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Abstract: Analysis of footprint data is important in the tire industry. Estimation 

procedures for multiple change points and unknown parameters in a segmented regression 

model with unknown heteroscedastic variances are developed for analyzing such data. Our 

approaches include both likelihood and Bayesian, with and without continuity constraints 

at the change points. A model selection procedure is also proposed to choose among 

competing models for fitting a middle segment of the data between change points. We 

study the performance of the two approaches and apply them to actual tire data examples. 

Our Maximization–Maximization–Posterior (MMP) algorithm and the likelihood–based 

estimation are found to be complimentary to each other. 

 

 

Key Words: Change point analysis, segmented regression, piecewise or joinpoint 

regression, heteroscedastic variance, likelihood and Bayesian methods, algorithms, model 

selection, footprint and tire data. 

 

*This research is supported in part by the National Science Foundation. 
 

 

 

1.  INTRODUCTION 

Footprint data in the tire industry is important to engineers in ascertaining many 

important features of the tire that affect its performance and endurance. These in turn have 

a significant impact on fuel economy and other environmental issues. In order to  obtain  an  

image  of  a  tire  footprint,  a  tire  is either placed on, or rolled slowly over a device which 

contains sensors that measure the contact of the tire with a surface (Sakai, 1995). This 

procedure produces a pixelated image of the contact region for the tire either in color or in  

shades  of  gray (as  illustrated  in  Figure  1).  The  differences  in  the gray scale of the 

footprint image indicate the nonuniformity of the contact  pressure  of  the  tire  with  the 

surface on which it is resting or rolling. Due to the irregular nature of the geometry of the 

tire and inherent uncertainty in the measuring device the boundary of the surface of contact 

pressure  is  not known exactly. This poses a  challenge  to  determine the footprint  “length”  

which is  used to  measure how much of the tire material actually makes contact with the 
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surface on which it is riding. Footprint length is used in conjunction with other tire 

measurements to compare the characteristics of different designs of tires or to compare the 

characteristics of a specific tire design to itself under different load and inflation conditions.  

The  characteristics  of  interest include  rolling  resistance,  traction,  wear,  etc. As an example, 

a significant change in the ratio of the footprint width to footprint length of a newly 

designed tire after testing for say 1,000 hours at 28 PSI inflation and at a constant load 

indicates that the tire is wearing unevenly, which will lead to safety and performance issues.  

This dictates a change in some design feature of  the tire, e.g. tread geometry or tread 

compound.  This paper is concerned with developing techniques for determining the length 

of the footprint. 

 

Footprint #1 Footprint #2 

  
Figure 1: Tire footprint images 

 

 
 

Footprint length can be determined by a change point analysis as given below. Since 

the density of the pixels in the footprint image can be converted into equivalent pressure 

values measured in pounds per square inch (PSI), we then have the footprint pressure 

curve (FPC) as shown in Figure 2. The horizontal axis represents rectangular slices of the 

tire footprint, measured at .05 inch intervals, starting at the top of the footprint. The vertical 

axis corresponds to the average pressure calculated within each slice. Thus the first point 

on the FPC (at x = 0) plots the average PSI for the first (top) slice and the last point plots 

the average PSI for the last (bottom) slice. Since a tire footprint has finite length the 

footprint pressure curve must include two points, say τ1 and τ2; one for the beginning of 

the footprint (leading edge) and one for the end of the footprint (trailing edge) - see Figure 
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3. These two points are change points of the expected FPC in which the middle segment 

is measured with more random noise than the two tails. The middle segment appears as a 

polynomial curve which needs to be determined by data. Even though some FPC’s 

indicate that there may be more change points in the middle region, these are not of 

interest to the tire engineers for the estimation of the footprint length (FPL). The 

behavior of the FPC in this region may indicate other important features of the tire, 

however, which could relate to traction properties, for example. The footprint length is the 

difference of the two change points, τ2  − τ1. 

 

 
Figure 2: Examples of footprint pressure curves associated with the tire footprint images 

 

 
Figure 3: Footprint pressure curve with change points 
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If we let x denote the horizontal distance along the footprint pressure curve and Y be 

the footprint pressure in pounds per square inch (PSI) then a reasonable model for the 

data from a FPC is one consisting of 3 regression segments: 

Y  = μi(x; βi, τi ) + εi ,for x ∈ Ii,                                       (1) 

where I1 = [a, τ1 ], I2 = (τ1, τ2 ] and I3 = (τ2, b], and εi is distributed with mean 0 and 

variance 𝜎𝑖
2
 for  i  = 1, 2, 3. Therefore, one way to determine the footprint length is by 

estimating the parameters βi, τi from the change–point model in (1). 

 

Change point problems occur in many areas of application. Examples of recent change 

point applications include the following: Arani, Soong, Weiss, Wood, Fiddian, Gnann and 

Whitley (2001) and Desmond, Weiss, Arani, Soong, Wood, Fiddian, Gnann and Whitley 

(2002) used maximum  likelihood estimation to find the change points in a multistage hazard 

function  model  of  pain  associated  with herpes zoster and applied bootstrapping to estimate 

the standard errors of the change–points. Change point estimation via permutation tests  is 

used by Kim,  Fay, Feuer and Midthune (2000) to model US prostate cancer rates, while 

Pauler and Finkelstein (2002) and Slate and Turnbull (2000) provided Bayesian change point 

methodology to  predict  time  to  prostate  cancer  recurrence  or  onset.  There have been 

applications in animal  science  (Bergfelt,  Sego,  Beg  and  Ginter,  2003),  intervention  (Shope 

and Molnar, 2003), and bioinformatics (Zhang and Siegmund, 2007), where Zhang  and  

Siegmund (2007) also developed a modified Bayes information criteria (BIC) for Gaussian 

change point models to determine the number of changed chromosome copies at each 

genome location of a given cell sample. In applications to financial  data,  Ray  and  Tsay  

(2000)  applied  a  Bayesian  change  point  analysis  to the duration between trades of IBM 

stock and the volatility of daily Coca Cola stock returns; Loschi, Cruz, Iglesias and Arellano–

Valle (2003) used Gibbs sampling to analyze Brazilian stock market data; and most recently 

Spokoiny (2009) offered a local change point detection approach to modeling and forecasting 

of nonstationary time series with applications to volatility modeling for financial data. 

A change point model can be specified in several different ways based on the following 

factors:   

the  number of change points (known or unknown), the location of the change points 

(τi), 

often unknown in statistics, while the Chow’s test frequently used in economics  (Chow 

(1960)) tests if a change has occurred at a known location), the type of the change points 

(assumed abrupt or continuous), the error structure (E, homoscedastic, heteroscedastic, 

independent or  correlated) and error  distribution (often assumed Gaussian, but can be other 

distributions such as a heavy tailed distribution), the type  of regression function μ (assumed 

parametrically up to some finite unknown parameters or nonparametrically as a piecewise 

smoothed function) if it is a change point regression problem, the change scheme (changes 

in the mean or parameters of) regression function, or error structure or both), the detection 

process (finding change points from a given data set of fixed size n - may be called looking-

back process, or signaling a change as soon as possible  as the data points come  in - may 
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be called looking-forward process,  used  frequently  in  sequential  analysis). 

