulse 

Typically  in FDA,  once yi(tij ) has been estimated, researchers would use the coefficients 

cil  as the variables in the second-stage regression model. However, in this study we faced two 

difficulties. First, the duration of each crash was different. Second, the time stamp interval was 

different for each crash. These two difficulties implied that defining a single set of linear 

combination of functions for all crashes and subsequently using their coefficients would be 

inappropriate since each crash should have its own linear combination of basis functions 𝜙𝑙(𝑡𝑖𝑗) 

to define yi(tij ). To overcome these difficulties, we extracted four summary measures from 

the yi(tij ) of the four methods separately. 

The first summary we extracted was 𝐺  defined as 𝐺 = ∫𝑡𝑖
|𝑦𝑖(𝑡𝑖)| 𝑑𝑡𝑖 absolute integral of 

yi(ti) over the duration ti.  We took the absolutes because we did not want yi(ti) to cancel 

each other during integration. Because closed form solutions were not available, we used 

numerical methods (Simpson’s integral) to approximate 𝐺𝑖. 𝐺𝑖 sould approximate the “instan 

taneous deceleration” measure delta-v, a good predictor of severe injury risk. Indeed 𝐺𝑖 was 

correlated with  the delta-v given in NASS-CDS (Kendall’s correlation of 0.44, p-value<0.001)

 

Thus �̂�𝑖  should be  an important  predictor of injury  risk.   Figure 3 provides an illustration  

of the differences between crashes with a high  𝐺𝑖  and a low  �̂�𝑖. 

  

The second summary measure that we extracted was 𝑔𝑖 = ∫𝑡𝑖|𝑦′
𝑖
(𝑡𝑖)| 𝑑𝑡𝑖 the “absolute 

integral” of all the estimated slope of 𝑦𝑖(𝑡𝑖) over the duration 𝑡𝑖.  This definition of 𝑔𝑖  was 

designed to capture the extent to which the crash pulse fluc- tuated. The absolute signs 

prevented positive slopes from canceling out negative slopes, ensuring that we did not 

underestimate the fluctuations in the crash pulse. Again, we used numerical methods 

(Simpson’s integral) to approximate 𝑔𝑖.  Fig- ure 4 illustrates the difference between a crash 

with higher 𝑔𝑖 vs. a crash with a lower 𝑔𝑖. 

The third summary measure we extracted was 𝜎𝑖
2 the variance of the residual. Residual 

variance provided an additional measure of the degree of variability  in 
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Figure 3:  Origina1 and estimated crash pulses for crashes with high and 10w�̂�. 

 

the crash  pulse not  exp1ained  by 𝐺�̂� and  𝑔�̂�.   Figure 5 illustrates this clearly.  We estimated 

�̂�𝑖
2; for 3mil ,  combi , and PCS  method by taking the  samp1e variance of the  residuals , whi1e for 

the  MM method , we obtained the  REML  estimate of  �̂�𝑖
2. 

Lastly , we extracted a summary measure called time to 0.25Gs (tt025). Tt025 was defined as 

the time the crash pulse took to eventually return to ± 0.25 Gs. 

This gives a measure of how long the force from a crash affects the vehicle.  We computed tt025 by 

starting from the last crash pulse recorded for a given crash and  moving  backwards to the  first  

deceleration value recorded , searching for the deceleration value that first exceeded  ±0.25Gs , 

𝑡0.25Gs
. 

We obtained tt025 by taking the difference of  𝑡0.25Gs
 and the time at the start of the crash  pulse.  

Figure 6 shows graphs of a crash pulse with a high tt025 vs. low tt025. A crash pulse with high tt025  

tended to have their  crash  activity "stretched out"  while crash pulses with  low tt025  had  their  

crash  activity “compressed” . Hence , we expect a crash  pulse  that extends over a longer time (i.e., 

high tt025) should result in less severe injury  than one that occurs in a shorter time  frame. 
 

