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Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory
syndrome coronvirus, which was declared as a global pandemic by the World Health Organi-
zation on March 11, 2020. In this work, we conduct a cross-sectional study to investigate how
the infection fatality rate (IFR) of COVID-19 may be associated with possible geographical or
demographical features of the infected population. We employ a multiple index model in combi-
nation with sliced inverse regression to facilitate the relationship between the IFR and possible
risk factors. To select associated features for the infection fatality rate, we utilize an adaptive
Lasso penalized sliced inverse regression method, which achieves variable selection and sufficient
dimension reduction simultaneously with unimportant features removed automatically. We ap-
ply the proposed method to conduct a cross-sectional study for the COVID-19 data obtained
from two time points of the outbreak.
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1 Introduction

Since January 2020, many regions in China have experienced an outbreak of the coronavirus dis-
ease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus (SARS-Cov-2).
Researchers from different fields have been studying epidemiological and clinical characteristics of
the COVID-19. For example, Epidemiology Working Group for NCIP Epidemic Response (2020)
studied epidemiological characteristics of the COVID-19 in China. Xu et al. (2020) investigated
pathological characteristics of a patient who died from severe infection with SARS-CoV-2. Zhang
et al. (2020) accessed how livers would be affected using the available case studies. A number
of researchers studied clinical features of individual patients of COVID-19 (Guan et al., 2020;
Huang et al., 2020; Chen et al., 2020; Wang et al., 2020d). Investigations on the characteristics of
COVID-19 by using statistical and machine learning methods were also available. For instance,
Hu et al. (2020) employed a modified stacked auto-encoder for modeling transmission dynamics
of the epidemics to forecast confirmed cases of COVID-19 across China. Wang et al. (2020b)
developed an epidemiological forecast model with an R package to assess the intervention effect
on the COVID-19 epidemic within and outside Hubei in China.

As COVID-19 becomes a global pandemic, one of the greatest concerns is to identify the
fatality risk for infected populations which usually differ in multiple features. It is important
to understand what features of the populations are associated with the high fatality risk. At
the individual level, some work was available to describe the relationship between patient level
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features and the fatality risk factors. For instance, Ji et al. (2020) investigated the potential
association between the COVID-19 fatality and health-care resources. Shi et al. (2020) explored
the association between the cardiac injury and the fatality of the patients with the COVID-19.
Clinical Features of 69 cases with COVID-19 were studied by Wang et al. (2020d). Different risk
factors that may be associated with the infected populations with COVID-19 were considered
by different researchers, including temperature (Ma et al., 2020; Wang et al., 2020c), humidity
(Wang et al., 2020c), age structure (Onder et al., 2020), and the cardiovascular disease (Clerkin
et al., 2020). While each of the possible risk factors has been separately studied to reveal the
potential association with COVID-19, it is unclear how those factors may interactively affect the
fatality of the COVID-19. It is critical to examine how the COVID-19 fatality may be associated
with potential risk factors as a group instead of on an individual basis. To this end, in this
paper we employ the multiple index model to facilitate the relationship between possible risk
factors and the fatality rate of COVID-19. Such a model is advantageous in its flexibility of
accommodating various kinds of association with an unspecified model function.

To reduce the variable dimension of the multiple index model, we employ the sufficient
dimension reduction method, a powerful tool for reducing the variable dimension of the mul-
tiple index model which can be employed to identify important risk factors by obtaining the
central subspace (Cook, 1998). To estimate the central subspace of the sufficient dimension
reduction, many methods have been developed, including the most widely used sliced inverse
regression (SIR) (Li, 1991), the sliced average variance estimation (SAVE) method (Cook and
Weisberg, 1991), the principal Hessian directions (pHd) method (Li, 1992), and the iterative Hes-
sian transformation method (Cook et al., 2002). The shrinkage SIR based on the Lasso penalty
for sufficient dimension reduction was proposed by Ni et al. (2005). Li and Nachtsheim (2006)
and Li (2007) produced sparse estimates of the basis for the central subspace by combining a
regression-type formulation with the Lasso penalty. Other penalized sufficient dimension reduc-
tion methods include the constrained canonical correlation procedure (Zhou et al., 2008), the
SCAD max penalized SIR method (Wu and Li, 2011), and the Lasso-SIR (Lin et al., 2019).