The wide applicability of change point analysis and its versatile modeling has motivated 

extensive research in the subject. See the five texts (Csörgö and Horváth, 1997; Chen and 

Gupta, 2000; Brodsky and Darkhovsky, 1993; Siegmund, 1985; Cohen, 2008) and the 

references therein.  Asymptotic properties of change points and hypothesis testing  involving  

change  points  can  be  found  in  the  text  by Csörgö and Horváth (1997). Parametric change 

point analysis techniques are provided by Chen  and  Gupta (2000). Some nonparametric 

methods in change point problems are in Brodsky and Darkhovsky (1993). Connections of 

change point problems to boundary crossing problems and a practical correction to the 

approximation by Brownian motion are given in Siegmund (1985). Applied “turning point” 

analysis in the behavioral and sociological sciences by Cohen (2008) is also related to change 

point analysis. There was also a proceedings devoted to change point problems edited by 

Carlstein, Müller  and  Siegmund (1994). Recent research papers  include  Zhang,  Siegmund,  

Ji  and  Li  (2009)  for  detecting  recurrent copy number variants (i.e. simultaneous change  

points)  in  multiple  genome  samples,  Kim,  Yu  and Feuer (2009) for selecting the number 

of change points in segmented line regression, Spokoiny (2009) for multiscale local change 

point detection, and Zhao, Wu and Zhou  (2009)  for  change  point  hazard model for survival 

data with long-term survivors, and Chen and Raimondo (2008) for change point estimation in 

derivatives, among others. The literature listed here  is  by  no  means  exhaustive.  The change 

point analysis methodology we  develop will be limited to that relevant to our footprint data 

analysis, although the methodology should be applicable to data from other application 

fields. 

In our case of the footprint data (see Figures 2 and 3), the number of interesting change 

points are known to be two, the location of changes are unknown and to be estimated, the 

errors are independent to each other but are heteroscedastic from one segment to the another, 

the reasonable regression functions are segmented polynomials with unknown coefficients 

in which the polynomial order in the middle segment may also need to be determined 

(based on the data or the type of tires under study), the changes can be in  both  the  

parameters  of  the  regression  function  and  the error  variances  while the change type 

appears to be continuous (however we shall develop estimation procedures with and without 

continuity, under the likelihood approach), and the detection process is the  “looking-back” 

process (i.e. not those used in sequential analysis). So, this paper is concerned with estimation 

of parameters and location of change points in a change point regression model. 

Articles on the change point problem in a regression  setting can also be found under 

the heading of “segmented”, “piecewise”, “joinpoint” or “bent–cable” regression. We shall 

use the terminology of segmented regression. Gallant and Fuller (1973) provided least squares 

type estimators for segmented polynomial regression models with homoscedastic errors. In 

the field of animal science, Bergfelt, Sego, Beg and Ginter (2003) used segmented regression 

for modeling follicle growth in cattle; they estimated a single change point in simple linear 

regression by incremental searching and basing the final value on that which gives the 

highest R2. Montiani–Ferreira, Petersen–Jones, Cassotis, Ramsey, Gearhart and Cardoso 

(2003) investigated the changes in corneal thickness of canine eyes as the animals mature, 
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utilizing two different regression functions with a specified value of a single change point. 

The asymptotic distribution theory of the least squares estimators of the parameters in 

homoscedastic segmented 

regression models is studied in Feder (1975a) and Feder (1975b). Maximum likelihood 

estimation of change points in two–phase  linear regression models  with homoscedastic error 

is covered in Hinkley (1969), Hinkley (1971) and Hudson (1966).  Most existing papers 

for change point regression consider a  change  point  with  independent or  dependent  error,  

or  multiple  change  points  with  homoscedastic error. There are few change point papers 

(in comparison to other error structures) on change points with heteroscedastic errors. Those 

with heteroscedastic errors often assume that σ2 is a continuous function of x or of λ = λ(x), 

e.g. a  Poisson  intensity  parameter  used  in  a  Poisson  regression  model (Kim, Fay, Feuer 

and Midthune, 2000);  hence the changes in the error variance can be absorbed into the 

changes in the mean (regression) function. Similarly, Chen, Choi and Zhou (2008) utilize a 

wavelet smoother in nonparametric regression models with robust estimators for conditional 

heteroscedastic variance which are also functions of time, so do Loschi, Cruz, Takahashi, 

Iglesias, Arellano–Valle and MacGregor Smith (2008) to shifts in variance of financial time 

series data with an inverse gamma prior for variance. Killick, Eckley, Ewans and Jonathan 

(2010) study the change in variability of  significant wave heights of storm peak events across 

the Gulf of Mexico for  the  period  1900–2005.  Killick  and Eckley (2010) provide R software 

for detecting changes in mean and variance in time series based on the  pruned  exact  linear  

time  (PELT)  algorithm  (Killick,  Fearnhead  and  Eckley  (2012)). 

We consider the multiple change point problem with heteroscedastic errors which places 

no specific assumptions between 𝜎𝑖
2  and 𝜇(𝑥) other than 0 < 𝜎0

2 ≤ 𝜎𝑖
2 < ∞, it is bounded 

below by zero.  Chiu, Lockhart and Routledge (2006) describe a similar model with 

homoscedastic error.  In §2, our model is formally described. In §3, two likelihood solutions 

are provided for the three segmented curve. One places no constraint on the juncture of the 

segments (the unconstrained method), another imposes constraints on the join points (the 

constrained method). The estimates of polynomial regression parameters and change points 

have simple closed-form solutions under the unconstrained model.  Their counter parts under 

the constrained model can be computed quickly using our constrained iterative reweighted 

least squares (CHIRLS) algorithm.   A  simple  test  for  a  middle  segment  to  be  a  linear  

function  vs.   a quadratic function is also developed.  In §4, two Bayesian solutions are derived 

for the segmented curve without continuity constraints at the change points, one is a classical 

Bayesian solution and another is a “hybrid” Bayesian technique, which we call 

Maximization-Maximization-posterior, or MMP, method. The classical Bayesian 

procedure is computationally intractable while the MMP method is.  Comparisons among 

the two likelihood solutions and the MMP solution and application to real tire data sets 

are given in §4 and §5. Discussion is in §7 and some additional details or justifications are 

provided in the   Appendix. 