3.4. Predicting risk of severe injury in motor vehicle crashes 

We computed our prediction model by first merging each set of summary measures with the 

outcome, VMAIS and the other time-invariant variables (see subsection 2.4) to form four datasets. 

Then, we expanded these four sets to a further sixteen by taking different combinations of the 

following: 1. logarithm transform or no logarithm transform on the summary measures and 2. 

scaling i.e. 
𝐺𝑖

𝑡𝑡025𝑖
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Figure 4:  Original  and  estimated crash  pulses  for crashes with  high  and  low �̂�;. 

 

 

or no scaling of  𝐺�̂�. This was done to investigate whether logarithm transformation of the 

summary measures or whether the scaling of 𝐺 improves prediction performance. As presentation 

of coefficients and results from sixteen different models would be cumbersome, we used the highest 

leave-one-out cross-validation (CV) weighted area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve to determine which model to present. The weighted AUC was computed 

based on the results of a weighted logistic regression with VMAIS as the outcome and summary 

measures and time-invariant (baseline) variables as the covariates. 

To investigate the performance of our chosen model, henceforth called the ̀ deceleration' model, 

we first compared the weighted AUC of the `deceleration' model with a `baseline' model. The 

`baseline' model was one which contained only time-invariant EDR variables. This was to determine 

if adding deceleration information to our model improved prediction performance. We also 

measured the variability of this difference by running 1,000 bootstrap samples of the eligible crashes 

and calculating the weighted AUC for each of them. We then took the difference of their weighted 

AUC, sorted this calculated difference, and took the 25th and 975th values as the lower and upper 

bounds for the 95% bootstrap confidence intervals of the weighted AUC difference. 

To complement the weighted AUC results, we plotted the weighted ROC and precision-recall 

(PR) curves (Davis and Goadrich, 2006) and constructed a false discovery rate (FDR) table for both 

deceleration and baseline models. 
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Figure 5: Original  and  estimated crash  pulses  for crashes with  high  and  low �̂�𝑖

2 

PR curves relate the proportion of true-positives out of all positive results a model would 

produce (y-axis) to any level of true-positive rate (the proportion of true-positives among all cases, 

x-axis). More speciflcally, precision (yaxis) is defined as 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  , while recall 

(x-axis) is de_ned as  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 . PR curves share many properties with the ROC, 

but provide a focus on the trade-o_ between the fraction of AIS 3+ injuries captured at a given 

prediction level cutpoint versus the fraction of positive cases that will actually have an AIS 3+ 

injury at that level. These are particularly important measures in this setting, where the cost of 

missing severe injuries must be balanced against resources assigned unnecessarily to non-severe 

injuries. PR curves lying in the top-right imply good performance. We plotted weighted PR curves 

by first using the sampling weight of each crash as the number of either severe injury outcome or 

non-severe injury outcome a crash represents. Then, we smoothed these points using the locally 

weighted scatter-plot smoothing (loess) to curves the PR curves. 

The FDR table we computed provides similar information as the PR curves.The difference was, 

instead of looking at the proportion of true-positives out of all positive results, our FDR table gave 

the proportion of false-positives out of all positive results. We presented this proportion in the right 

column of our FDR table with the predicted probability cutoff points in the left column, and the 

proportion of severe injuries categorized as positives in the middle column. For this study, we used 

predicted probability cutoff points of 1-10%, 15%, 20%, 25%, 
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Figure 6: Original and estimated crash pulses for crashes with high and low tt025.and 30%. 

 

Finally, we ran a leave-one-out CV on the deceleration and baseline model to investigate how 

well they will perform given new data. Similarly, we looked at their weighted ROC and PR curves, 

and the FDR tables using the same predicted probability cutoff points mentioned in the previous 

paragraph. We completed all analyses using Rx64 3.0.3. 

