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Abstract: Of interest in this paper is the development of a model that uses inverse 

sampling of binary data that is subject to false-positive misclassification in an effort 

to estimate a proportion.  From this model, both the proportion of success and false-

positive misclassification rate may be estimated.  Also, three first-order likelihood-

based confidence intervals for the proportion of success are mathematically derived 

and studied via a Monte Carlo simulation.  The simulation results indicate that the 

score and likelihood ratio intervals are generally preferable over the Wald interval.  

Lastly, the model is applied to a medical data set. 
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1. Introduction  

Statistical inference of a proportion using binary data that is subject to misclassification has 

been a part of the statistical literature for some time.  Bross (1954) demonstrated that traditional 

estimation of a proportion in the presence of misclassification produces biased estimators.  

Tenennbein (1970) accounts for the misclassification with a double sampling scheme.  Lie et al. 

(1994) and Moors et al. (2000) considered the case where only false-negative counts are obtained.  

Boese et al. (2006) developed several interval estimators in the case when only false-positive 

counts are obtained.   

 

All of the above authors used a fixed sampling scheme(s) in order to estimate the proportion 

of interest.  While this approach often works well, it has been demonstrated by Tian et al. (2009) 

that fixed samples can sometimes be too small to effectively estimate the proportion of success 

when it is small.  As a remedy to this problem, inverse sampling and the negative binomial 

distribution can be employed.   

      

In this paper, I wish to develop a statistical model that uses a two-stage sampling scheme to 

estimate a proportion of success where the first stage is generated under inverse sampling and is 

subject to false-positives, while the second stage is generated under fixed sampling.  The paper 

is organized as follows.  In Section 2, the statistical model is developed, and in Section 3 

maximum likelihood estimators (MLE) are presented for the proportion of success and false-

positive rate. Interval estimators are also derived by inverting the Wald, score, and likelihood 
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ratio statistics in Section 3.  In Section 4, the coverage properties and average widths of the three 

interval estimators are compared using a Monte Carlo simulation.  Finally, in Section 5, the three 

confidence intervals are applied to a real-world data example. 

 

2. The False-Positive Model Using Inverse Sampling  

The first stage in the two-stage sampling scheme involves the use of a fallible classifier that 

is prone to producing false-positives under inverse sampling.  The second stage involves using 

an infallible classifier under fixed sampling.  In conjunction with the fallible classifier, one can 

obtain the actual number of successes, actual number of failures, and actual number of false 

positives for this fixed sample in the second stage.  The two stages are considered independent. 

The two-stage sampling scheme is very useful to appropriately estimate the main proportion of 

interest as well any false-positive misclassification parameter.  Appropriate estimation of these 

parameters gives the researcher better insight into the attribute of interest and the rate at which a 

fallible classifier may produce a false-positive.   

Let Y be the number of failures labeled by the fallible device in stage 1 until the kth “success” 

is observed.  Hence, ( , )Y NegBin k  , where  is the probability the fallible device labels an 

observation as a “success”. Once stage 1 is completed, the fixed sampling for stage 2 is 

implemented, where both the fallible and infallible devices make classifications on n
observations.  Let 00n  be the number of observations labeled “failure” by both the fallible and 

infallible devices, 10n be the number of observations labeled “success” by the fallible device but 

labeled “failure” by the infallible device, and 11n be the number of observations labeled “success” 

by both the fallible and infallible devices.  Thus, 00 10 11n n n n   , and 

 00 10 11( , , ) ,(1 )(1 ), (1 ),n n n trinomial n p p p    , 

where   is the probability of the fallible device yielding a false-positive, and p  is the 

interested probability of success.  Therefore, it can be shown that (1 )p p    . 