Although the motivation for this work stems from a specific application in the tire industry, 

our modeling and estimation procedures may be applied or generalized to other application 
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areas. They include process control in engineering, disease outbreaks studied in epidemiology, 

the effects of an intervention that is of interest in medicine, and the behavior of an 

economical indicator over time in finance. 

 2.  MODEL DESCRIPTION 

 
Let (xi,yi), i = 1 , . . . ,  n be data. Two typical regression models of (1) are 

considered in detail: (1) all three segments are straight lines (LLL model), and (2) the 

first and third segments are straight lines and the second, or middle, segment is quadratic 

(LQL model). These two models work reasonably well for estimating FPL; the procedures 

developed for these models can be generalized to other segmented polynomial regression 

models. 

For the LLL model, the model (1) is reduced to: 

  Yi = 

(a0+a1xi+ε1,i)1[0,τ1)(xi)+(b0+b1xi+ε2,i)1[τ1 ,τ2)(xi)+(c0+c1xi+ε3,i)1[τ2 ,xn](xi). (2)

 

     For the LQL model , a 𝑏2𝑥𝑖
2 term is added to the middle segment in (2).  Furthermore 

the errors 𝜀𝑙,𝑖 are assumed to be from 𝑁(0, 𝜎𝑙
2) for l = 1,2,3.  In the context of the tire 

application, it is reasonable to assume that the variance in the first and third segments would 

be equal to each other but different from the variance in the second segment.  Thus in this 

paper we take 𝜎1
2 = 𝜎3

2.   The procedures for cases that 𝜎1
2, 𝜎2

2, 𝜎3
2 are arbitrary or 𝜎2

2 =

𝜎3
2 can be developed in a similar fashion.  For convenience let the model by 

parameterized in terms of precision, 𝜂𝑖 = 1/𝜎𝑖
2 instead of variance 𝜎𝑖

2, for i = 1,2. 

 

For the LLL model the set of unknown parameters is θ = (β, η, τ, ι) with β = 

(a0 ,a1, b0 ,b1 ,c0 , c1 ) being the linear regression coefficients, η = (η1 , η2 ) the unknown 

precisions , τ = (τ1, τ2) the change points and ι = (j, k) the indices of the x–values at 

the change points.: 

                                             x1 < . . . < xj ≤ τ1 

τ1 < xj+1 < . . . < xk ≤ τ2  (3) 

                                            τ2 < xk+1 < . . . < xn. 

Then the log-likelihood under the LLL model is easily seen to be, 

𝑙(𝜃|𝑦, 𝑥) = −
𝑛

2
(2𝜋) +

𝑛−𝑘+𝑗

2
log(𝜂1) + 

𝑘−𝑗

2
log(𝜂2) −

𝜂1

2
(𝜓1 + 𝜓3) −

𝜂2

2
𝜓2              (4) 

where 

𝜓1 = ∑ (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖)2𝑗
𝑖=1 , 𝜓2 = ∑ (𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)2𝑘

𝑖=𝑗+1 , 𝜓3 = ∑ (𝑦𝑖 − 𝑐0 −𝑛
𝑖=𝑘+1

𝑐1𝑥𝑖)2  (5)

are the residual sum of squares for the three linear segments respectively. 
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For the LQL model, the log-likelihood has the same expression as (4) except that β 

and ψ2 need to be changed to 

𝛽 = (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1), 𝜓2 = ∑ (𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖 − 𝑏2𝑥𝑖
2)2

𝑘

𝑖=𝑗+1

. 

Under the model described above, two cases can occur with respect to the placement 

of the change points in relation to the estimated straight line segments. 

1. Unconstrained case: No restriction is placed on the intersections of the 3 lines 

(allowing for an abrupt or a smoothed change) 

2. Constrained case: The change points occur at the 2 intersection points of the 

3 lines (requiring changes to be continuous, i.e. 𝑙𝑖𝑚𝑥→𝜏𝑖
+𝜇(𝑥) = 𝑙𝑖𝑚𝑥→𝜏𝑖

−𝜇(𝑥), 𝑖 =

1,2).   

See an example of the resulting estimates in Figure 4 where μ(x) is the mean 

function in (2) with β and τ suppressed. 

 

 
 

Figure 4: Footprint pressure curve with two fits 

 
 3. LIKELIHOOD ESTIMATION 

 
 3.1 Unconstrained Method 

 

Let �̅�(𝑟,𝑠) =
1

𝑠−𝑟+1
∑ 𝑢𝑖

𝑠
𝑖=𝑟 , 𝑆𝑢𝑣

(𝑟,𝑠)
= ∑ (𝑢𝑖 − �̅�(𝑟,𝑠))𝑠

𝑖=𝑟 (𝑣𝑖 − �̅�(𝑟,𝑠)),                                   (6) 

 
Proposition 3.1 Under the unconstrained LLL model and the assumption that 

k − j  > 3, for each (j, k) the MLE’s of the regression coefficients β and precisions η 
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are 

 

�̂�0 = �̅�(1,𝑗) −  �̂�1�̅�(1,𝑗), �̂�1 =
𝑆𝑥𝑦

(1,𝑗)

𝑆𝑥𝑥
(1,𝑗)     

�̂�0 = �̅�(𝑗+1,𝑘) − �̂�1�̅�(𝑗+1,𝑘), �̂�1 =
𝑆𝑥𝑦

(𝑗+1,𝑘)

𝑆𝑥𝑥
(𝑗+1,𝑘)    

�̂�0 = �̅�(𝑘+1,𝑛) − �̂�1�̅�(𝑘+1,𝑛), �̂�1 =
𝑆𝑥𝑦

(𝑗+1,𝑘)

𝑆𝑥𝑥
(𝑗+1,𝑘)           

�̂�1 =
𝑛−𝑘+𝑗

�̂�1+�̂�3
, �̂�2 =

𝑘−𝑗

�̂�2
, �̂�1 = 𝑥𝑗, �̂�2 = 𝑥𝑘                         

                                                                                                                                                        

(7) 

where �̂�1 = ∑ (𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖)2,
𝑗
𝑖=1 �̂�2 = ∑ (𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖)

2
,𝑘

𝑖=𝑗+1 �̂�3 =

∑ (𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖)2,𝑛
𝑖=𝑘+1  are the values of (𝑗̂, �̂�) = 𝑎𝑟𝑔 𝑚𝑎𝑥2<𝑗<𝑘−3<𝑛−2 𝑙(�̂�, �̂�, 𝑗, 𝑘). 