 

4. Results 

 

To get a visual sense of how the four different FDA methods estimated the original crash pulse, 

we present four selected crashes with their estimated trajectories, �̂�𝑖𝑗  in Figure 7. We observed that 

the 3mil and PCS methods tend to follow the original crash pulse closely while the combi method 

smooths almost all crash pulses. The MM method alternates between following the crash pulse 

when there are strong signals in the data (see the top two plots in Figure 7), or smoothing the pulses 

when they are \noisier" (see the bottom two plots in Figure 7). 

From the results of the leave-one-out CV, we found that the model with summary measures 

estimated using penalized method, no logarithm transform on the summary measures, and no 

scaling produced the highest weight leave-one-out CV AUC, 0.75. Using this model, we next focus 

on the descriptive statistics of our variables (Table 2). We found that the (weighted) mean of 𝐺, 𝑔 , 

�̂�2, and curb weight in severe injury crashes were higher compared to non-severe injury crashes 

(847 vs. 499, 87 vs. 69, 59 vs. 12, and 1,694 vs. 1,681 respectively). 

 

However, the mean of tt025 for severe injury crashes was slightly lower compared to non-severe 

injury crashes (110 vs. 112). The proportion of cars and pickups or vans were higher in severe injury 

crashes compared to non-severe injury crashes (45% vs. 42% and 26% vs. 24% respectively) while 

SUVs had a lower proportion involved in severe injury  crashes (29% vs. 34%). More than half 

(59%) of the eligible crashes did not have seat-belt statuses of the driver and front-passenger 

reported in their EDR reports. We observed a lower proportion of the known- belted occupants 

involved in severe injury crashes (12% vs. 38% and 6% vs. 7% for driver and front-seat passenger 

belt status respectively). The proportion of unbelted drivers involved in severe injury crashes was 

higher than in non-severe injury crashes (21% vs. 3%), while we found a lower rate on unbelted 

front-seat passengers in severe injury  crashes vs. non-severe injury  crashes (4% vs.  17%). Finally, 

we observed a higher proportion multiple crash recorded of severe injury crashes (18% vs. 6%). 
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Severe Injury 

(n=27) 

Non-severe injury 

(n=222) 

Total 

846.86 (91.78) 498.96 (25.66) 506.05 (25.33) 

87.02 (27.64) 69.03 (8.48) 69.40 (8.34) 

58.97 (23.17) 12.26 (2.14) 13.22 (2.20) 

110.44 (6.16) 112.12 (3.51) 112.09 (3.44) 

 

Table 2: Descriptive statistics: mean (standard error in parenthesis) 

Covariate (sd) 
 

Ĝ 

ĝ 

σ̂2
 

T t025 

Body type (%): 

Car                                          45 (16)                    42 (8)                    42 (8) 

SUV                                        29 (19)                   34 (10)                  34 (10) 

Pickup or Van                         26 (14)                    24 (5)                    24 (5) 

Curb weight (kgs) 1,693.70 (142.97) 1,680.80 (33.09) 1,681.00 (32.56) 

Driver belt use (%): 

Belted                                      12 (6)                     38 (8)                    37 (7) 

Not reported                           67 (14)                    59 (8)                    59 (8) 

Not belted                               21 (14)                     3 (1)                      4 (1) 

Front-seat passenger belt use: 

Belted 6 (4) 7 (2) 6 (2) 

No front-seat passenger 23 (14) 17 (5) 18 (5) 

Not reported 67 (14) 59 (8) 59 (8) 

Not belted 4 (3) 17 (5) 17 (5) 

Multiple crashes? (%): 

Yes 18 (14) 6 (2) 6 (2) 

No 82 (14) 94 (2) 94 (2) 
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i 

 

Although estimated delta-v from databases like  NASS-CDS underestimate actual delta-v, 

we still  wanted to check whether our summary measures had good linear correlation to NASS-

CDS delta-v because many studies have shown that NASS-CDS delta-v is a good predictor of 

severe injury risk. We found that all summary  measures had a weak to moderately positive 

correlation with NASS- CDS delta-v with Ĝ having the highest linear correlation 0.44 while 

tt025 had the weakest, 0.05. Ĝ was moderately but significantly correlated with ĝ, σ̂ 2, and tt025 

respectively (0.31, p-value< 0.001; 0.34, p-value< 0.001; 0.18, p-value< 0.001). 
 
