Predicting Future *CD*₄ Cell Counts of HIV/AIDS Patients by Non Stationary Markov Chain: A Case Study of Anambra State

U.A.Osisiogu¹ and Nwosu C.A.²

¹Department of Industrial Mathematics and Applied Statistics Ebonyi State University ² Department of Statistics Anambra State University

Abstract: A total of 1094 HIV patients were involved in a cohort study (from January-December 2010) with follow-up in their CD_4 cell transition counts and grouped according to their immunological states into five(5) states developed by Guiseppe Di Biase *et al* (2007). The five states (5) considered were: State one $(CD_4 > 500 \text{ cells/mm}^3)$, State two $(350 < CD_4 500 \text{ cells/mm}^3)$ State three $(200 < CD_4 350 \text{ cells/mm}^3)$, State four $(CD_4 200 \text{ cells/mm}^3)$, State five(Death). These states de ne the seriousness of the sickness based on the epidemiological states of the patients CD_4 cell counts. We use the non-stationary Markov chain model for the prediction. The estimation of the non-stationary probabilities were done using the exponential smoothing technique. The result of the prediction showed a gradual decrease of the CD_4 cells as we move from Jan-Dec. Furthermore, the result showed that the patients in the study cannot survive death from the month Dec. 2011, if they are not subjected to therapy, using highly active antiretrovirals (HAART). The results also showed that the model can be used for the testing of the drug e efficacy administered to patients within a given period.

Key words: Non Stationary Markov chain model, Transition probability, Transition probability matrix, *CD*₄ cell counts, Exponential smoothing techniques.

1. Introduction

Since the outbreak of HIV/AIDS epidemic in Nigeria in 1981 and 1983 respectively, cases of the disease have been reported in all the thirty-six (36) states of Nigeria, including Abuja, the Federal capital territory. Many studies have been carried out on HIV/AIDS, e.g life expectancy of patients [See Osisiogu U. A. and Nwosu (2013)] Zero-prevalence rate of the disease [See. Bowler, Sheon, and D'Angelo(1992), Young 1992]. The infection has become the number one cause of death for persons between 25-44 years of age [Centre for disease control and prevention (CDC)(1995)]. The study provides an example of the use of epidemiological data such as the CD_4 cell counts for estimating and projecting the impact of HIV/AIDS epidemics using the non-stationary Markov chain models.

The HIV's fatal effect arises from its attack of a person's CD_4 cell counts. The hallmark of the infection is the progressive depletion of the CD_4 cell counts which play a pivotal regulatory role in the immune response to infections and tumours (Anderson R. Met. al 1986). Infection by

the human immunodeficiency syndrome (AIDS) and which finally ends to death. A number of approaches have been used to quantify the magnitude of HIV/AIDS dynamics (See Osisiogu U. A., and Nwosu C. A (2013), Guiseppe Di Biase *et al*, (2007)) and the future predictive trend. We shall use the non-stationary Markov chain model in this paper for the analysis in predicting future CD_4 cell counts of HIV/AIDS patients.

2. Notations

The notations used are defined as follows.

- 1. K = the number of states in the system.
- 2. T =Calender times in months, T = 0, 1, 2, ...
- 3. $n_{ij}(T)$ = the number of patients in state *i* in month *T* who transited into state *j* in month *T*+1.
- 4. $n_{ii}(T)$ = number of patients in state *i* at the beginning of the month *T*.
- 5. $n_{i,k}(T)$ = number of patients who died from state *i* at month *T*.
- 6. $P_{ij} = \frac{n_{ij}(T)}{n_i(T)}$ is the probability that a patient in state *i* transits to state *j* at the end of the month *T*.
- 7. $N(T) = \sum_{i=1}^{K} n_i(T)$ = Total number of patients at the beginning of the period.
- 8. $W_i(T) = \frac{n_{i,k}(T)}{n_i(T)}$ = death rate of patients in state *i* at the month *T*.
- 9. $n_{0,j}(T+1) =$ new entrants into states *j* at the beginning of the month *T*.
- 10. α = Smoothing constants

3. The Markovian Model for the CD₄ Counts

The difference equation

$$\bar{n}_j(T+1) = \sum_{i=1}^N \bar{n}_{ij}(T) + n_{0\cdot j}(T+1) \quad (i = 1, 2, \dots, N) \quad (T = 0, 1, 2, \dots)$$
(1)

denotes the expected number of CD_4 counts of patients, where bars denote the expected value (j = 1, 2, ..., k); that is to say, the above equation is saying that patients in state j are made up of patients who transited to state j. Some of these variables may assume zero value. Take for example, the study of a cohort where no new entrants are allowed, in this case,