 

 

Proposition 3.2  For the unconstrained LQL model and the assumption that k – j > 4, 

the MLE’s are 

(�̂�0, �̂�1, �̂�2)
′

= (𝑋′𝑋)−1𝑋′𝑌, �̂�2 = ∑ (𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖 − �̂�2𝑥𝑖
2)

2
  

𝑘

𝑖=𝑗+1

 

where 𝑌 = (𝑦𝑗+1, … , 𝑦𝑘)
′
and  

𝑋 = (
1 𝑥𝑗+1 𝑥𝑗+1

2

. . .
1 𝑥𝑘 𝑥𝑘

2
). 

 

Remark 1:  Given fixed values of j and k, the values for �̂� = (�̂�0, �̂�1, �̂�0, �̂�1, �̂�0, �̂�1) 

defined in (7) are simply the least squares estimates obtained by separate linear regression 

analyses of the three distinct straight line segments. That k − j > 3 for the LLL model (k − 

j > 4 for the LQL model) ensures that there are at least 3 data points for the LLL 

model (4 points for the LQL model) available to perform the regression in order to 

avoid singularity in the matrix inversion during the solution of the regression parameter 

estimates. These constraints on k and j are sufficient for the “identifiable condition” 

required by Feder (1975a). 

 
3.2  Constrained Method 

 

By imposing the continuity constraint in the second case the first change point, τ1, 

must be common to the fitted lines of segments 1 and 2 and the second change point, 

τ2 , must be common to the fitted lines of segments 2 and 3, that is, 
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a0 + a1xj = b0 + b1 xj, b0 + b1xk = c0 + c1 xk 

where xj = τ1 and xk = τ2 , as the MLE’s have to be at the data points. 

Therefore imposing the continuity constraint has reduced β from 6 dimensional in 

the LLL model to 4 dimensional β̃ = (a0, a1 , b1, c1 ), thus the parameter space is of 8 

dimensional θ̃ = (β̃, η, τ ). The log-likelihood in (4) is  valid after ψ2 and ψ3 in (5) are 

replaced by: 

                                  𝜓2 = ∑ [𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑗 − (𝑥𝑖 − 𝑥𝑗)𝑏1]
2𝑘

𝑖=𝑗+1                                          

(8) 

                                  𝜓3 = ∑ [𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑗 − (𝑥𝑘 − 𝑥𝑗)𝑏1 − (𝑥𝑖 − 𝑥𝑘)𝑐1]
2𝑛

𝑖=𝑘+1 .               

(9) 

After making these substitutions into the log-likelihood (4) and differentiating it 

with respect to the parameters β̃, η we obtain the following system of six equations: 

𝑟1 = 𝑤11𝑎0 + 𝑤12𝑎1 + 𝑤13𝑏1 + 𝑤14𝑐1                                                                          (10) 

𝑟2 = 𝑤12𝑎0 + 𝑤22𝑎1 + 𝑤23𝑏1 + 𝑤24𝑐1                                                                          (11) 

𝑟3 = 𝑤13𝑎0 + 𝑤23𝑎1 + 𝑤33𝑏1 + 𝑤34𝑐1                                                                          (12) 

𝑟4 = 𝑤14𝑎0 + 𝑤24𝑎1 + 𝑤34𝑏1 + 𝑤44𝑐1                                                                          (13)     

𝜂1 =
𝑛−𝑘+𝑗

𝜓1+𝜓3
                                                                                                                      (14)        

𝜂2 =
𝑘−𝑗

𝜓2
                                                                                                                          (15) 

 

where  

     wpq = wpq(1,2),  rp = rp(1,2); p,q = 1,2,3,4                                                   (16) 

are linear functions in the ηi ’s for fixed values of j and k, with their detailed expressions in 

the Appendix. Since the residual sum of squares terms in (14) and (15) are functions of 

a0, a1 , b1 and c1 through (5), (8) and (9), 1 = 1(a0,a1,b1,c1,k,j) and 2 = 2(a0,a1,b1,c1,k,j) 

are non-linear functions.  So this leads to a non-linear system of 6 equations with 6 

unknowns given k and j. 

Rather than solving this non–linear system with a  brute force numerical  method, we 

propose  an iterative linear solution as in Barham and Drane (1972). Note that the first 

four equations (10)–(13) may be written:  𝑊�̃� = 𝑟, which has a simple solution, 

𝛽 = 𝑊−1𝑟, (17) 

 

given W, η1, η2 . 
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So, for fixed change–points j, k, our constrained heteroscedastic iterative 

reweighted least squares (CHIRLS)  algorithm  is: 

Setup. Let  > 0 be the desired precision in parameter estimation, and let j, k be 

fixed. 

Choose Initial Values. Compute a regression fit from each of the three segments to 

obtain (0)  , pool the variance estimates in segments 1 and 3 to obtain
0

1̂ . This 
0

1̂ with

0

2̂
 from segment 2 lead to initial values

(0) 0 0

1 2( , )    .  Using these values compute 

W(0), r(0)  from (16). 

 

   

Compute Regression Estimates.  Repeat the following until  

 

( ) ( 1)

( 1)

m m

m

 









  and 

( ) ( 1)

( 1)

m m

m

 









  

component-wisely. 

1. Compute   
( ) ( )

1 1 0 1 1 1( , , , )m m a a b c    and 
( ) ( )

2 2 0 1 1 1( , , , )m m a a b c  from (14) and 

(15). 

2. Compute 
( ) ( ) ( ) ( )

1 2W W ( , )m m m m   and 
( ) ( ) ( ) ( )

1 2r r ( , )m m m m   from (16)  

3. Solve 
( ) ( ) 1 ( )[W ] rm m m   . 

4. Increment 1m m  . 

 

Let ˆ( , )j k  and ˆ( , )j k  be the final output ˆ( )m  and 
( )m  from the above loop. 

Compute Change Points.  Find 2 3 2
ˆ ˆˆ ˆ( , ) arg max ( ( , ), ( , ), , ).j k nj k l j k j k j k       

This strategy provides an algorithm which quickly converges to the solution. 

 

A CHIRLS algorithm for the LQL solution can be similarly written out as that for 

the LLL model above. 

Remark 2:  The estimators in the unconstrained case are simpler but are not as 

efficient as the constrained estimators if the true model has continuous change points. 

Remark  3:  Siegmund  and  Zhang  (1994)  and  Kim,  Fay,  Feuer  and  Midthune  (2000)  

provide  an alternative  way  of  writing  the  constrained  model  described  above.   Using  

their  notation  our  model becomes

 

E[y|x] β0 + β1 x + δ1(x − τ1 )
+ + δ2 (x − τ2 )

+, (18) 
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where τ1 and τ2 are the change points which have to be estimated, β0 , β1 , δ1 and 

δ2 are unknown regression parameters which also have to be estimated, and u+ = u, 

for u > 0 and 0 otherwise. This is also the way the bent–cable model in Chiu, Lockhart 

and Routledge (2006) is described. 