 

Table 3: Correlation table of Ĝi, ĝi, σ̂
2  and tt025.  (p-value) 

Ĝ ĝ σ̂2 tt025 

CDS delta-v 0.44 (< 0.001) 0.23 (< 0.001) 0.26 (< 0.001) 0.05 (0.40) 

Ĝ 1 0.31 (< 0.001) 0.34 (< 0.001) 0.18 (< 0.001) 

ĝ 1 0.17 (< 0.001) -0.05 (0.36) 

σ̂2 1 -0.12 (0.02) 
 

 
 

4.1.  Prediction  of Injury Risk 

 

The coefficients of our deceleration model are given in Table 4. Ĝ , �̂�2 , tt0.25 belted driver, 

and multiple crash indicator were significant, with a 10 m/s2   in- crease in Ĝ associated with a 

4% increase in odds of AIS 3+ injury (95% CI 2%,6%), a 1-g increase in the error of the 

estimation method associated with a 2% increase in the odds of injury  (95% CI 1%, 3%), a 1 

millisecond increase in the duration of the crash associated with  a 3% decrease in odds of AIS 

3+ injury (95% CI 1%, 5%), presence of a belted driver associated with  a 97% decrease in odds 

of AIS 3+ injury (95% CI 82%, 99%), and presence of multiple crashes associated with a 42-

fold increase in the odds of AIS 3+ injury (95% CI 2-fold,780-fold). Surprisingly, the 

coefficient for belted front-seat passenger was positive (1.49) although not significant (p-

value=0.43). The weighted AUC for our decel- eration model was 0.93. We also computed the 

weighted AUC of the deceleration model with  the summary measures centered  and the square 

of these centered summary measures added. The weighted AUC was similarly 0.93 suggesting 

no improvement when we include squared terms of our summary measures. 

For the baseline model, only the coefficients of the belted driver and multiple crashes were 

significant (-3.23 and 2.04 respectively with p-values of < 0.001 and 0.04). The belted front-seat 

passenger coefficient was still positive, not significant (p-value=0.46), and the magnitude of the 

estimate was smaller than the deceler- ation model. The weighted AUC of our baseline model 

was 0.78, 0.15 less than the deceleration model. The 95% bootstrap confidence interval of the 

weighted AUC difference between the deceleration model and the baseline model was (0.04, 
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Table 4: Coefficient Estimates for deceleration, baseline, and original model with 

weighted AUC. 
 

 
Parameter/Statistic 

Deceleration 
Estimate  (Conf.  Int) 

Baseline 
Estimate  (Conf.  Int) 

Ĝ (10 m/s2 ) 

ĝ (10 m/s3 ) 

0.04 

-0.03 

(0.02, 0.06)∗∗∗ 

(-0.10, 0.06) 
  

σ̂2 0.02 (0.01, 0.03)∗∗   
tt025 -0.03 (-0.05, -0.01)∗   
Driver  belt use     

Belted -3.35 (-5.00, -1.71)∗∗∗ -3.23 (-4.79, -1.68)∗∗∗ 

Not reported 1.00 (-1.26, 3.27) 0.25 (-1.78, 2.29) 
Not belted     

Front-seat  passenger belt use† 

Belted 1.49 (-2.19, 5.16) 1.01 (-1.66, 3.69) 

No front passenger 1.58 (-0.54, 3.69) 1.58 (-0.34, 3.50) 
Not belted     

Curb weight (per 1,000 kg) 0.69 (-1.06, 2.43) -0.73 (-2.62, 1.17) 

Body type     
Car 0.87 (-1.35, 3.10) 0.96 (-1.15, 3.07) 
Pickup or Van -0.80 (-3.34, 1.74) 0.31 (-1.49, 2.12) 

SUV     
Multiple crashes?     