 $n_{0,c}(T+1) = 0$ where c = cohort study

Therefore, we can redefine the above model, by expressing the transition ow of the new entrants in terms of wastage i.e., death rate of patients within the month i.e.,

$$n_{0,i}(T+1) = W_i(T+1),$$

Then equation (1) becomes

$$\bar{n}_j(T+1) = \sum_{i=1}^N \bar{n}_{ij}(T) + W_j(T+1), \quad (j = 1, 2, ..., N) \quad (T = 0, 1, 2, ...)$$
(2)

If the transition probabilities are non-stationary, then we have that the transition probability given as:

$$P_{ij} = \frac{n_{ij}(T)}{n_i(T)} \quad (i, j = 1, 2, ..., k)$$
(3)

Substituting equation (3) in equation (2), we have

$$\bar{n}_j(T+1) = \sum_{i=1}^N P_{ij}\bar{n}_i(T) + W_j(T+1), \quad (T=0,1,2,\dots) \quad (j=1,2,\dots,K)$$
(4)

In vector form equation (4) becomes

$$n(T+1) = n(T)P(T) + W(T+1)$$
(5)

The non-stationary Markov chain model show themselves in the structure of the T-step transition probability matrix, unlike the stationary Markov chain model that is associated with the power of the one step transition probability matrix P, which is a common estimate of the transition probability matrices over the past months on the assumption that they are stationary over time (Osisiogu 2004). We note that these estimate are weighted sum of the estimates for each month, where the weights are proportional to n(T). If however we vary these weights and put more weights on the current transition probability matrices depending on the stochastic variation prevalent at the time of study, then equation (3) becomes

$$\hat{P}_{ij}(T) = \sum_{T=0}^{T*} \beta_i(\tau) P_{ij}(T)$$
(6)

where

$$\beta_i(\tau) = \alpha_i(1 - \alpha_i)^{\tau}$$
 and $\tau = T^* - T$, $(T = 0, 1, 2, ..., T^*)$

We can rewrite equation (6) in the form

$$\hat{P}_{ij}(T) = \alpha_i P_{ij}(T) + (1 - \alpha_i) P_{ij}(T - 1) \ (i, j = 1, 2, \dots, k) \ (T = 0, 1, 2, \dots, T^*)$$
(7)

and $\hat{P}_{ij}(T^*)$ is as defined in equation (6). Thus the transition probability matrix P used in this model for future prediction is the one whose elements are derived from equation (7) given that

$$\hat{P} = [\hat{P}_{ij}] \ (i, j = 1, 2, \dots, k)$$
(8)

[See Osisiogu U. A. and Nwosu (2013)] for more detail.

In determining the values of the exponential smoothing constants (α) the mean standard error is used (mean absolute error(MAE) is a measure of the forecast accuracy). The optimal values of the exponential smoothing constant to be used are determined through the method of trial and error. Using the different values of smoothing constants (α) within 0 to 1, we calculate their mean absolute error(MAE). The optimal value of the exponential smoothing constant is the value that generates the minimum mean absolute error. Another way which we may use is to run a retrospective simulation of the transition probabilities of the system using equation (5) for different values of α_i (i = 1, 2, ..., N), compare the forecast values with the actual values and

choose those values of α_i (i = 1, 2, ..., N), which are in some sense optimal. The following smoothing constants are tested in this paper.

Moodel I: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.25$ Moodel II: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.35$ Moodel III: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.40$ Moodel IV: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.45$ Moodel V: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.50$ Moodel VI: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.55$ Moodel VII: $\alpha_1 = \alpha_2 = \cdots = \alpha_5 = 0.60$

4. Application

We apply these models to the cohort study of 1094 HIV-positive patients with follow-up in their transition counts from January-December 2010 to carry analysis of the model using seven(7) different smoothing constants (See Table I). The optimal smoothing constant is used to predict future CD_4 cell counts for January-December 2011 and 2012.

Method

The CD_4 cell counts of these patients were classified into five (5) states based on the classification developed by Guiseppe Di Biase *et al* (2007).