 
3.3  Model Selection 

 
Zhang and Siegmund (2007) provide a modified Bayes information criterion (BIC) 

procedure for model selection in change point problems which is used not only to determine 

the number of change points but also the number of terms to be included in a change point 

model. However, since our case is simpler (two  change  points)  we  employ  the  following  

standard  approach.  Testing  for  the  significance  of  the b2 coefficient could be  used to chose 

between the  LLL and LQL models. Since  we are working in a regression situation we can 

use the same type of hypothesis testing as is done in multiple regression analysis to assess 

the significance of added terms or the addition of higher order terms in polynomial 

regression.  If we let the null hypothesis be that b2  is equal to zero and the alternative 

hypothesis that it is  nonzero, then an  approximate  F–test can  be used.  Formally, 

                                                     H0 : b2 = 0, Ha : b2 ≠ 0. 

 

A reasonable test statistic is then  

𝐹 =
𝑆𝑆𝑅(𝐻0) − 𝑆𝑆𝑅(𝐻𝑎)

𝑆𝑆𝑅(𝐻𝑎)/(𝑛 − 7)
 

 

where SSR(H0) and SSR(Ha) are the residual sum of squares of the models postulated 

under H0  and Ha  respectively.  See the  Appendix for  further  details. 

Unfortunately, if σ1 ≠  σ2 , the null distribution of  F is not even approximately 

F1,n−7 . However, its P-value can be approximated by simulation. A simpler test statistic 

is 

𝐹′ =
𝑆2

′′ − 𝑆2
′

𝑆2
′ /(𝑘 − 𝑗 − 3)

, 

Which has an exact F1,k-j-3 distribution if k’ and j’ are given, and has an approximate F1,k-

j-3 distribution if k’ and j’ are to be estimated.   Here 𝑆2
′′ is the same as S2 but with k = k’ and j 

= j’ and 𝑆2
′  (estimated under Ha) is given in the Appendix. 

 

4  BAYESIAN METHODS 

 

Most papers solve the change point problem using either the likelihood approach or a 

Bayesian approach.  In this section we also provide a Bayesian solution and its variant and do 

a compariative study in §5.  In the change point regression problem the linear regression 
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coefficients, , the two variances 𝜎1
2 and 𝜎2

2 and the two change points 1 and 2 can be treated 

as having distributional properties of their own.  Furthermore, an alternative to working with1 

and 2 themselves is to consider the estimation of the indices of the x-values which correspond 

to these values, under suitable conditions which can be described by xj = 1 and xk = 2.  Thus 

we can work with the indices, say j and k, of the x-values.  A similar approach can be found in 

Chen and Gupta (2000) in their analysis of simple linear regression models which contain a 

single point.  In this section we provide two Bayesian procedures for the LLL model. 

4.1  A Formal Procedure 

For the analysis  we assign  general  priors to all the unknown parameters  (β, η, j, k).   

Let π0 (·) be the vague notation for prior density.  Let C stand for an arbitrary finite constant, 

𝜋0(𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1) ∝ 𝐶,   − ∞ <  𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1 < ∞; 

𝜋0 ∝
1

𝜎1
2 , 0 <  𝜎1

2 < ∞;  𝜋0 ∝
1

𝜎2
2 , 0 <  𝜎2

2 < ∞;  

𝜋0 ∝
2

𝑛(𝑛 − 1)
, 2 < 𝑗 < 𝑘 − 2 < 𝑛 − 4. 

Note that the priors for β are improper. 

 

Proposition 4.1  Given the above prior distributions the posterior distribution of 

the changepoint indices (j, k) derived by standard Bayesian treatment can be shown to 

be, 

𝜋1(𝑗, 𝑘) ∝ [𝑗(𝑘 − 𝑗)(𝑛 − 𝑘)𝑆𝑥
(1,𝑗)

𝑆𝑥
(𝑗+1,𝑘)

𝑆𝑥
(𝑘+1.𝑛)

]
−

1
2

𝐷1
−𝑚1𝐷2

−𝑚2𝐵(𝑚1, 𝑚2), 

 

where B(m1,m2) denotes the Beta function and D1 and D2 are functions of the residual 

sums of squares, 𝑆𝑢
(𝑎,𝑏)

, 𝑓𝑜𝑟 ℛ = {(𝑗, 𝑘): 2 < 𝑗 < 𝑘 − 2 < 𝑛 − 3}.  See the Appendix for the 

definition of D1   and D2. 

We then say that a change point is located at (𝑗̂, �̂�) if 𝜋1(𝑗̂, �̂�) = 𝑚𝑎𝑥ℛ𝜋1(𝑗, 𝑘).  This is a
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MAP (Maximize A Posterior) estimate. The Bayes estimate with a quadratic loss 

function is Eπ1[(j,k)], the posterior expectation of j and k, which in this case is 

computationally intractable. 
 

4.2   MMP  Procedure 

 
Instead of the vague priors for the precision parameters 1 and 2 suppose we assume that 

they come from Gamma Ga(a,b) densities.  This is reasonable since 𝜂𝑖 = 1/𝜎𝑖
2  and the 

conjugate prior for the variance from a normal distribution is an Inverse-Gamma in Bayesian 

analysis.  Accordingly, the priors for 1, 2 and (j,k) are, 

                                                                     𝜂1~𝐺𝑎(𝑟, 𝑠), 𝑟, 𝑠 > 0,                                    (19) 

                                                                  𝜂2~𝐺𝑎(𝑣, 𝑤), 𝑣, 𝑤 > 0,                                 (20)           

                                                                             (𝑗, 𝑘)~
2

𝑛(𝑛−1)
.                                               (21)             

where r, s, v and w are given and 2 < j < k − 2 < n − 4. 

This prior for the indices of the change points, (21), is not uniform in terms of distance 

but rather with respect to the set of possible points from which they may be drawn. Thus 

it is a data–dependent prior which can be considered “unorthodox” in a strict Bayesian 

sense. If we consider an alternative “orthodox” prior which is uniform on a finite interval, 

and if the xi are uniformly distributed on that interval, then the limiting behavior of the 

posterior distribution of our method will be the same as one using the orthodox uniform 

prior on the continuous interval. 

From the priors (19)–(21), we obtain the joint distribution of the parameters and the 

sample 

 

𝑓(𝛽, 𝑗, 𝑘, 𝜂1, 𝜂2; 𝑦, 𝑥) ∝ 𝜂1

𝑛−𝑘+𝑗+2𝑟−2

2 𝜂2

𝑘−𝑗+2𝑣−2

2 𝑒𝑥𝑝 {−
𝜂1

2
(2𝑠 + 𝜓1 + 𝜓3) −

𝜂2

2
(2𝑤 + 𝜓2)} (22)             First maximization:  It is clear that 

𝑚𝑎𝑥𝛽𝑓(𝛽, 𝑗, 𝑘, 𝜂1, 𝜂2; 𝑦, 𝑥) = 𝑓(�̂�, 𝑗, 𝑘, 𝜂1, 𝜂2; 𝑦, 𝑥) ≡ 𝑓(𝑗, 𝑘, 𝜂1, 𝜂2|𝑦, 𝑥) 

where �̂� = �̂�(𝑗, 𝑘) = (�̂�0, �̂�1, �̂�0, �̂�1, �̂�0, �̂�1) is the least squares estimators of the 

regression coefficients in (7).  In the following, we shall work with 𝑓, the (max-) posterior 

distribution of j, k, 1, 2. 