Motivated by Zou (2006) and Lin et al. (2019), we propose an adaptive Lasso penalized
sliced inverse regression method for the multiple index model to identify the possible risk fac-
tors for the infection fatality rate of COVID-19. The proposed method develops a model-free
variable selection procedure which does not require the specification of a parametric model for
the underlying true process. It estimates the central subspace of the multiple index model and
selects the important features simultaneously.

The remainder of this article is organized as follows. Section 2 describes the COVID-19 data
sets to be analyzed. Section 3 presents the proposed method and the implementation algorithm.
The analysis results are reported in Section 4. Section 5 concludes the article with a discussion.

2 Descriptions of the COVID-19 Data

To interpret the fatality risk of infected populations, we use the infection fatality rate (IFR) in
percent of COVID-19, defined as

Infection Fatality Rate (in Percent) =
Total Number of Deaths

Total Number of Confirmed Cases
× 100.

We consider the data from n = 64 developed or developing countries in Asia, Europe,
Africa, America, and Oceania. The Asian countries include Armenia, Azerbaijan, Bahrain, Iran,
Israel, Japan, Kazakhstan, Malaysia, Pakistan, Philippines, Qatar, Saudi Arabia, Singapore,
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Table 1: Dictionary of COVID-19 data covariates.
Feature Variable Data Source Web Link (https://)

Age structure x1 World Bank data.worldbank.org
Smoking prevalence x2 World Bank data.worldbank.org
PM2.5 air pollution x3 World Bank data.worldbank.org

Cardiovascular disease x4 Global Health Data Exchange ghdx.healthdata.org
Chronic respiratory diseases x5 Global Health Data Exchange ghdx.healthdata.org

Physicians x6 Our World in Data ourworldindata.org/coronavirus-data
Hospital beds x7 Our World in Data ourworldindata.org/coronavirus-data
Blood pressure x8 Risk Factor Collaboration ncdrisc.org/data-downloads.html

Average temperature x9 Weather Base www.weatherbase.com
Average relative humidity x10 Weather Base www.weatherbase.com
Number of serious cases x11 Worldometers www.worldometers.info/coronavirus

Number of tests x12 Worldometers www.worldometers.info/coronavirus

Thailand, Turkey, and United Arab Emirates. The European countries include Austria, Bel-
gium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Moldova,
Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovenia, Spain, Sweden,
Switzerland, and Ukraine. The Africa countries include Algeria, Morocco, South Africa, and
Tunisia. The countries in America include Argentina, Brazil, Canada, Chile, Colombia, Domini-
can Republic, Ecuador, Mexico, Panama, and Peru. In addition, we have the Oceania countries,
Australia and New Zealand, in the sample. The data contain the number of deaths and the
number of confirmed cases, together with 12 covariates displayed in Table 1. The data, available
from the public sources listed in Table 1, were collected between February 27, 2020 and April 9,
2020.

All of the covariates are continuous variables. The covariate x1 is defined to be the percentage
of individuals age 65 or over in a country where the total population sizes counts all residents
regardless of legal status or citizenship. The covariate x2 is the prevalence of smoking which is the
percentage of males and females age 15 and over who smoke any tobacco product. The covariate
x3 is the population weighted exposure to ambient PM2.5 pollution, defined as the average level
of exposure of a nation’s population to concentrations of suspended particles measuring less
than 2.5 microns in aerodynamic diameter; exposure is calculated by weighting mean annual
concentrations of PM2.5 by population in both urban and rural areas. The covariate x4 is the
age standardized death rate per 100, 000 individuals for both males and females. The covariate
x5 is the disease burden due to all chronic respiratory diseases, including silicosis, asthma, and
lung disease. The covariate x6 is the number of medical doctors, including general physicians
and medical specialist per 1000 residents in a country. The covariate x7 is the number of hospital
beds, including inpatient beds available in public, private, general, and specialized hospitals and
rehabilitation centers per 1000 residents in a country. The covariate x8 is the mean systolic blood
pressure (in mmHg) for adults 18 years and older, which is related to the level of the hypertension
in a country. The covariates x9 and x10 are the semi-annual average temperature and relative
humidity from November of the previous year to April of its following year, respectively. This
consideration is driven by the fact that the first case of the COVID-19 was discovered in early
December of 2019 and the data we consider span to the end of April of 2020. The covariates x11
and x12 are the number of serious cases and the total number of tests per million people in a
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Table 2: Summary of the data sets of Studies 1 and 2. Min and Max stand for minimum and
maximum, respectively; and Mean represents the average.