Yes 3.74 (0.81, 6.66)∗ 2.04 (0.11, 3.96)∗ 

No    
AUC 0.93  0.78 
ROC  Deceleration - ROC  Baseline 0.15 (0.04, 0.23)   
† Crashes not reporting  front-seat passenger belt status were the same with  driver  belt status. 
* 0.01 ≤ p < 0.05; ** 0.001 ≤ p < 0.01; *** p < 0.001. 

 
 

0.23). 

We next checked each observed crash for influential points using the adjusted Cook’s D 

for survey data.  We  found two  influential  observations where their covariate pattern 

suggested a non-severe injury  crash but  were in fact severe crashes. We removed them as part 

of a sensitivity analysis and found the resulting coefficients,  95% confidence intervals, and 

AUC  similar to those presented in Table 4. Hence, we choose to present the model without the 

removal of the two influential points. 

The ROC and PR curves suggested that our deceleration model performed better than the 

baseline model (Figure 8). We observed that the weighted ROC for the baseline model was to 

the right  of the ROC of the deceleration model for false positive  rates between 0 and 0.8 

implying better performance for the deceleration model. Similarly, we found that the loess PR 

curve of the baseline model was on the left of the deceleration model for all recall values 

indicating lower prediction performance of the baseline model. 

Similar results were found in the FDR table (Table 5). The deceleration model had a large 

decrease in capture rate at a predicted probability cutoff of 6%, at 
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that cutoff, we would capture 7 in 10 of the AIS 3+ injuries, with about one in four crashes 

actually having an AIS 3+ injury.  To capture a similar fraction of AIS 3+ crashes in the baseline 

model, we would have to use a cutpoint of 2%, at which point fewer than 1 in 20 crashes would 

have an AIS 3+ injury. 

Figure 9 provides the “leave-one-out”  cross-validation results for the AUC and PR plots, 

and Table 6 provides the equivalent  for the FDR table.  These results suggest less gain for the 

deceleration model relative to the baseline model, although a cutoff of 5% risk still captures 

one-third of the AIS 3+ injuries with one in ten being AIS 3+;  capturing an equivalent  fraction  

of AIS 3+  injuries using baseline data would yield a “hit  rate” of less than one AIS 3+ crash 

in 50. 
 

 
Table 5: Fraction of AIS 3+ Injury  Crashes Captured and Associated Fraction of Crash 

that are not AIS 3+ [False Discovery Rate (FDR)] at various thresholds of injury risk cutpoints. 

Deceleration model  Baseline model 

Cutpoints (%) Captured (%) FDR (%) Captured (%) FDR (%) 

1 95 94 88 97 

2 75 88 54 96 

3 75 83 45 94 

4 75 80 40 91 

5 71 77 25 87 

6 71 74 17 86 

7 47 79 17 83 

8 46 77 17 81 

9 46 76 17 81 

10 46 71 17 81 

15 43 66 17 68 

20 42 63 17 48 

25 42 58 17 48 

30 39 52 2 83 

 
 
5. Discussion 

In this study, using only information available in EDR reports, we successfully developed 

a new severe injury risk prediction model able to estimate the proba- bility  of a severe injury  

in motor vehicle crashes near real-time. Although such real-time prediction models are not new 

in trauma literature, our sole use of data from EDR guaranteed that  our model reflects the 

actual situation when EDR data is received by EMS from a dispatcher. Another strength of our 

model lay in the use of a novel variable – the crash pulse – as the main variable in our re- 

gression model. To use this crash pulse, we employed a two-stage approach, with 
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Table 6: Fraction of AIS 3+ Injury  Crashes captured and Fraction of Crashes captured 

that are not AIS 3+ [False Discovery Rate (FDR)] at various thresholds of cross-validation injury 

risk cutpoints. 

