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Abstract: The generalized gamma model has been used in several applied areas such as 

engineering, economics and survival analysis. We provide an extension of this model called the 

transmuted generalized gamma distribution, which includes as special cases some lifetime 

distributions. The proposed density function can be represented as a mixture of generalized gamma 

densities. Some mathematical properties of the new model such as the moments, generating function, 

mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters 

using maximum likelihood. We prove that the proposed distribution can be a competitive model in 

lifetime applications by means of a real data set. 
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1    Introduction 

Standard lifetime distributions usually present very strong restrictions to produce bathtub curves, 

and thus appear to be unappropriate for analyzing data with this characteristic. The three-parameter 

generalized gamma (“GG” for short) distribution (Stacy, 1962) includes as special models the 

exponential, Weibull, gamma and Rayleigh distributions, among others. It is suitable for modeling 

data with hazard rate function (hrf) of different forms (increasing, decreasing, bathtub and unimodal) 

and also useful for estimating individual hazard functions and both relative hazards and relative times 

(Cox, 2008). The GG distribution has been used in several research areas such as engineering, 

hydrology and survival analysis. Its probability density function (pdf) and cumulative distribution 

function (cdf) are given by (for x > 0) 
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and  G(x)  = γ(ν, [x/a]p )/Γ(ν ),  respectively,  where Γ(ν ) = R ∞ ων −1 e−ω dω (for ν  > 0) is the 

gamma  function  and  γ(x, ν )  = R x ων −1e−ω   dω is the  incomplete  gamma  function.  For the 

density function (1), a > 0 is a scale parameter and p > 0 and ν > 0 are shape parameters. The Weibull 

and gamma distributions are special cases of (1) when ν = 1 and p = 1, respectively. The  GG  

distribution approaches  the  log-normal  distribution when  a  = 1 and  ν  → ∞.   We denote by   a 

random variable having density function (1). 

The  GG  distribution includes  all four  more  common  types  of the  hrf:  monotonically  in- 

creasing  and  decreasing,  bathtub and  unimodal  (Cox  et  al.,  2007).   This property is useful in 

reliability and survival analysis.   This  model  has  been  used  in several  applied  areas  such as 

engineering,  economics and  survival  analysis.   Yamaguchi  (1992) used it for the  analysis  of 

permanent  employment  in Japan, Allenby (1999) proposed  a dynamic  model based  on it and Cox  
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et  al.   (2007)  presented a parametric survival analysis and taxonomy of its hrf.   Some extensions of 

the GG distribution has emerged recently.   For example, Pascoa et al.   (2011) proposed the 

Kumaraswamy generalized gamma (KwGG) distribution, Ortega et al.   (2011) proposed the 

generalized gamma geometric distribution and Cordeiro et al.  (2012) defined the beta generalized 

gamma (BGG) distribution. 

Now, we de_ne an extended form of the density function (1) (for x > 0) given by 
 

𝑔𝛼, 𝑣, 𝑝(𝑥) =
|𝑝|

𝛼Γ(𝑣)
(
𝑥

𝛼
)
𝑣𝑝−1

𝑒𝑥𝑝 [−(
𝑥

𝛼
)
𝑝
]                                                     (2) 

 

Where p is not zero and the other parameters are positive.  The cdf corresponding to (2) 

becomes
 

 

 

 

 

Several continuous  univariate distributions have been extensively  used in the  literature  for 

modelling  data  in many  areas  such as engineering,  economics, biological studies  and  environ- 

mental  sciences. However, applied areas such as lifetime analysis, finance and insurance clearly 

require extended forms of these distributions. Thereby,  classes of distributions have been pro- posed  

in  the  literature by  extending  and  creating  new  families  of continuous   distributions. These 

extensions generalize distributions giving more flexibility by adding one or more param- eters to the 

baseline model.  They were pioneered by Gupta et al.  (1998), who proposed the exponentiated-G 

(“Exp-G”) distribution, by raising the cdf G(x) to a positive power parameter. Many other classes can 

be found in the literature such as the beta generalized (BG) family of distributions proposed by Eugene 

et al.   (2002), the Kumaraswamy (Kw-G) family of distri- butions introduced by Cordeiro and de 

Castro (2011) and the exponentiated generalized (EG) family defined by Cordeiro et al.  (2013). 