Second maximization:  From (22) the following conditional posterior distributions can 

be derived: 

𝑝1(𝑗, 𝑘|𝑦, 𝑥, 𝜂1, 𝜂2) ∝ (
𝜂2

𝜂1
)

𝑘−𝑗
2

𝑒𝑥𝑝 {−
𝜂1

2
(�̂�1 + �̂�3) −

𝜂2

2
�̂�2} ≡ ℎ(𝑗, 𝑘|𝑦, 𝑥, 𝜂1, 𝜂2), 
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𝑝2(𝜂1, 𝜂2|𝑦, 𝑥, 𝑗, 𝑘)

∝ 𝜂1

𝑛−𝑘+𝑗+2𝑟−2
2 𝑒𝑥𝑝 {−𝜂1 (𝑠 +

�̂�1 + �̂�3

2
)}

− 𝜂2

𝑘−𝑗+2𝑣−2
2 𝑒𝑥𝑝 {−𝜂2 (𝑤 +

�̂�

2
)} 

 

≡ (𝜂1
𝛼𝑒𝑥𝑝{−𝛾𝜂1})(𝜂2

𝛿𝑒𝑥𝑝{−𝜉𝜂2}) 

 

where 

 

𝛼 =
𝑛 − 𝑘 + 𝑗 + 2𝑟 − 2

2
, 𝛾 = 𝑠 +

�̂�1 + �̂�3

2
, 𝛿 =

𝑘 − 𝑗 + 2𝑣 + 2

2
, 𝜉 = 𝑤 +

�̂�2

2
. 

 

To solve for the unknown change point parameters j, k, 1 and 2 we propose to 

maximize p1(j,k|…) and p2(1,2|…) iteratively, 

 

𝑚𝑎𝑥(𝑗,𝑘)ℎ(𝑗, 𝑘|𝑦, 𝑥, 𝜂1, 𝜂2), 𝑘 > 𝑗 + 2,                                                                             

(23) 

𝑚𝑎𝑥(𝜂1,𝜂2)(𝜂1
𝛼𝑒𝑥𝑝{−𝛾𝜂1})(𝜂2

𝛿𝑒𝑥𝑝{−𝜉𝜂2}).                                                                     

(24) 

 

Since this process involves maximizing both conditional (max-β) posterior 

distributions it is called the Maximization-Maximization-Posterior, or MMP, method. 

     Optimization of (24) by simultaneously optimizing its two components is 

straightforward; we have 

�̂�1 =
𝛼

𝛾
, �̂�2 =

𝛿

𝜉
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Optimization of (23) is quite fast with good initial values of j, k. 

 

The Gibbs sampler, a popular way to analyze  hierarchical data, was also applied to our 

problem. However attempts to use Gibbs sampling on the 3 straight line segment change 

point regression model were unsuccessful; it did not converge. 

     Alternatively priors may be used for the unknown parameters.  For example, the 

regression coefficients (a0, a1, b0, b1, c0, c1) may be assigned normal priors.  Conjugate priors 

could be given to the variance components, 𝜎𝑖
2 , and the change points 1 and 2 could be 

considered as being uniform in an interval  [a, b], thus involving the Dirichlet distribution.  

With these proper priors, it’s possible to show the posterior consistency.   We conjecture 

that the MMP procedure is asymptotically equivalent to the above proper Bayesian 

procedure as n → ∞ when the normal prior for β is close to a data dependent prior  implied  

by  the  MMP. 

 

5.  SIMULATION 

 
In order to compare the  unconstrained  and  constrained  methods  of  maximum  

likelihood  estimation and the Bayesian MMP method  3  simulations  were  run.  Within  each  

experiment  1,000  independent data sets consisting of 60, 120 and 240 data values based on 

change points τ1 =  1  and τ2 =  5 were generated.  The data were generated from equation (2) 

using the parameter values, 

𝜎1
2 = 2, 𝜎2

2 = 5. 𝑎0 = 0, 𝑎1 = 20, 𝑏0 = 20, 𝑏1 = 0, 𝑐0 = 120, 𝑐1 =  −20. 

Additionally, for the MMP method it was assumed that 
1

𝜎1
2 = 𝜂1 ∼ 𝐺𝑎(10,40) and 

1

𝜎2
2 =

𝜂2 ∼ 𝐺𝑎(10,80). 

 The tabulated results from the simulation, Tables 1 – 3, show that, in general, as n 

increases the estimated parameter value approaches the true value.  These values also 

indicate that the constrained method is superior to the other two in estimating the 

parameters.  The MMP outperformed the other two at estimating both 𝜎1
2 and 𝜎2

2 in the 60 

point simulation and at estimating 𝜎2
2 in the larger simulations.  They also hint that the 

unconstrained method and MMP method perform very similarly as n increases.  However, 

the MSE’s for the regression coefficients and the change points give a slight edge in 

performance to the unconstrained method compared to the MMP method with increasing 

n.  90% and 95% confidence intervals for the change-point parameters 𝜏1and 𝜏2 can be 

obtained from the values given in Table 4. 
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Table 1:  Comparison of unconstrained, constrained and MMP estimation – 60 points 

Parameter 

(Initial Value) 

Unconstrained Constrained MMP 

Mean SEM MSE Mean SEM MSE Mean SEM MSE 

𝜎1
2 (2) 1.465 0.018 0.778 1.622 0.019 0.702 2.590 0.009 0.650 

𝜎2
2 (5) 4.715 0.035 1.149 4.832 0.035 1.106 5.629 0.022 0.935 

𝑎0 (0) 0.123 0.028 0.881 0.040 0.026 0.838 0.129 0.027 0.877 

𝑎1 (20) 19.636 0.059 1.894 19.966 0.050 1.592 19.661 0.054 1.739 

𝑏0 (20) 19.871 0.033 1.051 20.024 0.034 1.060 19.864 0.034 1.070 

𝑏1 (0) 0.022 0.010 0.327 0.004 0.010 0.326 0.022 0.010 0.332 

𝑐0 (120) 118.64 0.340 10.82 120.46 0.298 9.427 118.68 0.326 10.40 

𝑐1 (-20) -19.766 0.061 1.930 -20.081 0.054 1.695 -19.771 0.058 1.862 

𝜏1 (1) 1.008 0.005 0.158 1.005 0.002 0.068 1.054 0.005 0.153 

𝜏2 (5) 4.911 0.005 0.178 4.997 0.002 0.069 4.864 0.005 0.197 

Notes:  The smallest MSE in each row is in bold font, indicating the winning method in that case. 