The classifications are stated below: State I: $CD_4 > 500 cells/mm^3$ State II: $350 < CD_4 > 500 cells/mm^3$ State III: $200 < CD_4 < 350 cells/mm^3$ State IV: $CD_4 \le 200 cells/mm^3$ State V: Death(Absorbing State)

The transition matrices and the transition probabilities of the CD_4 cell counts of the 1094 HIV/AIDS patients of the cohort study for the twelve (12) observable months, January-December 2010 were computed as follows:

						-	
JANUARY		Ι	Π	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	95	99	48	18	12	272
$350 < CD_4 \le 500 \text{ cells}/mm^3$	Π	100	96	50	20	4	270
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	70	50	95	55	7	277
$CD_4 \leq 200 \text{ cells } /mm^3$	IV	76	95	30	64	10	275
DEATH	V	0	0	0	0	0	0
TOTAL							1094

Table I: Transition counts of CD4 cells in January 2010

Table I: Represents the transition counts of the CD_4 cells of the 1094 patients of the cohort study in the month of January 2010. Similar classifications were done for the month of February-December 2010 (See Appendix A). Model I

Table II: Transition probability matrix for the month of Jan 2010:

The transition probability matrix for the month of January 2010 were computed using equation (3) and similar computations were done for the months February-June 2010, using the smoothing constant, $\alpha = 0.25$

Table III: Transition probability matrix, \hat{P} for the months Jan-June 2010.

			Ι	II	III	IV	V
		Ι	0.322	0.344	0.200	0.110	0.023
		II	0.321	0.348	0.198	0.114	0.018
Р	=	III	0.239	0.287	0.326	0.128	0.018
		IV	0.237	0.327	0.284	0.131	0.021
		V	0	0	0	0	1

By equation (5), we predict the CD_4 cell counts for the months of July-December 2010, using the matrix \hat{P} (in table III). The mean absolute errors are computed from the difference between predicted CD_4 cell counts and the actual.

Table IV: Predicted CD_4 cell counts for the months of July-December 2010 with the mean absolute error (MAE)

MODEL I	STATES	PRED	ICTED	CD_4 C	ELL C	OUNT	S FOR	MEAN ABS
		THE	MON	THS OF	JULY	-DEC.	2010	ERROR(MAE)
		JULY	AUG	SEPT	OCT	NOV	DEC	
	Ι	239	234	229	224	220	215	
	II	241	235	230	225	221	216	
$\alpha = 0.25$	III	239	235	230	225	221	216	12.20
	IV	240	235	230	225	220	216	
	V	0	0	0	0	0	0	

5. Model II

Using equation (8), we compute the transition probability matrix \hat{P} for the months of January-June 2010, with the smoothing constant (α) = 0.35

Table V: Transition probability matrix \hat{P} for the months of Jan-June 2010

Using equation (5), we predict the CD_4 cell counts for the month of July-December 2010 for model II. The mean absolute error are computed from the difference between the predicted CD_4 cell counts and the actual.

Table VI: Predicted CD_4 cell counts. For the months of July-Dec 2010 with the mean absolute error (MAE)

MODEL II	STATES	PRED	ICTED	CD_4 C	ELL C	OUNT	S FOR	MEAN ABS
		THE	E MON	THS OI	F JULY	-DEC	2010	ERROR(MAE)
		JULY	AUG	SEPT	OCT	NOV	DEC	
	Ι	240	236	231	227	223	219	
	II	241	236	232	228	224	220	
$\alpha = 0.35$	III	240	237	232	228	224	220	10.70
	IV	240	236	232	228	224	220	
	V	0	0	0	0	0	0	

Model III

We compute the transition probability matrix \hat{P} for the months of Jan-June 2010, using equation (8) and a smoothing constant (α) = 0.40

Table VII: Transition probability matrix, \hat{P} for the months of Jan-June 2010 for Model III

$$P = III III III IV V$$

$$I = III 0.310 0.342 0.203 0.126 0.017$$

$$II 0.317 0.344 0.198 0.124 0.017$$

$$IV 0.239 0.306 0.324 0.118 0.015$$

$$IV 0.228 0.321 0.321 0.113 0.017$$

$$V 0 0 0 0 1$$

Using (5), we make predictions of the CD_4 cell counts for the months of July-December 2010 for model III. The mean absolute errors are computed from the difference between the predicted CD_4 cell counts and actual

MODEL III	STATES	PRED	[CTED	CD_4 C	ELL C	OUNT	S FOR	MEAN ABS
		THE	2 MON	THS OF	F JULY	-DEC	2010	ERROR(MAE)
		JULY	AUG	SEPT	OCT	NOV	DEC	
	Ι	241	236	232	228	225	221	
	II	241	237	233	229	225	221	
$\alpha = 0.40$	III	241	238	234	230	226	222	9.97

233

0

229

0

225

0

222

0

Table VIII: Predicted CD4 cell counts for the months of July-Dec 2010 with the absolute error (MAE)