Another family of distributions arises from the general rank transmutation (GRT) defined by 

Shaw and Buckley (2007).  Suppose we have two cdfs F (x) and G(x) with common sample space, 

then the GRT is defined as 

PR12 (t) = F (G−1 (t)), PR21 (t) = G (F −1(t)).                                   (3) 

 

Note that the pair in (3) takes the unit interval [0, 1] and under suitable assumptions are mutual 

inverses and satisfy PRij (0) = 0, PRij (1) = 1. A quadratic rank transmutation map (QRTM) is 

obtained by considering PR12 (t) = t + λt(1 − t). Then, it follows that the cdfs are related by 
 

F (x) = (1 + λ) G(x) − λG(x)2,    |λ| ≤ 1,                                         (4) 

 

and the corresponding  pdf is given by 

f (x) = g(x)[1 + λ − 2λG(x)].                                                    (5)  

 

Here, G(x) and g(x) can be understood as the cdf and pdf of the baseline distribution, respectively.   

Note that this generator, called the transmuted class (TC) of distributions, is a linear combination of 
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the baseline and Exp-G distributions with power parameter equal to two.  Also, note that λ = 0 in (5) 

gives the baseline distribution. Further details can be seen in Shaw and Buckley (2007). 

Some distributions belonging to the TC class have been proposed recently.  Aryal and Tsokos 

(2009) studied the transmuted Gumbel distribution and its application to climate data.   Aryal and 

Tsokos (2011) pioneered the transmuted Weibull distribution and used it for modelling the tensile  

fatigue  characteristics of a polyester/viscose yarn.   Khan  and  King  (2013)  intro- duced  the  

transmuted modified Weibull  distribution and  Ashour  and  Eltehiwy  (2013) defined the  transmuted 

exponentiated Lomax  model.   In the present study, we provide some mathe- matical properties of a 

new lifetime model named the transmuted generalized gamma (TGG) distribution. 

The sections are organized as follow.  In Section 2, we define the TGG model.   Some of its 

mathematical properties are investigated in Section 3.  An application to a real data set is reported in 

Section 4. Section 5 ends with some conclusions.
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2    The TGG distribution 

The cdf of the TGG distribution can be obtained from (4) as 
 

 

 

where |λ| ≤ 1, a > 0, ν > 0 and p = 0. Henceforth, a random variable X having the cdf (6) is denoted 

by X ∼ T GG(λ, a, ν, p). We can prove that the TGG distribution is a linear combination of the GG 

and the exponentiated generalized gamma (EGG) distributions, the last one with power parameter two. 

The pdf of X is given by 

The TGG family model has many distributions as special cases.  Some of the sub-models 

encompassed by the TGG family are listed in Table 1. 

The hazard rate function (hrf ) of X  is given by 

 

Some possible shapes of the density function (7) and the hrf are plotted in Figure 1.  We conclude 

that the hrf r(x) is very flexible, assuming different shapes. 

3    Properties of the TGG distribution 

Let g(x) and G(x) are the pdf and cdf of a baseline model. A random variable is Exp-G distributed 

with  power parameter α  > 0 if its  cdf and  pdf are given by Hα (x)  = G(x)α and hα (x)  = 

αg(x)G(x)α−1, respectively. We obtain some properties of the TGG distribution. If the baseline  is 

taken to be the GG distribution, the random variable Y is said to be Exp- GG distributed, say Y   ∼ 

Exp-GG(α, a, ν, p) distribution. The density function of X can be expressed as 

f (x) = (1 + λ) g(x) − λ h2 (x),                                                   (8)
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where g(x) is the GG pdf given by (2) and h2 (x) = 2g(x)G(x) is the pdf of the Exp-GG(2, a, ν, p) 

model.  The pdf of the Exp-GG(2, a, ν, p) distributed is given by 

 

Equation (8)  reveals  that the  TGG  pdf  is a linear  combination of the  GG  and  Exp-GG 

densities,  the last one with power parameter two.  Using the power series 

 

the Exp-GG(2, a, ν, p) density function becomes 

 

where ga,νi∗ ,p (x) denotes the GG density function with parameters a, νi and p, νi = 2ν + i and 

wi = 2 (−1)i Γ(2ν + i)/[(ν + i)i!Γ(ν)2 ]. Then, the pdf of X can be expressed as 
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Figure 1: Plots of the TGG pdf and hrf for some parameter values 

 

 

Equation (9) reveals that the TGG distribution is a mixture of GG distributions. This result enable 

us to derive some mathematical properties of the TGG distribution. 

 

3.1     Moments 

 

Some of the most important features and characteristics of a distribution can be studied through 

moments like tendency, dispersion, skewness and kurtosis.  For a random variable Z having the GG(a, 

ν, p) distribution, the sth  moment of Z becomes IE(Z s ) = as Γ(ν + s/p)/Γ(ν ).  Based on equation (9), 

the sth moment of X is given by 
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These moments can be computed numerically by standard statistical softwares. 