Table 1 provides an example of the two-stage sampling plan.  Observations for both stages 

are gathered on different portions of the population.  “0” denotes a failure, “1” denotes a success, 

and “1*” denotes a false-positive by the fallible classifier.  For stage 1, 5 and 3k y  , while 

for stage 2, 00 10 111, 2,  and 4n n n   .   
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Table 1 

Two-stage Sampling Scheme Example 
 Population 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 … 1 

Stage 1 Fallible  0 1 1 1 1* 1 0 0          

Stage 2 
Fallible         1 1 1* 1 0 1 1*   

Infallible         1 1 0 1 0 1 0   

 

Table 2 gives insight into the resulting probabilities from the different stage and 

classifying device combinations.   

 

Table 2 

Probabilities for Each Stage/Classifier Scenario 
Stage Infallible Device Fallible Device 

  0 1 

First N/A 1     

Second 0 (1 )(1 )p   (1 )p   

 1 N/A p  

 

3. Estimation  

 

Using samples from both stages results in the following likelihood function: 

 ( , ) ,(1 )(1 ), (1 ), ( , )L p trinomial n p p p NegBin k       
 

   00 01 11

00 10 11

1!
(1 )(1 ) (1 ) (1 )

1! ! !

n n n k y
y kn

p p p
kn n n

   
  

     
 
 
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     From (1), we can straightforwardly find Fisher’s Expected Information Matrix, which is  

2 2

2

2 2

2

( , )
pp p

p

I I p p
I p E

I I

p



 




 

  
 

        
   
 
    , 

where  ( , )p ln L  is the log-likelihood function.  The elements of this matrix are given 

in the appendix.  Using calculus, it can be shown that the MLE’s for p  and   are  

    
            

11 10 11

10 11

ˆ
n k n n

p
n n n k y

 and 


    

             

10 10 11

10 11

ˆ .
ˆ( )(1 )

n k n n

n n k y n p
 Also, it 

can be shown that the restricted MLE of   for a fixed p  is given by  

10 00 10

00 10

2 2 2

10 00 10 00

00 10

( 1) 2ˆ
2( 1)( )

( 1) 2 ( 1)( ( )) ( ( ))
.

2( 1)( )

p

n k p n p n p py

p k n n y

k p k p n p n y n p n y

p k n n y


     


   

        


   
 

Next, we derive confidence intervals for p by inverting the appropriate Wald, score, and log-

likelihood statistics.  Confidence intervals for   can be derived in a similar manner, but we will 

not pursue them in this paper.  All three interval estimators are based on first order asymptotic 

approximations. 

The Wald-based interval estimator for p uses the unrestricted MLE’s p̂  and ̂ .  For 

sufficiently large samples,  11 ˆ? , ( , )p N p I p  , where 
11 ˆˆ( , )I p   is the (1,1) element of 

 
1

ˆˆ( , )I p 


.  Hence, an approximate 100(1 )%  confidence interval is given by 

                                                              11

/2
ˆ? ( , )p z I p  ,                                          (2) 

where / 2z  is the 100(1- / 2)  percentile for the standard normal distribution. 
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A score-based confidence interval for p involves inverting the score statistic, which requires 

use of ˆ
p .  For sufficiently large samples, 

2
11 2

1
?( ) ( , )p p pu I p   

 
, 

where 
ˆ

ˆ( )

p

p pu
p









and 
11 ˆ( , )pI p   is the (1,1) element of  

1
ˆ( , )pI p 



.  Therefore, an 

approximate 100(1 )%  confidence interval is composed of the values of p that satisfy 

                                                  

2
11 2

1
?( ) ( , ) ( )p p pu I p     

  ,                              (3) 

where
2

1 ( )   is the 100(1 )  percentile of a chi-square distribution with one degree of 

freedom.  The expression on the left-hand side of (3) is complicated, and solutions to (3) must be 

found numerically.   

The likelihood ratio confidence interval for p involves inverting the log-likelihood statistic. 