Study The Number of Deaths The Number of Cases

Min Mean Max Min Mean Max

Study 1 0 4 43 400 431 670
Study 2 0 38 291 200 1872 13531

country, respectively.
As the outbreak of COVID-19 starts at different times for different regions, there is a time

lag to obtain the number of deaths and the number of confirmed cases. To circumvent this issue,
we conduct a cross-sectional study by defining the time point as the day of the first 400 confirmed
cases, and we call this “Study 1”. For comparison, we take a second time point, defined as the
14 days after the first 100 cases are confirmed, which is partially driven by the fact that the
maximum incubation time for COVID-19 is about 14 days (e.g., He et al., 2020), and we call this
“Study 2”. The minimum, mean, and maximum values of the number of deaths and the number
of confirmed cases for the two studies are shown in Table 2.

3 Framework and Algorithm

3.1 Notation and Framework

Let X = (X1, . . . , Xp)
> ∈ Rp be the vector of covariates which follows a p-dimensional elliptical

distribution with E(X) = 0 and covariance matrix Cov(X) = Σ, where the diagonal elements of
Σ are Var(Xj) = 1 for j = 1, . . . , p. Let Y be the response variable. We consider the multiple
index model for Y and X (Li, 1991):

Y = f
(
β>1 X,β

>
2 X, . . . , β

>
d X, ε

)
.

where ε is the error term independent of X with E(ε) = 0 and {β1, . . . , βd} are unknown pro-
jection vectors with βk = (βk1, . . . , βkp)

> for k = 1, . . . , d. Here d is unknown but is regarded
to be much smaller than p. Several methods are available in the literature for determining the
structural dimension d, such as the asymptotic test (Li, 1991), the permutation test (Cook and
Yin, 2001), the information criterion (Zhu et al., 2006), and the estimation algorithm (Lin et al.,
2019). In our algorithm to be described in Section 3.2, we modify the estimation algorithm of
Lin et al. (2019) by combing with the K-means method (MacQueen, 1967) to choose a suitable
value for d.

Let B = (β1, . . . , βd) which is a nonidentifiable p × d matrix in the sense that the vectors
β1, . . . , βd are not unique. However, the space spanned by the columns of B, called the central
space and denoted col(B), can be uniquely determined. Li (1991) proposed the sliced inverse
regression (SIR) procedure to estimate the central subspace col(B) without knowing function
f(·). The SIR method is summarized as follows.

Assume that there exist n independent random pairs (yi, xi) whose distributions are identical
to (Y,X), where i = 1, . . . , n. We first divide them into H equal sized slices based on the order
statistics y(i) for i = 1, . . . , n, where H is a user-specified number of slices. Let c = dn/He, we
define yh,l = y(c(h−1)+l) and xh,l = x(c(h−1)+l), and then we rewrite the data as (yh,l, xh,l), where
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h is the slice number and l is the order number of a sample in the hth slice, and x(r) is the
covariate vector corresponding to y(r) for an index r. Let x̄h = 1

c

∑c
l=1 xh,l be the sample mean

in the hth slice, then Λ = var{E(X|Y )} can be estimated by

Λ̂ =
1

H

H∑
h=1

x̄hx̄
>
h =

1

H
XHX>H , (1)

where XH = (x̄1, . . . , x̄H) is a p×H matrix. Let V̂ be the matrix of the top d eigenvectors of Λ̂
and let col(V̂ ) be the subspace formed by the column vectors of V̂ . Then the central subspace
col(B) is estimated by Σ̂−1col(V̂ ) using the observed data, where Σ̂ is the estimated covariance
matrix of X.

3.2 Methodology and Algorithm

For ease of exposition, we assume y1 ≤ y2 ≤ · · · ≤ yn for the sample {(yi, xi) : i = 1, . . . , n}, where
yi is taken as the IFR of the ith country in our analysis of the COVID-19 data in Section 4. Let
M = IH⊗1c be the n×H matrix, where IH is theH×H identity matrix, 1c is the c×1 unit vector,
and ⊗ represents the Kronecker product. Then we have XH = xM/c, where x = (x>1 , . . . , x

>
n ).

