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Abstract: Early phase clinical trials may not have a known variation (σ) for the 

response variable. In the light of applying t-test statistics, several procedures were 

proposed to use the information gained from stage-I (pilot study) to adaptively re-

estimate the sample size for managing the overall hypothesis test. We are 

interested in choosing a reasonable stage-I sample size (m) towards achieving an 

accountable overall sample size (stage-I and later). Conditional on any specified m, 

this paper replaces σ by the estimated σ (from stage-I with sample size m) to use 

the conventional formula under normal distribution assumption to re-estimate an 

overall sample size. The estimated σ, re-estimated overall sample size and the 

collective information (stage-I and later) would be incorporated into a surrogate 

normal variable which undergoes hypothesis test based on standard normal 

distribution. We plot the actual type I&II error rates and the expected sample size 

against m in order to choose a good universal stage-I sample size (𝑚∗) to start. 

 

Key words: Hypothesis test, normal test, surrogate, Type-I(II) error. 

 

1. Introduction 

We assume the well-studied standard treatment has a mean effect 𝜇0  (known) and the 

experimental treatment has a mean effect 𝜇1 (to be tested) with subject-indexed endpoint values 

(𝑌1, ⋯ , 𝑌𝑛, ⋯) independently following a normal distribution, i.e., 𝑌𝑖~𝑁(𝜇1, 𝜎2), i ≥ 1. The 

hypothesis to be tested is 

𝐻0 : 𝜇1 = 𝜇0       vs.      𝐻1 : 𝜇1 ≥ 𝜇0 + ∆,   ∆ > 0. 

Flexible methods for clinical trial design (e.g., the number of planned interim analyses, 

sample size, test statistic, rejection region) have been developed under different scenarios to 

improve hypothesis test efficiency with the actual type I & II error rates (α,β) well controlled 

(e.g., Pocock (1977), O’Brien and Fleming (1979), Lan and DeMets (1983), Wang and Tsiatis 

(1987), Wittes and Brittain (1990), Ashby and Machin (1993), Whitehead (1993), Joseph and 

Bélisle (1997), Cui, Hung, and Wang (1999), Müller and Schäfer (2001,2004), Burington and 

Emerson (2003), Bartroff and Lai (2008)). For instance, several group sequential methods 

proposed sample size re-estimation based on interim estimate of effect size and/or calculation 
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of conditional power for confirmatory studies (e.g., phase III) with variance specified. Other 

design changes (e.g., α-spending function, future interim analysis times) could be based on 

special combination rules for p-values or conditional rejection error probabilities at the first 

interim analysis.                             
Often times, the variation of random variable Y remains unknown at the start of 

investigating a new treatment. Several methods utilize an estimated variation ( �̂�) from an 

internal or external pilot study for further sample size estimation used for later stages (e.g., 

Browne (1995), Kieser and Friede (2000), Posch and Bauer (2000), Coffey and Muller (2001), 

Proschan (2005), Friede and Kieser (2006), Kairalla et al. (2012)). These methods are mainly 

based on applying certain types of t-test statistics. Under similar circumstances, the present 

work utilizes a simple method to re-estimate the overall sample size as well as an accountable 

stage-I sample size  (𝑚∗). 

The rest of the article is organized as follows. Section 2 investigates the relationship 

between the recommended sample sizes from using normal and t tests when σ is known. In 

Section 3, we use the stage-I (pilot study) sample variation to call the conventional normal test 

sample size re-estimation formula and apply a surrogate test statistic to the hypothesis test 

procedure involving the standard normal variable. We numerically study its type-I error rate, 

power and the expected sample size. Section 4 concludes the paper. 