Model IV

IV

V

240

0

237

0

We compute the transition probability matrix \hat{P} for model IV is obtained using equation (8) and a smoothing constant (α) = 0.45 for the months of January - June 2010:

Table IX: Transition probability matrix, \hat{P} for the months of Jan-June 2010 for model IV.

$$P = III = III = IV = V$$

$$I = III = III = IV = V$$

$$I = III = III = IV = V$$

$$II = III = 0.308 = 0.342 = 0.203 = 0.130 = 0.016$$

$$III = 0.238 = 0.309 = 0.323 = 0.115 = 0.015$$

$$IV = 0.227 = 0.320 = 0.327 = 0.111 = 0.016$$

$$V = 0 = 0 = 0 = 1$$

Using equation (5), we make predictions of the CD_4 cell counts for the months of July-December 2010 for model IV. The mean absolute errors are computed from the difference between the predicted values of the CD_4 cell counts and actual.

Table X: Predicted CD_4 cell counts for the months of the July-Dec 2010 with the mean absolute error (MAE)

MODEL IV	STATES	PRE	DICTI	$ED \ CD_{4}$	4 CELI	COUN	NTS	MEAN ABS
								ERROR(MAE)
		JULY	AUG	SEPT	OCT	NOV	DEC	
	Ι	241	237	233	229	226	222	
	II	241	237	233	230	226	222	
$\alpha = 0.45$	III	240	237	234	230	226	223	9.70
	IV	241	237	234	230	226	223	
	V	0	0	0	0	0	0	

MODEL V

We compute the transition probability matrix \hat{P} for the months of January - June 2010 using equation (8) and smoothing constant (α) = 0.50 for model V.

Table XI: Transition probability matrix \hat{P} for the months of Jan-June 2010 for model V. T II III IV V

$$P = III = III = III = IV = V$$

$$I = III = III = IV = V$$

$$I = III = 0.306 = 0.342 = 0.203 = 0.134 = 0.014$$

$$II = 0.319 = 0.342 = 0.196 = 0.128 = 0.015$$

$$IV = 0.238 = 0.311 = 0.322 = 0.114 = 0.015$$

$$IV = 0.226 = 0.318 = 0.332 = 0.109 = 0.015$$

$$V = 0 = 0 = 0 = 1$$

We use equation (5) to make predictions of the CD_4 cell counts for the months of July-Dec. 2010 for model V. The mean absolute errors are computed from the difference between the predicted CD_4 cell counts and the actual.

Table XII: Predicted	CD_4	cell	counts	for	the	month	of	JULY-DEC	2010	WITH	THE	MEAN
ABSOLUTE ERROR (MA	E)											

MODEL V	STATES	PRI	EDICT	NTS	MEAN ABS			
								ERROR(MAE)
SMOOTHING		ШIV	AUC	SEDT	OCT	NOV	DEC	
CONSTANT		JULI	AUG	SEP I	001	NOV	DEC	
	Ι	242	238	234	231	227	224	
	II	242	238	234	231	227	224	
$\alpha = 0.50$	III	240	238	234	231	227	224	9.23
	IV	240	238	234	231	227	224	
	V	0	0	0	0	0	0	

MODEL VI

The transition probability matrix \hat{P} is computed for the months of January-June 2010 using equation (8) and a smoothing constant (α) = 0.55

Table XIII: Transition probability matrix, \hat{P} for the months of Jan-June 2010

Using equation (5) we make predictions of the CD_4 cell counts for the months of July-Dec 2010. The mean absolute errors (MAE) are computed from the difference between the predicted CD_4 cell counts and the actual.

Table XIV: Predicted CD_4 cell counts for the months of July-Dec 2010 with the mean of absolute error (MAE)

MODEL VI	STATES	PRI	EDICT	NTS	MEAN ABS			
								ERROR(MAE)
SMOOTHING		IIIIV	AUC	CEDT	OCT	NOV	DEC	
CONSTANT		JOLI	AUG	SEPI	001	NOV	DEC	
	Ι	242	238	234	231	228	224	
	II	242	238	234	231	227	224	
$\alpha = 0.50$	III	240	238	234	231	227	224	9.20
	IV	241	238	234	231	228	224	
	V	0	0	0	0	0	0	

MODEL VII

The transition probability matrix \hat{P} is obtained for the months of January-June 2010 for model VII is computed by making use of equation (8) with a smoothing constant (α) = 0.60

Table XV: TRANSITION PROBABILITY MATRIX \hat{P} FOR THE MONTHS OF JAN-JUNE 2010

Using equation (5), we make predictions of the CD_4 cell counts for the months of July-Dec 2010. The mean absolute errors (MAE) are computed from the difference between the predicted CD_4 cell counts and the actual.