Note that   2

1
?ˆ2 ( , ) ( , )pp p   , for sufficiently large samples.  Hence, an approximate

100(1 )%  confidence interval is composed of the values of p that satisfy 

                                                  
  2

1
?ˆ2 ( , ) ( , ) ( )pp p    

.                             (4) 

As in (3), the values of 
p

that satisfy (4) must be determined numerically. 

 

4. Simulation Study  

 

 Now we consider coverage and width properties of the interval estimators described in 

(2) - (4).  First, we examine the coverage and width properties when 0.1n k  for various 

combinations of 
p

 and 


. All simulations were performed in SAS IML V9.3 with 10,000 

iterations for each parameter and sample size configuration. Figures 1 and 2 give plots that 

summarize the coverage and average width properties of confidence intervals (2) - (4).  The 

nominal confidence level is 95% and all estimated coverages have standard errors less than 0.005. 

The maximum standard error for estimated average widths in Figure 2 is 0.00231. 

 0.05   0.25   
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Figure 1:Coverage Plots for the Wald, Score, and Likelihood Ratio Confidence Intervals when n = 0.1k 
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Figure 2:Avg. Width Plots for the Wald, Score, and Likelihood Ratio Confidence Intervals when n = 0.1k 

 

     From Figure 1, we see that the likelihood ratio interval is conservative (over-covers) or is 

close to nominal for all the configurations except when 0.50p   and 0.05  . However, for 

this same configuration, the likelihood interval has a coverage that is close to nominal shortly 

after k exceeds 100.  The coverage of the score interval appears to converge to the nominal level 

at a comparable rate to the likelihood ratio interval, whereas the coverage of the Wald interval 

converges at a much slower rate.  In fact, when 0.05p   the Wald interval drastically under-

covers, even when k is near 1000.  The average width results from Figure 2 indicate that the score 

interval is more narrow for smaller values of k.  The disparity between the widths of the three 

intervals seems to go away at a quicker rate for larger values of p  and  .  It is surprising that 

the Wald interval is generally the widest, yet it has severe under-coverage problems as indicated 

in Figure 1.  It should also be noted the average widths increase as   increases, which is intuitive 

because more uncertainty is injected into the estimation problem.  Also, not surprisingly, the 

average widths tend to increase as p approaches 0.50. 

Next, we examine the coverage and width properties when 0.4n k  for various 

combinations of p  and  .  All simulations were performed in SAS IML V9.3 with 10,000 

iterations for each parameter and sample size configuration. Figures 3 and 4 give plots that 

summarize the coverage and average width properties of confidence intervals (2) - (4).  The 

nominal confidence level is 95% and all estimated coverages have approximate standard errors 

less than 0.005. The maximum standard error for estimated average widths in figure 4 is 0.0014. 
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Figure 3:Coverage Plots for the Wald, Score, and Likelihood Ratio Confidence Intervals when n = 

0.4k 
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Figure 4:Avg. Width Plots for the Wald, Score, and Likelihood Ratio Confidence Intervals when n = 0.4k 

 

From Figure 3, we see that all three intervals generally have better coverage properties as 

compared to the cases where 0.1n k . These results are not surprising, as we now have more 

infallible data than in Figure 1.  Also, from Figure 4, the three intervals have similar average 

widths except for the case where 0.05p   and 0.05  .  In this case, the score interval is 

narrowest for smaller values of k. In all other cases it is not surprising that the three intervals have 

comparable widths because of the large portion of “good data” we have (i.e. 0.4n k ), which 

translates to the common asymptotic distribution better approximating the Wald, score, and 
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likelihood ratio statistics.  The same tendencies that were observed in Figure 2 with an increase 

in   and p are also present in Figure 4, that is, the average widths tend to increase with an 

increase in   and p .  Also, it should be stated that for the same , ,  and k p   combination, the 

widths from Figure 4 are considerably smaller than widths from Figure 2.  This gain in precision 

is intuitive given the increase in the size of the infallible data set. 