 

2. A Comparison between Normal and t Tests (𝝈 is known) 

The σ availability or not determines which distribution is to be utilized for hypothesis 

testing. An explicit σ yields test statistic √𝑛(�̅�𝑛 − 𝜇0) 𝜎⁄  with the sample size (n) satisfying 

Ф (√𝑛∆ 𝜎⁄ − Ф−1(1 − 𝛼)) ≥ 1 − 𝛽 

Thus, 

                        𝑛 = SSN(𝛼, 𝛽, 𝜎, ∆) = min{𝑛 ≥ 1: Ф√𝑛∆ 𝜎⁄ (Ф−1(1 − 𝛼)) ≤ 𝛽}                       (1) 

                     = min {𝑛 ≥ 1: 𝑛 ≥ (Ф−1(1 − 𝛼) + Ф−1(1 − 𝛽))
2

(𝜎 ∆⁄ )2} 

                     = min {𝑛 ≥ 1: Pr (𝑍 + √𝑛∆ 𝜎 ≥⁄ Ф−1(1 − 𝛼)) ≥ 1 − 𝛽}, 

where Z is the standard normal variable and Ф𝜃(·) is the cumulative distribution function 

for Z+θ. If random variable 𝑌~𝑁(𝜃, 𝜎2) and random variable V∼𝜒𝜈
2 with degrees of freedom ν 

(Y and V are independent), then it is known that 𝑌 √𝑉 ν⁄⁄  follows a non-central t -distribution 

with ν degrees of freedom and non-centrality parameter θ with probability density function 

 

𝑓𝜈,𝜃(𝑥) =
𝜈𝜈 2⁄

√𝜋Г(𝜈 2⁄ )

𝑒−𝜃2 2⁄

(𝜈 + 𝑥2)(𝜈+1) 2⁄
∑ Г((𝜈 + 𝑘 + 1) 2⁄ )

𝜃𝑘

𝑘!
(

2𝑥2

𝜈 + 𝑥2)

𝑘 2⁄∞

𝑘=0
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When σ is unknown, one-sample t-test is usually applied 

(�̅�𝑛 − 𝜇0) (𝑠𝑛 𝑛⁄ )⁄ > 𝑇𝑛−1
−1 (1 − 𝛼)   ⇒   reject 𝐻0. 

The power is 1 − 𝑇√𝑛∆ 𝜎⁄ ,𝑛−1(𝑇𝑛−1
−1 (1 − 𝛼)), where𝑇𝜃,𝑛−1(∙) is the cumulative non-central 

t distribution function with degrees of freedom 𝑛 − 1 and non-centrality parameter θ. The scale 

parameter 𝜎 is involved in finding sample size (n) such that 

 

            𝑛 = SST(𝛼, 𝛽, 𝜎, ∆) = min {𝑛 ≥ 1: 𝑇√𝑛∆ 𝜎,𝑛−1⁄ (𝑇𝑛−1
−1 (1 − 𝛼)) ≤ 𝛽}             

  = min {𝑛 ≥ 1: Pr (𝑍 + √𝑛∆ 𝜎 ≥⁄ 𝑇𝑛−1
−1 (1 − 𝛼)√𝑉 (𝑛 − 1)⁄ ) ≥ 1 − 𝛽}             (2) 

where, V∼𝜒𝑛−1
2 . When Δ is specified (e.g., log(2)), corresponding to a two-fold change, the 

sample size comparison between using (1) and (2) shows that, t test consistently requires 1 or 2 

more subjects than normal test as 𝜎 varies. When Δ is specified, we are interested in proposing 

effective ways for recommending the required sample size even if 𝜎 remains unknown. 

 

3. A Type of Overall Sample Size Planning 

3.1 A Surrogate Normal Variable 

For the mean comparison with effect size Δ, when 𝜎  remains unknown, we consider 

replacing 𝜎 by stage-I estimation (�̂�𝑚) followed by the sample size determination rule (1) with 

�̂�𝑚 = (
1

𝑚−1
∑ (𝑌𝑖 − �̅�𝑚)2𝑚

𝑖=1 )
1 2⁄

. When α, β and Δ are fixed, we consider function 𝑛∗(𝜎) =

𝐷𝜎2 , where 𝐷 = 𝑇Δ−2  and  𝑇 = (Ф−1(1 − 𝛼) + Ф−1(1 − 𝛽))
2

. The recommended overall 

sample size (denoted by 𝑛(�̂�𝑚)) is the smallest integer which is no less than 𝑛∗(�̂�𝑚), i.e., 

            𝑛(�̂�𝑚) = ⌊𝑛∗(�̂�𝑚)⌋,         if 𝑛∗(�̂�𝑚) is an integer (with probability measure 0); 

            𝑛(�̂�𝑚) = ⌊𝑛∗(�̂�𝑚)⌋ + 1,  if 𝑛∗(�̂�𝑚) is not an integer (with probability measure 1). 