MODEL I	STATES	PRED	ICTED	CD_4 C	ELL C	OUNT	S FOR	MEAN ABS
		THE	MON	THS OF	JULY	-DEC 2	2010.	ERROR(MAE)
		JULY	AUG	SEPT	OCT	NOV	DEC	
	I	239	234	230	226	222	218	
	II	242	237	233	229	225	221	
$\alpha=0.60$	III	241	237	233	229	225	221	10.43
	IV	241	237	233	229	225	221	
	V	0	0	0	0	0	0	

Table XVI: Predicted CD₄ cell counts for the month of July-Dec 2010 with the mean absolute error(MAE)

6. Prediction

We have seen the efficacy of the model in making predictions. The results of the predicted CD_4 cell counts and their mean absolute errors have shown that $\alpha = 0.55$ is the optimal smoothing constant with a mean absolute error (MAE) of 9.2. We shall use the optimal smoothing constant $\alpha = 0.55$ to make predictions of the future CD_4 cell counts for the months of Jan-Dec, 2011 and 2012 (see Table XVII). The predicted and observed CD_4 cell counts from January to December 2010 is shown in Table XVIII

STATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Ι	234	230	226	223	220	216	213	210	207	204	201	198
II	227	223	220	217	213	210	207	204	201	198	195	192
III	231	229	225	222	219	215	212	209	206	203	200	197
IV	231	228	225	222	218	215	212	209	206	203	200	197
V	0	0	0	0	0	0	0	0	0	0	0	0

Table XVII: Predicted CD₄ cell count in 2011 (Jan-Dec)

	Table XVII: Predicted CD_4 cell count in 2012 (Jan-Dec)											
STATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Ι	195	160	132	109	80	74	61	50	41	34	28	23
II	189	156	128	101	87	72	59	48	40	33	27	22
III	194	160	131	108	89	73	60	50	41	34	28	23
IV	194	159	131	108	89	73	60	50	41	34	28	23
V	0	0	0	0	0	0	0	0	0	0	0	0

Table XVIII: Showing the predicted and obsoleted values for the month of Jan - Dec 2010

STA	ATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
т	PREDICTED	234	230	226	223	220	216	213	210	207	204	201	198
1	OBSERVED	272	267	260	273	238	237	258	231	232	256	242	244
п	PREDICTED	227	223	220	217	213	210	207	204	201	198	195	192
11	OBSERVED	270	275	260	262	259	257	259	256	251	252	223	223
Π	PREDICTED	231	229	225	222	219	215	212	209	206	203	200	197
111	OBSERVED	277	263	275	228	245	234	228	228	237	231	243	231
IV	PREDICTED	231	228	225	222	218	215	212	209	206	203	200	197
1 V	OBSERVED	275	250	250	250	245	252	224	249	238	238	237	242
V	PREDICTED	0	0	0	0	0	0	0	0	0	0	0	0
ľ	OBSERVED	0	0	0	0	0	0	0	0	0	0	0	0

7. Conclusion

We have used different values of exponential smoothing constants to estimate nonstationary transition probabilities in this paper. We observed that as the values of the exponential smoothing constant increases, the optimal smoothing constant tends towards having a minimal mean absolute error (MAE)[$\alpha = 0.55$, (MAE) = 9.2, See table XIV]. The prediction of the CD_4 cell counts with the optimal smoothing constant for the months of Jan-Dec 2011, showed some interesting results. We observe a gradual decrease of the CD_4 cell counts from the months of Jan-Dec, 2011. The decrease is as a result of the effect of the attack of the human immunodeficiency virus (HIV) on the CD_4 cells of patients. But with the administration of highly active antiretroviral therapy (HAART) the decrease of the CD_4 cells can be reduced. The results also suggest that patients cannot survive death from the month of Dec 2011 (See table XVII) if not placed on therapy (HAART). The use of highly active antiretroviral therapy (HAART) decreases the patients burden of HIV (Human immunodeficiency Virus), maintain function of the immune system, and prevents opportunistic infections that often lead to death. The beauty of this model is that it can be used to determine the effect of HAART on patients, using the predicted CD_4 cell counts as a base. Therefore we suggest that health management personnel should use the model for the prediction of CD_4 cell counts, so as to ascertain when to administer HAART, especially in the rural areas where quasihealth centres are the only health institutions available to HIV/AIDS patients.