Deceleration model  Baseline model 

Cutpoints (%) Captured (%) FDR (%) Captured (%) FDR (%) 

1 37 98 46 99 

2 34 96 32 99 

3 34 93 29 97 

4 34 91 9 99 

5 32 90 2 99 

6 28 90 2 98 

7 28 89 2 98 

8 28 89 2 98 

9 28 89 2 97 

10 28 88 2 97 

15 28 79 2 94 

20 27 75 2 93 

25 19 79 2 91 

30 18 79 2 87 
 
 

summary  measures from the first-stage FDA model, as inputs for the second-stage 

weighted logistic regression model. We were not aware of any such applications of FDA  to 

crash pulses for predicting severe  injury  risk in trauma literature. By extracting summary 

measures from the estimated deceleration,  we were able to avoid the problem of trying  to find 

a common set of linear combination of functions for trajectories which have different duration 

and time stamp interval. With the use of FDA to extract information from trajectories gaining 

popularity, we believe more researchers will face similar situations where application of usual 

FDA procedures would be inappropriate. 

Our deceleration model performed well when predicting the population of eligible crashes 

compared to the baseline model.  In addition,  we found that our deceleration model was able 

to give predicted probability cut-offs where the capture rate of true severe injury crashes was 

high, while incurring a reasonable amount of false discoveries. This could be seen from Figures 

8 and 9 and Tables 

5 and 6. We found less optimistic results using a leave-one-out cross-validation procedure. 

While suggesting a similar optimal cut-off point of 6-10% predicted risk for classifying crashes, 

our cross-validation analysis suggested that  such a cutpoint would capture slightly less than 3 

in 10 of AIS 3+ crashes, but yield a false discovery rate of approximately 9 in 10. 
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Not surprisingly, we found that Ĝ , driver belt use, and presence of multiple crashes 

increased  the risk of a severe injury  crash significantly.  However, our finding that σ̂2 and 

tt025 were significantly associated with severe injury in motor vehicle crashes was not entirely 

expected and could contribute to the  further understanding of injury  in motor vehicle crashes. 

A significant and positive σ̂2 value implies that differences between the estimated deceleration 

and the original crash pulse are associated with  higher risk of severe injury.   This means that 

rapid changes in deceleration unexplained by the estimated pulse signal causes additional injury 

above and beyond what we would expect if there were no rapid changes. 

The second significant coefficient that we felt could further the understand- ing of severe 

injury  crashes was tt025.   A negative  and significantly coefficient implies that as the duration 

of the force of the crash decreases, the risk of severe injury  increases.  This may seem counter-

intuitive but with careful thought will be clear. Observe Figure 6. With  similar force (Ĝ  of 448 

[left] and 478 [right]), the deceleration duration on the left took 149 milliseconds while the 

deceleration on the right took 65 milliseconds. As a result, the crash pulse on the right was 

‘squashed’ and it had to ‘deliver’ the similar amount of force but within a shorter duration. This 

most likely leads to increased risk in having a severe injury.  With the understanding that longer 

effective duration of the force of the crash would reduce the risk of severe  injury  in a crash, 

motor vehicles which prolong the effective duration of the crash could be developed. 

Our success in developing a fairly good near real-time prediction model was limited  by 

three  issues: a high proportion of unusable  crashes, non-reporting of seat-belt statuses, and 

inflated sampling weights.  In our study, we found that 3,198 out of 3,460 (about 92.4%) crashes 

were unusable. This was because different manufacturers present different variables in their 

EDR report and most reports contained velocity change instead of deceleration  because earlier 

EDRs usually provide cruder velocity change that is not easily converted to a continuous 

acceleration measure. As newer vehicles equipped with newer EDRs enter the car fleet and 

EDR penetration increasing, we expect this ineligibility  issue to subside in the future. 