 

Where [⋆] represents the largest integer not exceeding ⋆. Conditional on �̂�𝑚 and 𝑛(�̂�𝑚), we 

study a surrogate normal variable (SNV) which is defined as 

SNV =
�̅�𝑛(�̂�𝑚) − 𝜇0

�̂�𝑚 √𝑛(�̂�𝑚)⁄
=

�̅�⌊𝐷�̂�𝑚
2 ⌋+1 − 𝜇0

�̂�𝑚 √⌊𝐷�̂�𝑚
2 ⌋ + 1⁄

=
�̅�⌊𝐷�̂�𝑚

2 ⌋+1 − 𝜇0

𝜎 √⌊𝐷�̂�𝑚
2 ⌋ + 1⁄

×
𝜎

�̂�𝑚
.                      (3) 

Its distribution is regulated by parameters D, 𝑚 and 𝛿𝜇(defined as 𝜇1 − 𝜇0). When 𝜇1 = 𝜇0, 

(3) amounts to a central t-distribution with degrees of freedom of 𝑚 − 1. When 𝜇1 ≠ 𝜇0, (3) 

can be rewritten as  
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SNV = (
�̅�

⌊𝐷�̂�𝑚
2 ⌋+1

−𝐸(𝑌)

𝜎 √⌊𝐷�̂�𝑚
2 ⌋+1⁄

+
𝐸(𝑌)−𝜇0

𝜎 √⌊𝐷�̂�𝑚
2 ⌋+1⁄

) (
�̂�𝑚

𝜎
)⁄ .                                    (4) 

Although (𝐸(𝑌) − 𝜇0)(⌊𝐷�̂�𝑚
2 ⌋ + 1)1/2𝜎−1 plays the similar role as θ does in the non-

central t-distribution (Section 2), it is not a constant and (4) is no longer a non-central t-

distribution. SNV (3).(4) presents certain degree of skewness when 𝐸(𝑌) ≠ 𝜇0. 

 

3.2 A Testing Procedure 

We apply the following hypothesis testing rule 

SNV ≥ Ф−1(1 − 𝛼)  ⇒   reject 𝐻0.                                        (5) 

Under 𝐻0, the actual type-I error rate is 

Pr(SNV ≥ Ф−1(1 − 𝛼)) = Pr (
�̅�𝑛(�̂�𝑚) − 𝜇0

𝜎 √𝑛(�̂�𝑚)⁄
≥ Ф−1(1 − 𝛼)

�̂�𝑚

𝜎
) 

        = 1 − ∫ Ф (Ф−1(1 − 𝛼)
�̂�𝑚

𝜎
) 𝑑𝐹𝑚,𝜎(�̂�𝑚) = 1 − ∫ Ф(Ф−1(1 − 𝛼)𝑥)𝑓𝑚(𝑥)𝑑𝑥

>0
,  (6) 

where 𝑓𝑚(𝑥) =
(𝑚−1)(𝑚−1) 2⁄

2(𝑚−3) 2⁄ Г((𝑚−1) 2⁄ )
𝑥𝑚−2𝑒−(𝑚−1)𝑥2 2⁄  due to �̂�𝑚

2 𝜎2⁄ ~𝜒𝑚−1
2 /(𝑚 − 1))1/2. Eq.(6) 

depends on 𝛼 and 𝑚 only. The relationship between the actual and planned type-I error rates 

(Eq.(6)) indicates that an adjusted significance level 𝛼adj corresponds to the prescribed nominal 

level α such that 𝛼 = 1 − ∫ Ф(Ф−1(1 − 𝛼adj )𝑥)𝑓𝑚(𝑥)𝑑𝑥
>0

. The Students’ t-distribution 

(under 𝐻0) has probability distribution function Pr(SNV ≤ 𝑧) = ∫ Ф(𝑥𝑧)𝑓𝑚(𝑥)𝑑𝑥
>0

. Given 𝛿𝜇, 

the actual power is 

Pr (SNV ≥ Ф−1(1 − 𝛼)) = Pr (
�̅�𝑛(�̂�𝑚) − 𝜇0

𝜎 √𝑛(�̂�𝑚)⁄
≥ Ф−1(1 − 𝛼)