 

 

3.2     Generating Function 

The moment generating function (mgf) of Z, say Ma,ν,p (s) = IE(esZ ), has an explicit expression 

using the Wright function (Wright, 1935). It can be expressed as 

 

Setting u = x/a, we have 

 

By expanding the first exponential in power series and the result∫ 𝑢𝑝𝑣−1
∞

0
exp(−𝑢𝑝)𝑑𝑢 =

𝑝−1Γ(𝑣 +𝑚/𝑝) , we obtain 

The above equation holds for p = 0.  Additionally, for a given p > 1, it can be expressed in terms 

of the Wright generalized hypergeometric function (Wright, 1935) defined by 

This function exists if 1 +∑ 𝐵𝑗
𝑞
𝑗=1 −∑ 𝐴𝑗

𝑞
𝑗=1 > 0. By combining the last two equations, we obtain 

Then, from equations (9) and (10), the mgf of X reduces to 

 

where Ma,ν ∗,p (x) is the mgf of Z with parameters a, ν ∗ and p. This result reveals that the TGG 

mgf is a mixture of GG mgfs. 
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3.3     Mean Deviations 

 

One way to measure the amount of scatter in a population is the totality of deviations about the 

mean and the median.   The  mean  deviation  of X  about  the  mean  µ = E(X ) and  about the median  

M  are defined as δ1 = R ∞ |x − µ|f (x)dx  and δ2 = R ∞ |x − M |f (x)dx,  respectively. They  can also 

be expressed  as δ1  = 2µF (µ) − 2m1(µ)  and  δ2  = µ − 2m1 (M ), where F (µ)  is calculated  from (6) 

and m1 (u) = R u xf (x)dx.  From equation (9), we can write 

Equation (11) can also be used to obtain Bonferroni and Lorenz curves, which are useful in many 

fields like reliability, demography, economics, insurance and medicine. For the TGG distribution, 

these  curves  can be calculated  (for given 0 < π < 1) from B(π)  = (πµ)−1 m1(q) and  L(π)  = µ−1 m1(q),  

respectively,  where q = F −1(π)  is the  quantile  function  (qf ) at π. The Bonferroni and Lorenz curves 

for some values of the parameters are displayed in Figure 2.
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Figure 2: Bonferroni and Lorenz curves for some parameter values. 

 

 

3.4     Skewness and Kurtosis 

 

The qf of X, say x = Q(u),  follows by inverting  the cdf (6).  It is given by 

 

where QGG   denotes  the qf of the GG distribution with parameters a, ν and p. 

There are several robust measures in the literature for location and dispersion. The median, for 

example, can be used for location and the interquartile range. Both the median and the interquartile 

range are based on quantiles. From this fact, Bowley (1920) proposed a coefficient of skewness 

based on quantiles given by 

where Q(·) here is the  qf of the  TGG  distribution given by (12).  Moors (1988) demonstrated 

that the conventional  measure  of kurtosis  may be interpreted as a dispersion  around  the values 

µ + σ and  µ − σ, where µ is the  mean  of the  distribution and  σ is its standard error.   Thus, the 

probability mass focuses around µ or on the tails of the distribution. Therefore, based on this 
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interpretation, Moors (1988) proposed, as an alternative to the conventional coefficient of kurtosis, 

a robust measure based on octiles given by 

 

These measures are less sensitive to outliers and they exist even for distributions without mo- 

ments.   Figure 3 displays the plots of the Bowleys skewness and Moors kurtosis for the TGG 

distribution, respectively. 

 

3.5     Estimation 

The parameters of the TGG distribution can be estimated by the method of maximum lake- 

lihood.  Let x1, . . . , xn  be a sample  of size n  from  the TGG(λ, a, ν, p) distribution given  by
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Figure 3: Skewness and Kurtosis of the TGG distribution for different values of λ. 

 

(7). Let θ = (λ, a, ν, p)> be the vector of parameters. The log-likelihood function for θ can be 

expressed as 
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The components of the score vector U(θ)  are given by 

These expressions depend on the quantities ∂γ(·)/∂a, ∂γ(·)/∂p and ∂γ(·)/∂ν. Now, we provide 

formulae for these quantities. The first and the second derivatives are obtained using 

MATHEMATICA as 

 

 

 

 

 

 

respectively. Further, these are two di_erent forms to calculate
𝜃𝛾

𝜃𝑝
[𝑣, (𝑥𝑖/𝛼)

𝑝] . The first one is 

 

where ψ(·) is the digamma function and 𝐺23
30 is a special case of the Meijer G-function given by 

 

and 2 F2 (·; ·; ·) denotes the hypergeometric function defined by 
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where, for some parameter ξ, the Pochhammer symbol (ξ)j is defined by 

 

The last one is given by 

 

The  maximum  likelihood estimate  (MLE)  θb of θ is the  solution  of the  system  of nonlinear 

equations  U(θ)  = 0.  For  interval  estimation and  hypothesis  tests  on the  parameters in θ, we 

require  the  4 × 4 unit  observed  information  matrix  J = J (θ), whose elements  are given in the 