 

Table 2:  Comparison of unconstrained, constrained and MMP estimation – 120 points 

Parameter 

(Initial 

Value) 

Unconstrained Constrained MMP 

Mean SEM MSE Mean SEM MSE Mean SEM MSE 

𝜎1
2 (2) 1.720 0.014 0.519 1.90 0.013 0.475 2.404 0.009 0.491 

𝜎2
2 (5) 4.881 0.026 0.823 4.924 0.026 0.811 5.400 0.020 0.748 

𝑎0 (0) 0.098 0.020 0.643 0.038 0.020 0.623 0.110 0.020 0.653 

𝑎1 (20) 19.763 0.039 1.263 19.969 0.036 1.145 19.735 0.040 1.282 

𝑏0 (20) 19.923 0.023 0.737 20.012 0.022 0.710 19.920 0.024 0.754 

𝑏1 (0) 0.009 0.007 0.227 0.001 0.007 0.218 0.009 0.007 0.232 

𝑐0 (120) 119.187 0.235 7.467 120.412 0.210 6.645 119.022 0.238 7.571 

𝑐1 (-20) -19.858 0.042 1.339 -20.072 0.038 1.198 -19.828 0.043 1.358 

𝜏1 (1) 1.032 0.004 0.118 1.002 0.001 0.044 1.057 0.004 0.127 

𝜏2 (5) 4.940 0.004 0.132 5.000 0.001 0.045 4.912 0.004 0.147 

 

Table 3:  Comparison of unconstrained, constrained and MMP estimation – 240 points 

Parameter 

(Initial 

Value) 

Unconstrained Constrained MMP 

Mean SEM MSE Mean SEM MSE Mean SEM MSE 

𝜎1
2 (2) 1.841 0.010 0.349 1.885 0.010 0.324 2.241 0.008 0.344 

𝜎2
2 (5) 4.963 0.018 0.573 4.964 0.018 0.567 5.242 0.106 0.557 

𝑎0 (0) 0.056 0.014 0.451 0.013 0.014 0.438 0.058 0.014 0.454 

𝑎1 (20) 19.833 0.027 0.870 19.976 0.025 0.792 19.829 0.027 0.875 

𝑏0 (20) 19.945 0.106 0.517 19.990 0.015 0.489 19.938 0.016 0.523 

𝑏1 (0) 0.009 0.005 0.162 0.006 0.005 0.153 0.009 0.005 0.165 

𝑐0 (120) 119.420 0.158 5.032 119.982 0.142 4.485 119.399 0.161 5.123 

𝑐1 (-20) -19.897 0.028 0.906 -19.996 0.026 0.811 -19.894 0.029 0.922 

𝜏1 (1) 1.027 0.003 0.091 1.001 0.001 0.031 1.043 0.003 0.097 

𝜏2 (5) 4.961 0.003 0.094 4.998 0.001 0.031 4.946 0.003 0.102 
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Table 4:  Simulation study confidence intervals for the change-point parameters, 1 and 2.  True 

values are 1 = 1 and 2 = 5, respectively. 

Method Points Parameter 2.5% 5% Mean 95% 97.5% 

Unconstrained 60 1 0.70 0.70 1.01 1.20 1.30 

2 4.60 4.70 4.91 5.20 5.20 

120 1 0.80 0.80 1.03 1.20 1.25 

2 4.70 4.75 4.94 5.15 5.15 

180 1 0.83 0.88 1.03 1.18 1.20 

2 4.80 4.83 4.96 5.10 5.15 

Constrained 60 1 0.90 0.90 1.01 1.10 1.10 

2 4.90 4.90 5.00 5.10 5.10 

120 1 0.90 0.95 1.00 1.05 1.10 

2 4.90 4.95 5.00 5.05 5.10 

180 1 0.95 0.95 1.00 1.05 1.08 

2 4.95 4.95 5.00 5.05 5.05 

MMP 60 1 0.70 0.80 1.05 1.30 1.30 

2 4.60 4.60 4.86 5.10 5.20 

120 1 0.80 0.85 1.06 1.25 1.25 

2 4.70 4.70 4.91 5.10 5.15 

180 1 0.85 0.88 1.04 1.18 1.20 

2 4.78 4.80 4.95 5.10 5.13 

A box and whisker plot, shown in Figure 5, reveals the superiority of the 

constrained method in obtaining estimates of the change point parameters τ1 and τ2.  It 

also confirms the similarity in performance of the unconstrained and MMP methods, 

especially as the number of data points increased. Dotplots for bias (Figure 6) and MSE 

(Figure 7) for all the simulation parameters provide evidence to prefer the constrained 

method. The dotplots suggest that the constant, c0, in the third straight line segment 

appears to be an outlier in many of the plots. However, this parameter was much larger 

in absolute value than the other 7 in the simulation and should have a larger bias and 

MSE. 

Remark  4:  In  a  preliminary  simulation  study  the  parameters  for  the  Gamma  

distributions  for η1 and  η2  were  set  to  values  such  that E(η1 ) and  E(η2 ) were  the exact  

inverse  of  the known values of σ1 and σ2 . Under these ideal conditions for the MMP 

algorithm, it slightly outperformed the unconstrained method  in  estimating  the  regression  

coefficients  and  the  change  points  with  respect to MSE. In summary, if the MMP starts 

at the values close to the true values, it is similar to the unconstrained likelihood procedure. 
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Figure 5: Box and Whisker Plots for τ1  and τ2 

 

 
Figure 6: Dotplots for All Parameters Bias 
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Figure 7: Dotplots for All Parameters MSE 

 
6.  EXAMPLES 

 
In this  section the methods are applied to two real  data  sets,  corresponding  to 2  typical  

footprints. Their footprint pressure curves are shown in Figure 2. 

Results obtained by the four methods, unconstrained LLL (UNC), constrained LLL 

(LLL), extended constrained (LQL) and maximization–maximization–posterior (MMP) 

for the LLL fit are presented in Table 5. 

Based on the tabulated values the best candidate should be either the LLL model or 

the LQL for the first FPC (Example 1). The reason for this is that they both provide change 

points which account for a greater footprint length (6.25 in.) than those estimated by the 

unconstrained and MMP methods (5.25 in.). The latter 2 models do not pick up a sufficient 

amount of the top and bottom portions of the footprint,  an  observation  that  requires  

engineering  judgment.  In choosing  between  the  LLL  and  LQL 

model the diagnostic test declares b2  (p–value ≈ 1) not significant, therefore the final 

model selected is 
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Figure 8 is here 

the LLL. The solution to Example 1, illustrated by the first graph in Figure 8, shows 

the characteristic feature of the LLL method whereby the join points of the straight lines 

intersect with the estimated change po in t s  �̂�1 and �̂�2. 