While we found only one statistically significant difference between the usable and 

unusable crashes (a tendency for usable crashes to be somewhat  less severe), we did not present 

a post-stratified model (a model that uses weights such that the rates of intrusion between 

eligible and ineligible crashes would be similar) because first, although post-stratification 

balanced the rates of intrusion between eligible and ineligible crashes, the resulting coefficients, 

95% confidence intervals, and AUC  were similar to the results reported in Table 4.  Second,  

we noted 

that the intrusion rate of 46 cm ≤  x  < 61 cm in ineligible crashes was 3%, an 
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exceedingly high proportion for such severe injury crashes in the population. We suspect 

this is an artificial  inflation of the rates due to highly variable survey weights being allocated 

to these ineligible crashes, an issue we will return to in subsequent paragraphs. 

The second issue we faced was that many EDRs did not report driver and front-seat 

passenger  belt status.  From Table 2, we can see  that  nearly 59% (weighted) of our eligible  

crashes did not have their seat-belt status reported. Unlike deceleration, we were unable to 

observe any pattern or determine the rea- son why such a large proportion of EDR reports did 

not report seat-belt statuses. The consequence of this was likely the biasing of seat-belt status 

coefficients to- wards the null. The assumption  we made here was that EDR reports were 

equally likely to not record seat-belt statuses of belted or not belted occupants. This im- plied 

that the belted effect for drivers could have been more protective but for a belted front-seat 

passenger, the contradictory effect of a belted front-seat pas- senger being a risk for severe 

injury during a crash would have been increased.  A second consequence of EDR reports not 

recording seat-belt status was likely the reduction in prediction performance of cross-validation. 

Finally, the third issue we faced was highly variable sampling weights. Since the NASS-

CDS sampling weights reflected how likely a crash was to be selected, we would expect crashes 

resulting in a severe injury  or driver intrusion > 3cm to have smaller sampling weights since 

severe crashes were oversampled. How- ever, we found that four of our eligible severe injury  

crashes (about 15%) had large weights of more than 100. Similarly, we found large sampling 

weights for driver intrusions of > 3cm for ineligible crashes. These inflated sampling weights 

affected the precision of our model’s coefficients by increasing their variability. 

The possible remedies for these three issues we faced were limited.  We could have used 

some imputation method to recover the crash pulses in unusable crashes or perform sensitivity 

analyses to determine the effects of non-reporting seat-belt statuses and inflated sampling 

weights on our model.  However, imputation  of crash pulses in unusable crashes did not seem 

appropriate because the proportion of crashes that did not report crash pulse was high, about 

92%, and crash pulses were usually  very variable, making imputation  difficult  and likely 

inaccurate. Sensitivity analysis of seat-belt status may have given us a better sense of the 

variability  in our model but we felt that sensitivity analysis would not be helpful because we 

did not have a good idea of the mechanism that generated the non- reporting of seat-belt statuses 

in EDR reports. 

From the issues presented, we can see prediction of severe injury  crashes in motor vehicles 

is still  a challenging field.  The model we have developed here should not be  considered  as 

the final model to be used for all motor vehicle crashes, but we believe it can be considered a 

promising seminal model for real- time severe injury crash prediction. To develop a 

comprehensive model we suggest the following steps: 
 
 

1. Develop a separate prediction model that  uses information from the ad- justed velocity 

change instead of deceleration. This step will be essential if some EDRs do not report 

deceleration. 

 

2. Add the lateral, vertical, and rollover of crash pulse and adjusted velocity components into 

the model described in 1. 
 

3. Develop a joint model to compute the FDA estimates and logistic regression model in a 

single step.  Two-stage regression models are known to suffer from bias and loss of 

efficiency, due to the error in the estimation procedure not be accounting for in the second 

stage of estimation.   However, joint model estimation is currently a time-demanding  

procedure, one that is un- likely to be carried out in practice given the time constraints 

involved in responding to a crash event. Methods that can utilize aspects of a joint esti- 

mation procedure outside of a full model-fitting would have great potential value in this 

setting and are the target of future research. 
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In conclusion, we believe that  improve  and reliably report crash pules and seat-belt 

statuses, the  goal of developing a good and accurate near real-time prediction model of severe 

injury  in a motor vehicle crash will be “just  around the corner.” 
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