Appendix.  Under certain  regularity conditions,  they can be constructed using the fact that the 

asymptotic distribution of the  MLE θb is (θb − θ) ∼ Np (0, I (θ)−1 ), where I (θ) is the  expected 

information  matrix  and p is the  number  of model parameters (Sen and Singer, 1993).  We can 

substitute I (θ) by J (θb), i.e., the observed information matrix evaluated at θb. The multivariate 

normal  N5 (0, J (θb)−1 )  distribution can  be  used  to  obtain  approximated confidence  intervals 

for the  individual  parameters.  We can compute the maximum values of the unrestricted and 

restricted log-likelihoods to define likelihood ratio (LR) statistics for testing some sub-models of the 

TGG distribution. 

 

 

4    Application 

 

We use a real data set to show that the TGG distribution provide a better fit than that one based 

on the GG distribution.  We also emphasize  that the  fitted  TGG  distribution is better than  the  fitted  

EGG  (Cordeiro  et al., 2011), BGG (Cordeiro  et al., 2012) and  Marshall-Olkin generalized  gamma 

(MOGG)  distributions to these data.  The corresponding cdf ’s are given by 

where α > 0, λ > 0, Ga,ν,p (x) denotes  the GG cdf and �̅�𝑎,𝑣,𝑝(𝑥) is the survival  function. 

The data  represent the  times  between  successive failures (in thousands of hours) in events of 

secondary  reactor  pumps  studied  by  Salman  et al.  (1999). Table 2 gives some statistic measures 

for these data, which indicate that the empirical distribution is skewed to the left and platycurtic. 

 

 

 

 

Table 2: Descriptive statistics for the times between successive failures (in thousands of 

hours) of secondary reactor  pumps 
 

Mean     Median     Std.  Dev.     Variance     Skewness    Kurtosis       Min        Max 

1.5779     0.6140        1.9307         3.7275         1.3643         3.5445      0.0620    6.5600 
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For the purpose of comparing the fits of the BGG, TGG, EGG, MOGG and GG distributions, the 

maximum likelihood estimation method was adopted in the R software using the subroutine 

‘fitdistr’  (from  the  MASS library).    The  MLEs,  their  standard errors  and  the  statistics  AIC 

(Akaike  Information Criterion), BIC (Bayesian  Information Criterion) and  CAIC  (Consistent 

Akaike Information Criterion) are reported in Table  3.  As one may note, the lowest values of the 

statistics correspond to the TGG distribution.  The LR statistic is also calculated to test H0: GG versus 

H1: T GG, yielding Λ = 4.2240 (1 d.f., p-value = 0.0399).  Therefore, we reject the null hypothesis in 

favor of the TGG distribution at the 5% level of significance.  The plots of the fitted densities to the 

data are displayed in Figure 4.  Since the EGG and the GG plots are very similar, the first one was 

omitted.  Note that the BGG, TGG and MOGG models are similar according to the graphical 

comparison and that the GG model yields the worse fit. Based on the AIC and BIC statistics and the 

plots, we can conclude that the TGG distribution gives a better fit than the other models. 

 

Table 3: MLEs and Goodness-of-_t measures 

 

5    Conclusions 

 

We present a new four-parameter model, called the transmuted generalized gamma (TGG) dis- 

tribution, which extends the generalized gamma (GG) distribution and includes as special cases several 

distributions published in the literature.  We provide  some mathematical properties  of the  new 

distribution including  expansions  for the  moments,  generating  function,  mean  devi- ations  and  

Lorenz and  Bonferroni  curves. The maximum likelihood estimation of the model parameters is 

discussed and the observed information matrix is determined.  An application to real data is performed 

in order to provide evidence that the TGG distribution can give a
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Figure  4: Histogram  and estimated densities  of the BGG,  TGG,  MOGG  and GG models 

(left panel)  and empirical  cumulative function  (right panel)  of times between  successive 

failures (in thousands of hours)  of secondary  reactor  pumps 

 

better fit than  the  GG distribution and  some of its extensions.   The results indicate that the 

new distribution outperforms some other extended models based on the GG distribution. 
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Appendix 

The elements of the observed information matrix J(θ) for the parameters (λ, a, ν, p) are: 
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The quantities yλλ (xi ), yλa (xi ), yλν (xi ), yλp (xi ), yaa (xi ), yaν1 (xi ), yaν2 (xi ), yap1 (xi ), yap2 

(xi ), yνν1 (xi ), yνν2 (xi ), yνν3 (xi ), yνp1 (xi ), yνp2 (xi ), ypp1 (xi ), ypp2 (xi ) and y(xi ) are given by 
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