�̂�𝑚

𝜎
) 

                    = ∫ (1 − Ф (Ф−1(1 − 𝛼)
�̂�𝑚

𝜎
−

𝛿𝜇√𝑛(�̂�𝑚)

𝜎
)) d𝐹𝑚,𝜎(�̂�𝑚).                          (7) 

When 𝐸(𝑌) = 𝜇1, the probability distribution function for this SNV is 

Pr(SNV < 𝑥) = 1 − ∫ (1 − Ф(𝑥 ×
�̂�𝑚

𝜎
−

𝛿𝜇

𝜎
× (△−2 𝑇�̂�𝑚

2 + 1)1/2)) d𝐹𝑚,𝜎(�̂�𝑚). 

(7) could be rewritten as 

 

        Pr (SNV ≥ Ф−1(1 − 𝛼))          
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 = ∫ (1 − Ф (Ф−1(1 − 𝛼)
�̂�𝑚

𝜎
−

Δ+(𝛿𝜇−Δ)

𝜎
√𝑛∗(�̂�𝑚) +

𝛿𝜇

𝜎
(√𝑛∗(�̂�𝑚) − √𝑛(�̂�𝑚)))) d𝐹𝑚,𝜎(�̂�𝑚) 

    = ∫ (1 − Ф (−Ф−1(1 − 𝛽)
�̂�𝑚

𝜎
−

𝛿𝜇−Δ

𝜎
√𝑛∗(�̂�𝑚) +

𝛿𝜇

𝜎
(√𝑛∗(�̂�𝑚) − √𝑛(�̂�𝑚)))) d𝐹𝑚,𝜎(�̂�𝑚),(8) 

which depends on α, β, Δ, σ and 𝑚. The power increases as 𝛿𝜇 increases. When 𝛿𝜇 > Δ, the 

power has a lower bound 

 

           ∫ (1 − Ф (−Ф−1(1 − 𝛽) ×
�̂�𝑚

𝜎
)) 𝑑𝐹𝑚,𝜎(�̂�𝑚) = ∫ Ф(Ф−1(1 − 𝛽)𝑥)𝑓𝑚(𝑥)𝑑𝑥,         (9) 

which depends on β and 𝑚  only. At different nominal α and β values, Figure 1 

demonstrates the actual type-I error rate (6), power lower bound (9) and adjusted significance 

level profiles as 𝑚 varies. The observed type-I error rate inflation has also been reported by 

previous studies which used other sample size re-estimation approaches (e.g., Kairalla et al., 

2012). As 𝑚  increases, the actual type-I error rate and power lower bound monotonically 

approach the respective nominal values. When  𝑚  is moderate (e.g., 𝑚 = 15 ), neither the 

difference between the nominal and actual type-I error rates nor the difference between the 

nominal and actual powers is substantial. 

 

Figure 1: 𝛼-specific type-I error rate profiles (the left panel). 𝛽-specific power lower bound profiles (the 

middle panel). The horizontal lines are the respective nominal ones. 
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3.3 Power 

We numerically study the properties of the power function (7),(8). 

(1) When 𝛿𝜇 = Δ = log (2), Figure 2 (the left panel) shows the resultant power profile as 

𝑚 varies at 𝜎 = 2i−3, i =  0, . . . ,5. Power increases as 𝜎 decreases. When 𝜎 is small 

(e.g., 𝜎 = 1/4), the power could be larger than the nominal value (80%) and the 

power profile may not be monotonically increasing with m . When 𝜎  increases 

(e.g., 𝜎 > 1 ), power profiles monotonically increase as m  increases and profiles 

cluster with each other. 

(2) When 𝛿𝜇 = Δ = log (2), Figure 2 (the right panel) shows the resultant power profile 

as σ varies at m = 5 × i, i =  0, . . . ,5. When σ is small (e.g., 𝜎 < 1/2), smaller ms 

lead to larger powers conditional on σ. When σ gets larger (e.g., 𝜎 ≥ 1/2), smaller 𝑚 

leads to smaller powers conditional on σ. 