Appendix

Year 2010							
JANUARY		Ι	II	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	95	99	48	18	12	272
$350 < CD_4 \le 500 \text{ cells}/mm^3$	II	100	96	50	20	4	270
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	70	50	95	55	7	277
$CD_4 \leq 200 \text{ cells } /mm^3$	IV	76	95	30	64	10	275
DEATH	V	0	0	0	0	0	0
FEBRUARY		Ι	II	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	110	90	50	15	2	267
$350 < CD_4 \le 500 \text{ cells}/mm^3$	II	80	120	55	15	5	275
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	65	90	70	30	8	263
$CD_4 \leq 200 \text{ cells } /mm^3$	IV	60	84	85	20	1	250

Appendix A

MARCH		Ι	II	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	95	86	50	20	9	260
$350 < CD_4 \le 500 \text{ cells}/mm^3$	II	75	90	50	37	8	260
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	70	95	80	24	6	275
$CD_4 \leq 200 \text{ cells } /mm^3$	IV	55	85	80	24	6	250
DEATH	V	0	0	0	0	0	0
APRIL		Ι	II	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	60	80	70	50	13	273
$350 < CD_4 \le 500 \text{ cells}/mm^3$	II	60	70	65	57	10	262
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	50	75	80	21	2	228
$CD_4 \leq 200 \text{ cells } /mm^3$	IV	60	70	85	25	10	250
DEATH	V	0	0	0	0	0	0
		T					
MAY		Ι	II	III	IV	V	TOTAL
$\begin{array}{c} \text{MAY} \\ \hline CD_4 > 500 \text{ cells } /mm^3 \end{array}$	I	I 80	II 90	III 50	IV 17	V 1	TOTAL 238
$\begin{array}{l} \text{MAY} \\ \hline CD_4 > 500 \text{ cells } /mm^3 \\ \hline 350 < CD_4 \leq 500 \text{ cells} /mm^3 \end{array}$	I II	I 80 90	II 90 100	III 50 55	IV 17 10	V 1 4	TOTAL 238 259
$\begin{array}{l} \text{MAY}\\ \hline CD_4 > 500 \text{ cells } /mm^3\\ \hline 350 < CD_4 \leq 500 \text{ cells} /mm^3\\ \hline 200 < CD_4 \leq 350 \text{ cells} /mm^3 \end{array}$	I II III	I 80 90 60	II 90 100 70	III 50 55 90	IV 17 10 23	V 1 4 2	TOTAL 238 259 245
$\begin{array}{l} \text{MAY}\\ \hline CD_4 > 500 \text{ cells } /mm^3\\ \hline 350 < CD_4 \leq 500 \text{ cells} /mm^3\\ \hline 200 < CD_4 \leq 350 \text{ cells} /mm^3\\ \hline CD_4 \leq 200 \text{ cells } /mm^3 \end{array}$	I II III IV	I 80 90 60 50	II 90 100 70 90	III 50 55 90 85	IV 17 10 23 19	V 1 4 2 1	TOTAL 238 259 245 245
$\begin{array}{l} {\rm MAY}\\ CD_4 > 500 \ {\rm cells} \ /mm^3\\ 350 < CD_4 \leq 500 \ {\rm cells} /mm^3\\ 200 < CD_4 \leq 350 \ {\rm cells} /mm^3\\ CD_4 \leq 200 \ {\rm cells} \ /mm^3\\ {\rm DEATH} \end{array}$	I II III IV V	I 80 90 60 50 0	II 90 100 70 90 0	III 50 55 90 85 0	IV 17 10 23 19 0	V 1 4 2 1 0	TOTAL 238 259 245 245 0
$\begin{array}{l} {\rm MAY}\\ CD_4 > 500 \ {\rm cells} \ /mm^3\\ 350 < CD_4 \leq 500 \ {\rm cells} \ /mm^3\\ 200 < CD_4 \leq 350 \ {\rm cells} \ /mm^3\\ CD_4 \leq 200 \ {\rm cells} \ /mm^3\\ {\rm DEATH} \end{array}$	I II III IV V	I 80 90 60 50 0	II 90 100 70 90 0	III 50 55 90 85 0	IV 17 10 23 19 0	V 1 4 2 1 0	TOTAL 238 259 245 245 0