Let λ̂1, . . . , λ̂d be the d-top eigenvalues of Λ̂ obtained by (1) and let η̂ = (η̂1, . . . , η̂d) denote the
corresponding eigenvectors of Λ̂. Then by (1), we have

λ̂kη̂k =
1

H
XHX>H η̂k =

1

nc
xMM>x>η̂k

for k = 1, . . . , d, and define a multivariate pseudo response ỹ

ỹ =
1

c
MM>x>η̂ diag

(
1

λ̂1
, . . . ,

1

λ̂d

)
.

To estimate the space spanned by {β1, . . . , βd}, Lin et al. (2019) proposed the Lasso-SIR
algorithm to find the sparse estimates, say, β̂k, for βk with k = 1, . . . , d. Specifically, for k =
1, . . . , d, let

Lβk,k =
1

2n
‖ỹ∗,k − x>βk‖22 + µk‖βk‖1, (2)

where
ỹ∗,k =

1

cλ̂k
MM>x>η̂k,

and µk is the tuning parameter. Then minimizing Lβk,k with respect to βk gives the sparse
estimates β̂k. Lin et al. (2019) showed that the Lasso penalized SIR regression (2) is asymptoti-
cally equivalent to the Lasso penalized linear regressions. The R package glmnet can be used to
implement the Lasso penalized linear regression where the tuning parameters µk for k = 1, . . . , d
are chosen by the cross-validation method.

The Lasso penalized linear regressions method does not have the selection consistency (Tib-
shirani, 1996; Zou, 2006). To overcome this limitation, Zou (2006) proposed the adaptive Lasso
penalized linear regressions method which enjoys the selection consistency. The adaptive Lasso
penalized methods can shrink the estimates of the parameters of unimportant covariates to 0 as
the sample size n→∞, thus, removing all the unimportant covariates automatically and yield-
ing sparse estimation results. Motivated by this, we propose the adaptive Lasso penalized SIR
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regression. For k = 1, . . . , d, we calculate the adaptive Lasso penalized SIR regression expression

L̃βk,k =
1

2n
‖ỹ∗,k − x>βk‖22 + µk

p∑
j=1

wkj |βkj |, (3)

where the wkj = 1/|β̃kj |r with r > 0 are weights controlling the penalty for k = 1, . . . , d and
j = 1, . . . , p, the β̃kj are the estimates obtain from the unpenalized sliced inverse regression, and
r can be simply set as 1. To obtain the sparse estimate β̂k, we minimize L̃βk,k with respect to
βkj . Specifically, we carry out the following steps.
Step 1. Standardize the covariates xj by subtracting the mean and dividing the standard de-

viation for j = 1, . . . , p; calculate Λ̂ = 1
nXHX

>
H and find the top d eigenvalues and the

corresponding eigenvectors, λ̂k and η̂k, for k = 1, . . . , d;
Step 2. For k = 1, . . . , d, calculate

ỹ∗,k =
1

cλ̂k
MM>x>η̂k;

Step 3. For k = 1, . . . , d, solve the adaptive Lasso penalized SIR problem

β̂k = argmin
βkj

 1

2n
‖ỹ∗,k − x>βk‖22 + µk

p∑
j=1

wkj |βkj |

 ; (4)

Step 4. Estimate the central subspace col(B) by col(B̂) = col(β̂1, . . . , β̂d).
Steps 1 and 2 are easy to implement. For Step 3, we first fit the data using unpenalized sliced

inverse regression to obtain β̃kj for k = 1, . . . , d and j = 1, . . . , p. The Lasso penalized linear
regression was well studies by Tibshirani (1996), Efron et al. (2004) and Friedman et al. (2010).
Since we can convert the optimization problem (4) to the optimization problem of adaptive Lasso
penalized linear regression, we solve the optimization problem (4) using the R package glmnet
with the argument alpha = 1. The tuning parameters µk with k = 1, . . . , d are chosen by the
cross-validation method. By solving the minimization problem in Step 3, we obtain a sparse
estimate of β. Since col(B̂) = col(β̂1, . . . , β̂d) estimates the central subspace col(B), the jth
covariate xj is considered to be unimportant if β̂kj = 0 for k = 1, . . . , d.