Results for the second footprint pressure curve (Example 2) indicate that the LQL 

model provides a slightly larger footprint length (5.45 in.) than the other 3 models. A 

test for significance of the b2 term (F = 16.40, p–value < 0.001, n = 141) indicates that 

it is significant. A graphical representation of the LQL solution superimposed on the 

footprint pressure curve is shown by the third graph in Figure 8. 

 
Figure 8: Graphs showing LLL/LQL solutions 

 
7.  DISCUSSION 

 
We have provided a solution to a specific physical problem that occurs in the tire  

manufacturing industry, i.e. finding the change points in a footprint pressure curve. Solutions 

based on both maximum likelihood and Bayesian methodology were derived. A model 

selection procedure was established for discriminating between models in which the middle 

segment of the curve was either linear or quadratic. A new Bayesian-type procedure, the 

maximum–maximum–posterior was proposed. A simulation study indicates that applying  the  

continuity  constraint  provides  a  better  method  of  estimation  than  either the unconstrained 

method or the MMP procedure when the underlying model is continuous. 

Analysis of two real data sets shows that a single model is insufficient to describe all 

possible footprint pressure curves. It also emphasizes the importance of using good 

engineering judgment to analyze physical problems. 

We omitted asymptotic analysis in this paper.  Interested readers can find the 

c onsistency results of our constrained and unconstrained estimators in Ganocy (2003). 

The methods proposed in this paper can be extended further to models consisting of 

more than two change points, with polynomial segments and heteroscedastic errors. 
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APPENDIX 

Proof of Propositions 3.1 and 3.2 

 
Note that the maximum likelihood estimates (MLE) of the change points are at the 

data points under fairly general conditions (Worsley, 1986; Hinkley, 1971). This is reasonable 

because (1) there  is no additional  information  between  the  data  points  without  further  

assumptions;  and  (2)  as  the  sample size n → ∞, x j ,  the change-point solution is consistent 

to the change points under some regularity conditions (Feder, 1975a). 

 

     For fixed τ , i.e. fixed (j, k) in (3) it is clear from the likelihood function (4) that 

the MLE’s of (β, η) are the respective least squares solutions in each of the 3 segments 

under the condition that η1 = η3 are the same. Next, insert �̂�(𝑗, 𝑘), �̂�(𝑗, 𝑘) and 𝜏(𝑗, 𝑘) 

into the likelihood function (4) and maximize over all possible values of j and k to obtain 

the MLE’s of �̂� and k̂. Hence the MLE’s of β and η are�̂�(�̂�, 𝑘) and �̂�(�̂�, 𝑘). 

Proof of Proposition 3.2 follows in a similar fashion to that of Proposition 3.1. 

 

Likelihood derivation of the elements of W and r 

 

By substituting the constraints into the log likelihood, taking derivatives and setting the 

results equal to zero we ultimately obtain the elements of matrix W, 
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and vector r, 
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Model selection F-test 

In order to construct the F-test first calculate 

     
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for the model under Ha.  The individual parameter estimates will have different values 

depending on which model is used to calculate them, hence the use of the notation �̂� (estimates 

under H0) and �̃� (estimates under Ha) to distinguish between the two. 

     From these values let us define: 
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provides the required F-test. 

 

Standard Bayesian derivation of 𝝅𝟏(𝒋, 𝒌) 

Note that the following constitutes the proof of Proposition 4.1. 

     Using the precision notation in place of variance the joint distribution of parameters 

and sample is 

 
/2

( )/2 ( )/2 1 2
1 2 1 2 1 3 2

1
( , , , , ; , ) exp ,

2 2 2

n
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(25) 

which leads to the joint posterior 
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 
                          

(26) 

Now the joint posterior distribution for the change point indices may be written, 

𝜋1(𝑗, 𝑘) ∝ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ 𝜂1
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𝜓2} 𝑑𝑎0𝑑𝑎1𝑑𝑏0𝑑𝑏1𝑑𝑐0𝑑𝑐1𝑑𝜂1𝑑𝜂2.                 (27)                                                                                                                                                                   

                    
Denoting the multiple integral on the right hand side of (27) by I and utilizing the fact 

that it is a product of normal and gamma integrals, it reduces to, 

𝐼 =
(2𝜋)3
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(28)     

 

where 𝑆𝑥
(𝑟,𝑠)

= 𝑆𝑥𝑥
(𝑟,𝑠)

 as defined in (6) and,  

 

                       𝐷1 = 𝑆𝑦
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with �̂�1, �̂�1 and �̂�1 being the standard least squares estimates of a1, b1 and c1 respectively 

as defined in (7) given j and k.  Furthermore we note that the two integrals involving 1 and 2 

are of the form,  

∫ 𝑢𝑚
∞

0

𝑒𝑥𝑝{−𝜆𝑢}𝑑𝑢 =
Γ(𝑚 + 1)

𝜆𝑚+1
, 𝜆 > 0, 𝑚 >  −1. 

 

Since we need a minimum of 3 points to determine the parameters in each straight line 
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segment, 2 for the regression coefficients and 1 for the precision, we must have 2 < 𝑗 < 𝑘 −
2 < 𝑛 − 3.  Setting 𝑚1 = (𝑛 − 𝑘 + 𝑗 − 4)/2 and 𝑚2 = (𝑘 − 𝑗 − 2)/2, 

∫ 𝜂1
𝑚1−1

∞

0

𝑒𝑥𝑝 {−
𝐷1

2
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, 

and 
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2
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(
𝐷2
2

)
𝑚2.

. 

 

Inserting these results in equation (28) and noting m1 + m2 = (n/2) – 3 is independent of  j 

and k, we obtain the expression for the posterior of the change point indices (j, k) as, 

𝜋1(𝑗, 𝑘) ∝ [𝑗(𝑘 − 𝑗)(𝑛 − 𝑘)𝑆𝑥
(1,𝑗)

𝑆𝑥
(𝑗+1,𝑘)

𝑆𝑥
(𝑘+1,𝑛)

]
−

1
2

𝐷1
−𝑚1𝐷2

−𝑚2𝐵(𝑚1, 𝑚2), 

 

where 𝐵(𝑚1, 𝑚2) = Γ(𝑚1)Γ(𝑚2)/Γ(𝑚1 + 𝑚2)  denotes the Beta function for ℛ =
{(𝑗, 𝑘): 2 < 𝑗 < 𝑘 − 2 < 𝑛 − 3}.  
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