(3) When 𝜎 = 1, Figure 3 (the left panel) shows the resultant power profile as 𝛿𝜇 = Δ 

varies at 𝑚 = 5 × i, i = 1, ⋯ 5. Each power profile roughly monotonically increases 

as Δ increases. 

(4) When Δ = log (2) and σ = 1, Figure 3 (the right panel) shows the resultant power 

profile as 𝛿𝜇 varies at  𝑚 = 5 × 𝑖, 𝑖 = 1, ⋯ 5. Larger ms have larger powers. 

Instead of considering the probability of achieving the planned power, we observe that the 

achieved actual power is well above or close to the planned value as m increases to certain 

value (e.g., 15). 
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Figure 2: The exact power versus 𝑚 (the left panel) and 𝜎 (the right panel). The power is calculated at 

𝛿𝜇 = Δ = log(2). 

Figure 3: The exact power versus Δ (the left panel) and 𝛿𝜇 (the right panel). The left panel shows the 

power profiles at 𝛿𝜇 = Δ and 𝜎 = 1. The right panel shows the power profiles with Δ = log(2) and  σ =

1, where the vertical dotted line is 𝛿𝜇 = Δ. 
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3.4  Expected Sample Size 

Since sample mean and variances are independent of each other given sample size 𝑚, the 

recommended overall sample size (Section 3.1) may include the 𝑚 stage-I subjects before using 

the testing rule (5). 

(1) If 𝑛(�̂�𝑚) > 𝑚, we recruit additional 𝑛(�̂�𝑚) − 𝑚  subjects (additional to 𝑚) for the 

overall test. �̅�𝑛(�̂�𝑚) is subsequently available. 

(2) If 𝑛(�̂�𝑚) ≤ 𝑚 , we reuse a random sample (𝑛(�̂�𝑚)) out of the existent 𝑚  stage-I 

subjects (e.g., the first 𝑛(�̂�𝑚) out of 𝑚) to obtain �̅�𝑛(�̂�𝑚); 

For each stage-I size (𝑚), the actual expected overall sample size (𝑛) depends on (𝑚, 𝜎, Δ, 

𝛼, 𝛽). Specifically,  

𝐸(𝑛|𝑚) = Pr(𝑛(�̂�𝑚) ≥ 𝑚) × 𝐸(𝑛(�̂�𝑚)|𝑛(�̂�𝑚) ≥ 𝑚) + 𝑚 × Pr(𝑛(�̂�𝑚) < 𝑚) 

 

Given 𝜎 , the naive expected sample size comes from (1). We are interested in the 

difference between the expected sample sizes using SNV and (1). Figure 4 shows the resultant 

expected sample size difference under several settings. When 𝜎  gets larger, the difference 

becomes ignorable. Stage-I sample recycle or not are compared and our results indicate that the 

powers from two scenarios are close to each other (similar to the left panel in Figure 2). 

However, Figure 5 shows that, sample reuse may achieve a smaller type-I error rate compared 

to sample recruit (not reuse) when 𝜎 is smaller (e.g., = 1/8 , 1/4, 1/2). 

 
 

Figure 4: The expected sample size difference between SNV test (𝜎 unknown) and naive normal test (𝜎 

known) 
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Figure 5: The actual type-I error rate versus 𝑚 by simulation (𝛿𝜇 = Δ = log(2)). The left panel is stage-I 

sample reuse when the overall sample size is less thean m. The right panel is the recruiting new samples. 

When stage-I subjects are reused, the actual type-I error rate gets smaller (compared to sample recruit) as 

𝜎 becomes smaller (e.g., 𝜎 = 1/8, 1/4,1/2). 

 

4. Conclusion 

The proposed SNV approach to sample size planning (stage-I and overall) and hypothesis 

testing does not require pre-estimation of the variation from an external pilot study. This 

method is simple to implement and the collected information used for hypothesis testing comes 

from each stage of the trial to improve the efficiency. The achieved type-I error rate and power 

lower bound do not depend on the variation and are close to the nominal ones. Although the 

resultant expected overall sample size may be larger than that derived under the naive situation 

where the variation is known, the maximum difference is at most stage-I sample size when the 

variation is small and ignorable when the variation gets large. A universal selection of stage-I 

sample size (e.g., 𝑚∗=15) is feasible in view of the considered evaluation criteria. 
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