4 Data Analysis

We analyze the COVID-19 data described in Section 2 using the proposed adaptive Lasso penal-
ized SIR regression method, denoted ALSIR. In comparison, we also apply the linear regressions
method and the unpenalized sliced inverse regression method, denoted LR and SIR, respectively.
As discussed in Section 2, we analyze the two data sets of Studies 1 and 2 separately. To make
the covariates unit-less and of the same scale for the penalty function, we standardize all the
covariates by subtracting the mean and dividing the standard deviation before applying these
methods.

4.1 Analysis Results with H = 5

In this subsection, we set H = 5 when implementing the ALSIR method to analyze the data. We
report analysis results in Table 3 which includes the parameter estimates (Est.), the associated
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Table 3: Analysis results for Study 1 and Study 2 using the linear regression (LR), unpenalized
sliced inverse regression (SIR) and adaptive Lasso penalized SIR (ALSIR) methods. The entries
for “Est.”, “SE”, and “ALSIR” are in percent.

Covariate
Study 1 Study 2

LR SIR ALSIR LR SIR ALSIR
Est. SE P-value Est. SE P-value

x1 0.571 0.636 0.374 0.337 0.000 0.652 0.811 0.425 −0.377 0.496
x2 −0.326 0.364 0.375 −0.146 0.000 −0.312 0.465 0.505 0.148 0.000
x3 −0.106 0.411 0.797 −0.001 0.000 −0.131 0.524 0.803 0.188 0.000
x4 0.980 0.419 0.023 0.687 0.349 0.860 0.534 0.113 −0.627 0.429
x5 −0.015 0.400 0.970 −0.123 0.000 0.099 0.506 0.846 −0.049 0.000
x6 −0.505 0.393 0.204 −0.178 −0.100 −0.387 0.500 0.443 0.208 −0.261
x7 −0.376 0.407 0.359 0.003 0.000 −0.414 0.519 0.428 0.165 −0.372
x8 −0.153 0.317 0.633 −0.212 0.000 −0.119 0.404 0.770 0.177 0.000
x9 0.141 0.418 0.738 0.311 0.000 0.302 0.533 0.574 −0.425 0.371
x10 −0.175 0.346 0.614 −0.111 0.000 0.067 0.441 0.880 −0.086 0.000
x11 0.459 0.276 0.102 0.377 0.000 0.410 0.352 0.249 −0.218 0.360
x12 −0.117 0.325 0.721 −0.226 −0.120 −0.352 0.415 0.400 0.260 −0.016

standard errors (SE), and the P-values if a linear relationship is assumed. By fitting the data
of Studies 1 and 2 with a modified estimation algorithm of Lin et al. (2019), we estimate the
structural dimension of the subspace to be d = 1. Therefore, we report only one direction vector
(β̂11, . . . , β̂1p)

> as the estimated basis for the central subspace in the analysis; the jth covariate
is considered to be unimportant if β̂1j is shrunk to zero. That is, the jth feature does not affect
the fatality of the COVID-19 if β̂1j = 0. Since the ALSIR method provides estimates of direction
vectors for the basis of the central subspace derived from the multiple index model, positive or
negative signs of estimates do not indicate positive or negative association of the covariate with
the response.

The linear regressions method shows that except for the covariate x4, none of the covariates
are significantly associated with the IFR of COVID-19 for Study 1 data if we take the significant
level to be 0.05. The unpenalized sliced inverse regression method does not remove unimportant
risk factors automatically. On the contrary, the ALSIR method yields different results which
implies that the linear relationship may not be appropriate. It shows that in Study 1, the covari-
ates x4, x6 and x12 are important features for affecting the fatality. That is, the cardiovascular
disease, the number of physicians, and the number of tests are closely associated with the fa-
tality at the early stage of the outbreak. Clerkin et al. (2020) concluded that the patients with
cardiovascular disease are at higher risk of fatality. Compared with the number of hospital beds,
the number of doctors plays an important role in explaining the fatality rate. The fatality rate
at the early stage of the COVID-19 does not seem to differ for the populations with different age
structures.