$\begin{array}{l} {\rm MAY}\\ CD_4 > 500 \ {\rm cells} \ /mm^3\\ 350 < CD_4 \leq 500 \ {\rm cells} \ /mm^3\\ 200 < CD_4 \leq 350 \ {\rm cells} \ /mm^3\\ CD_4 \leq 200 \ {\rm cells} \ /mm^3\\ {\rm DEATH}\\ \end{array}$	I III IV V	I 80 90 60 50 0 I	II 90 100 70 90 0 II	III 50 55 90 85 0 III	IV 17 10 23 19 0 IV	V 1 4 2 1 0 V	TOTAL 238 259 245 245 0 TOTAL
$\begin{array}{l} \mbox{MAY}\\ \hline CD_4 > 500 \mbox{ cells } /mm^3\\ \hline 350 < CD_4 \leq 500 \mbox{ cells } /mm^3\\ \hline 200 < CD_4 \leq 350 \mbox{ cells } /mm^3\\ \hline CD_4 \leq 200 \mbox{ cells } /mm^3\\ \hline \mbox{DEATH}\\ \hline \mbox{JUNE}\\ \hline CD_4 > 500 \mbox{ cells } /mm^3 \end{array}$	I III IV V	I 80 90 60 50 0 I 70	II 90 100 70 90 0 II 80	III 50 55 90 85 0 IIII 45	IV 17 10 23 19 0 IV 40	V 1 4 2 1 0 V 2	TOTAL 238 259 245 245 0 TOTAL 237
$\begin{array}{l} {\rm MAY} \\ \hline CD_4 > 500 \ {\rm cells} \ /mm^3 \\ \hline 350 < CD_4 \le 500 \ {\rm cells} /mm^3 \\ \hline 200 < CD_4 \le 350 \ {\rm cells} /mm^3 \\ \hline CD_4 \le 200 \ {\rm cells} \ /mm^3 \\ \hline {\rm DEATH} \\ \hline \\ \begin{array}{l} {\rm JUNE} \\ \hline CD_4 > 500 \ {\rm cells} \ /mm^3 \\ \hline 350 < CD_4 \le 500 \ {\rm cells} /mm^3 \\ \hline \end{array} \end{array}$	I III IV V I I I I I I	I 80 90 60 50 0 I 70 85	II 90 100 70 90 0 1II 80 85	III 50 55 90 85 0 IIII 45 45	IV 17 10 23 19 0 IV 40 40	V 1 4 2 1 0 V 2 2 2	TOTAL 238 259 245 245 0 TOTAL 237 257
$\begin{array}{l} {\rm MAY} \\ CD_4 > 500 \ {\rm cells} \ /mm^3 \\ 350 < CD_4 \le 500 \ {\rm cells} \ /mm^3 \\ 200 < CD_4 \le 350 \ {\rm cells} \ /mm^3 \\ CD_4 \le 200 \ {\rm cells} \ /mm^3 \\ {\rm DEATH} \\ \end{array}$	I III IV V I I I II III	I 80 90 60 50 0 1 70 85 55	II 90 100 70 90 0 1I 80 85 85 75	III 50 55 90 85 0 III 45 70	IV 17 10 23 19 0 IV 40 30	V 1 4 2 1 0 V 2 2 4	TOTAL 238 259 245 245 0 TOTAL 237 257 234
$\begin{array}{l} {\rm MAY} \\ CD_4 > 500 \ {\rm cells} \ /mm^3 \\ 350 < CD_4 \le 500 \ {\rm cells} \ /mm^3 \\ 200 < CD_4 \le 350 \ {\rm cells} \ /mm^3 \\ CD_4 \le 200 \ {\rm cells} \ /mm^3 \\ \\ {\rm DEATH} \\ \end{array}$	I III IV V I II III III III IV	I 80 90 60 50 0 1 70 85 55 58	II 90 100 70 90 0 1I 80 85 75 75	III 50 55 90 85 0 III 45 70 85	IV 17 10 23 19 0 IV 40 30 31	V 1 4 2 1 0 V 2 2 4 3	TOTAL 238 259 245 245 0 TOTAL 237 257 234 252

NOVEMBER		Ι	II	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	80	65	55	40	2	242
$350 < CD_4 \le 500 \text{ cells}/mm^3$	II	72	65	44	40	2	223
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	50	80	70	42	1	243
$CD_4 \leq 200 \text{ cells } /mm^3$	IV	46	80	70	40	1	237
DEATH	V	0	0	0	0	0	0
DECEMBER		Ι	II	III	IV	V	TOTAL
$CD_4 > 500 \text{ cells } /mm^3$	Ι	83	75	50	35	1	244
$350 < CD_4 \le 500 \text{ cells}/mm^3$	II	75	60	50	35	3	223
$200 < CD_4 \le 350 \text{ cells}/mm^3$	III	56	65	78	30	2	231
$CD_4 < 200 \text{ cells } /mm^3$	IV	58	86	60	35	3	242
1 _ /	1.						