 

 

5. An Application to a Medical Data Set  

 We now apply the statistical model from Section 2 and three confidence intervals from 

Section 3 to a medical data set from Hildesheim (1991).  Boese (2006) has also considered this 

data set.  The data was generated under fixed sampling, but for illustrative purposes of the model 

in Section 2, we will assume inverse sampling. This data involves a large study which examines 

the relationship between the herpes simplex virus and cervical cancer. For us, of interest from the 

data is estimating the prevalence, p , of the herpes simplex virus in women who have invasive 

cervical cancer.  One diagnostic test for the virus is the western blot procedure (WBP), which is 

fallible.  A more accurate procedure, the refined western blot procedure (RWBP) is accurate and 

we will consider it as an infallible classifying device.  For illustrative purposes we will only 

consider false positives from the data in stage 2 and allow false negatives to be absorbed into 11n .  

For the two stages, the following counts were observed: 00 10375,  318,  13,  3y k n n    , 

and 11 23n  .  

Using the regular inverse sampling model that does not account for misclassification, we get 

the following point estimate and 95% confidence interval estimate for p : 0.541 and (0.501, .581).  

Using the more appropriate inverse sampling model that allows for false-positive 

misclassification, we get the following point estimates: ˆ 0.485p   and ˆ 0.123  .  95% Wald, 

score, and likelihood ratio confidence intervals are (0.404, 0.565), (0.397, 0.539), and (0.395, 

0.546), respectively.  Note that the original inverse sampling model overestimates p , which is 

not surprising due to the estimated 12.3% false-positive rate. Also, note that the intervals 

presented here are slightly wider than the ones found in Boese (2006).  This is likely due to the 

fact that Boese (2006) has a slightly smaller estimate (0.119) of the false-positive rate.    

Now, one could use only the infallible data to estimate p , but the resulting standard error is 

higher as compared to the estimator that uses both the fallible and infallible samples.  The 

infallible-only estimate is 11 0.590
n

p
n

  , which has a standard error of 0.079.  This is 

considerably higher than the standard error of the estimator (0.041) that uses both the fallible and 

infallible data.   
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6. Comments  

 In this article, we derived an inverse-sampling model that allows for false-positive 

misclassification and three confidence intervals for the proportion of interest.  All three 

confidence intervals are based on first-order approximations and formed by inverting the Wald, 

score, and likelihood ratio statistics.  Necessary for the development of the confidence intervals 

was Fisher’s information matrix, unrestricted MLE’s, and restricted MLE’s.   

 

The Wald, score, and likelihood ratio confidence intervals were then studied via a Monte 

Carlo simulation study.  The study indicates that the score and likelihood ratio intervals perform 

better than the Wald interval in terms of coverage and average width, particularly when the ratio 

of infallible data to fallible data is small (n = .1k).  In such cases, we recommend the score or 

likelihood ratio confidence intervals. However, if the infallible data set is large and the ratio of 

infallible to fallible data is large, the Wald interval may be preferred as its coverage and width 

properties are comparable to the score and likelihood ratio intervals, but its computation is easier.  

Finally, we applied this newly derived model and interval estimators to a real medical data set, 

which demonstrated the bias present in a model that does not account for misclassification, when, 

in fact, misclassification is present in the data.  

The author acknowledges that this statistical model and resulting estimators are similar to the 

ones presented in Boese (2006), but with the major distinction of stage 1 in this model using 

inverse-sampling whereas Boese (2006) uses fixed-sampling. The statistical model and interval 

estimators presented in this article should prove useful for the practitioner who desires to estimate 

a particular proportion using inverse-sampling but where the data is subject to false-positive 

misclassification. 
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Appendix  

Provided are the second derivatives and negative expectations required for Fisher’s  

information matrix: 

2 2

00 10 11

2 2 2 2 2 2

(1 )

(1 ) (1 ) ( (1 ) ) (1 )

n n n k y

p p p p p p p


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