Regarding the results for Study 2, our method shows that the covariates x1, x4, x6, x7, x9,
x11 and x12 are significant. That is, the age structure, cardiovascular disease, the number of
physicians, the number of hospital beds, average temperature, the number of serious cases, and
the number of tests are all important features for the fatality rate of the infected populations.
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Onder et al. (2020) found that the populations with a higher proportion of older people have a
higher fatality rate. The cardiovascular disease is an important feature for IFR of the infected
populations. The number of medical doctors and the number of hospital beds per 1000 residents
are all important for explaining the fatality rate. Studying the data in Wuhan city, China,
Ma et al. (2020) suggested that temperature has strong positive correlation with the fatality of
COVID-19, while some other research indicates that high temperature could prevent the spread
of COVID-19 (e.g., Wang et al., 2020a,c). In our analysis here, the covariate x9 is semi-annual
average temperature collect from November to April, with the maximum, median and minimum
values being 26.583◦C, 6.717◦C and −11.583◦C respectively, and most countries in the data
sets are in winter or spring during this time period. Our analysis indicates that temperature is
associated with the fatality of COVID-19. Wang et al. (2020c) showed that the most suitable
survival temperature for the coronvirus of COVID-19 is 8.72◦C. The smoking prevalence and
PM2.5 air pollution do not associate with the fatality rate of COVID-19. The analysis results
support that the number of serious cases and the number of tests are important features for the
fatality of COVID-19. The analysis results show that the humidity does not associate with the
IFR of COVID-19. Chronic respiratory diseases and blood pressure (hypertension) do not have
a strong association with the fatality.

In summary, the cardiovascular disease, the number of physicians and the number of tests
are important features for both studies, while the smoking prevalence, PM2.5 air pollution,
chronic respiratory disease, blood pressure, and humidity do not seem to be associated with the
fatality. The age structure, the number of hospital beds, and the number of serious cases play
different roles in explaining the fatality; they are important features for Study 2 but not for
Study 1. For both studies, the chronic respiratory diseases and blood pressure (hypertension)
are not considered as important for explaining the COVID-19 fatality.

4.2 Sensitivity Analysis

To compare the performance of the different methods, we further provide a “bootstrap inference”
for the LR, SIR and ALSIR methods, as suggested by a referee. To be specific, we independently
resample 1500 bootstrap samples from the initial data of Studies 1 and 2. We fit the 1500
bootstrap samples using these methods and obtain 1500 analysis results for each of the two
studies accordingly. Then we calculate the resultant standard errors and report the results in
Table 4. When using the proposed method, we choose H = 5 as in Section 4.1. Unsurprisingly,
the results provided by the three methods are different. Interestingly, the proposed method seems
to provide more stable results than the LR and SIR methods, because its associated standard
errors are smaller than those produced by the LR and SIR methods.

As discussed by Liquet and Saracco (2012), the SIR method may be sensitive to the choice
of the number H of slices. To see if the same issue is related to the ALSIR method, here we
investigate the effect of the choice of H on the estimation results of the proposed method by
considering three values of H: H = 3, 5 or 8, where the structural dimension d is taken as 1,
as in Section 4.1. The parameter estimation results are recorded in Table 5, which clearly shows
that the performance of the ALSIR is sensitive to the choice of H.

5 Discussion

In this paper, we propose an adaptive Lasso penalized sliced inverse regression method for the
multiple index model to analyze the COVID-19 data. The proposed method is flexible in the
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Table 4: Comparison of the performance of the linear regression (LR), unpenalized sliced inverse
regression (SIR), and adaptive Lasso penalized SIR (ALSIR) methods using bootstrap resam-
pling: The entries represent the empirical standard errors. The entries of LR and ALSIR are in
percent.

Covariate Study 1 Study 2

LR SIR ALSIR LR SIR ALSIR

x1 0.618 0.471 0.279 0.818 0.374 0.205
x2 0.444 0.207 0.127 0.516 0.230 0.125
x3 0.494 0.251 0.158 0.628 0.248 0.138
x4 0.478 0.414 0.309 0.541 0.380 0.209
x5 0.697 0.285 0.202 1.143 0.293 0.174
x6 0.532 0.258 0.193 0.692 0.265 0.166
x7 0.543 0.287 0.183 0.682 0.300 0.231
x8 0.289 0.214 0.147 0.373 0.178 0.101
x9 0.452 0.262 0.161 0.555 0.332 0.206
x10 0.344 0.205 0.144 0.428 0.222 0.129
x11 0.425 0.223 0.176 0.544 0.250 0.188
x12 0.661 0.253 0.190 1.018 0.320 0.193

Table 5: Sensitivity of the performance of the ALSIR to the choice of H. The entries are
parameter estimates in percent.

Covariate Study 1 Study 2

H = 3 H = 5 H = 8 H = 3 H = 5 H = 8

x1 0.089 0.000 −0.661 0.000 0.496 0.000
x2 −0.099 0.000 0.132 0.000 0.000 0.000
x3 0.000 0.000 0.031 0.000 0.000 0.000
x4 0.225 0.349 0.000 0.058 0.429 −0.237
x5 0.000 0.000 0.000 0.000 0.000 0.000
x6 −0.084 −0.100 0.000 0.000 −0.261 0.313
x7 0.079 0.000 0.000 0.000 −0.372 0.000
x8 −0.074 0.000 0.000 0.000 0.000 0.000
x9 0.111 0.000 0.000 0.073 0.371 0.000
x10 0.023 0.000 −0.270 0.000 0.000 0.000
x11 0.095 0.000 0.000 0.022 0.360 −0.230
x12 −0.045 −0.120 −0.128 −0.066 −0.016 0.635
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Table 6: Pairwise Pearson correlation coefficients between the covariates.
Covariate x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 0.444 −0.634 −0.233 −0.536 0.691 0.643 0.022 −0.618 0.367 0.229 0.015
x2 - −0.046 0.344 −0.115 0.364 0.502 0.237 −0.457 0.133 0.100 −0.012
x3 - 0.209 0.528 −0.463 −0.324 0.071 0.338 −0.514 −0.097 −0.031
x4 - −0.050 −0.107 0.229 0.454 −0.227 0.085 −0.255 −0.212
x5 - −0.312 −0.424 −0.236 0.420 −0.408 −0.085 0.378
x6 - 0.503 0.079 −0.566 0.143 0.164 0.197
x7 - 0.223 −0.588 0.127 0.056 −0.073
x8 - −0.137 0.222 −0.237 −0.170
x9 - −0.341 −0.081 −0.144
x10 - 0.021 0.007
x11 - −0.046

sense that there is no need to specify the model structure of f(·) function for the multiple index
model, which protects us from potential model misspecification. We apply the proposed method
with H set as 5 to identify risk factors associated with the COVID-19 fatality, which shows that
the cardiovascular disease, the number of doctors and the number of tests are important for both
cross-sectional studies. However, as demonstrated in Section 4.2, the performance of proposed
ALSIR method is sensitive to the choice of H, a phenomenon that also occurs with the SIR
method (Liquet and Saracco, 2012). When interpreting the analysis results, one must be aware
of this uncertainty and regard the inference procedure as a kind of conditional analysis in the
sense that H is set as a given value.

Our cross-sectional study examines the data sets at two time points of the outbreak which
are defined as the time of first 400 confirmed cases and the 14 days after the first 100 cases are
confirmed. This consideration mainly focuses on studying the early stage of the pandemic with
the incubation period taken into account. One may, of course, consider other time points and
repeat the same investigation, and different findings may be uncovered as data become richer.
More generally, it is interesting to extend this development to the longitudinal data framework
and explore the dynamic relationship between the fatality and risk factors.

Several important issues should be acknowledged, as noticed by the referees and discussed
by other authors (e.g., He et al., 2020). Due to asymptomatic infections and limited test capacity,
the reported numbers of cases with COVID-19 are typically smaller than the true numbers of
infections for various countries. Additionally, other aspects such as varying incubation periods
make the data error-prone. To help understand the underlying truth, it is useful to conduct
sensitivity analyses by modifying the development here to accommodate the feature of error-
contaminated data (Carroll et al., 2006; Yi, 2017).

In the analysis, one concern pertains to the collinearity of covariates. In the data we analyze,
the correlation for paired covariates are fairly small, as suggested by the values in Table 6. Other
concerns may be related to the inclusion of potential risk factors for the analysis. For example,
one may ask: have we exhausted all possible risk factors for the fatality? Do we need to worry
about confounding issues among the risk factors? Questions like these warrant careful studies.
As the outbreak continues to exacerbate, more data become available and in-depth studies are
possible to help us better understand the characteristics of the COVID-19.
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Supplementary Materials

The data and R code needed to reproduce the results in this paper can be found at the Journal
of Data Science website.
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