Appendix B: Transition Probability Matrix from Feb-Dec 2010

P((T)) For	FEB.
----	-----	-------	------

MARCH $P_{ij}(T)$

	Ι	II	III	IV	V		Ι	II	III	IV	V
Ι	0.412	0.337	0.187	0.056	0.007	I	0.365	0.331	0.192	0.077	0.027
II	0.290	0.436	0.200	0.058	0.007	II	0.289	0.346	0.192	0.142	0.031
III	0.247	0.342	0.266	0.114	0.030	III	0.255	0.346	0.291	0.089	0.022
IV	0.240	0.336	0.340	0.080	0.004	IV	0.220	0.340	0.320	0.096	0.024
V	0	0	0	0	1	V	0	0	0	0	1

	Ι	II	III	IV	V
Ι	0.220	0.293	0.256	0.183	0.048
Π	0.229	0.267	0.248	0.218	0.038
III	0.219	0.329	0.351	0.092	0.009
IV	0.240	0.280	0.340	0.100	0.040
V	0	0	0	0	1

MAY $P_{ij}(T)$

	Ι	II	III	IV	V
Ι	0.336	0.378	0.210	0.071	0.004
II	0.345	0.386	0.212	0.039	0.015
III	0.245	0.286	0.367	0.094	0.008
IV	0.204	0.367	0.347	0.078	0.004
V	0	0	0	0	1

JUNE	$P_{ij}(T)$						JULY I	$P_{ij}(T)$			
	Ι	II	III	IV	V		Ι	II	III	IV	\mathbf{V}
Ι	0.295	0.337	0.190	0.169	0.008	I	0.349	0.310	0.182	0.155	0.004
II	0.331	0.331	0.175	0.155	0.008	II	0.270	0.309	0.232	0.182	0.008
III	0.235	0.321	0.299	0.128	0.017	III	0.219	0.285	0.329	0.162	0.004
IV	0.230	0.298	0.337	0.123	0.012	IV	0.223	0.313	0.268	0.192	0.005
V	0	0	0	0	1	V	0	0	0	0	1
NOV	$P_{ij}(T)$						DEC P	$P_{ij}(T)$			
	Ι	II	III	IV	V		Ι	II	III	IV	V
Ι	0.331	0.269	0.227	0.165	0.008	I	0.340	0.307	0.205	0.143	0.004
II	0.323	0.292	0.197	0.179	0.009	II	0.336	0.269	0.224	0.157	0.014
III	0.206	0.329	0.288	0.173	0.004	III	0.242	0.281	0.338	0.130	0.009
IV	0.194	0.338	0.295	0.169	0.004	IV	0.240	0.355	0.248	0.145	0.012
V	0	0	0	0	1	V	0	0	0	0	1

References

- [1] Gani J. (1963). *Formulae for projecting enrolments and degree awards in universities*. Journal of Statistical Society. A. 126 pp 409-440
- [2] Bartholomew D. J. (1963) Stochastic Models for Social Process 2nd ed. Wiley London.
- [3] Anderson R. M., Medley G. F., May R. M., Johnson A. M. (1986): A preliminary study of the transition dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA Journal of Mathematics, Applied to Medicine and Biology vol. 3 no. 4 pp 229-263.
- [4] Bruce A. Craig and Peter P. Sendi (2002). *Estimation of the transition matrix of the discrete time Markov chain*. Department of statistics, Purdue University West Lefeyette U. S. A. Journal of Health Economics pp 32-42.
- [5] Cousine M. S., Shickle L. M, Bander J. A. (2002): An introduction to predictive modelling of disease management risk stratification. Journal of Disease Management pp 157-165.

- [6] Annah M. Jeffrey, Xiaohua Xia (2003): *When to initiate HIV therapy. A control theoretic Approach.* IEEE transaction on Biomedical Engineering vol. 50 No. 11.
- [7] Osisiogu U. A. (2004) Application of Non-stationary Markov chain model to a Graded Manpower System in Oyo State Nigeria. Journal of science vol. 38 pp 39-51.
- [8] Osisogu U. A. (2005) Application of Probabilistic Method in Analysis of Career prospect of staff of Oyo state civil service structure. Journal of information communication and computing technologies pp 81-87.
- [9] Osisiogu U. A. (2006). Prediction Secondary School Enrolment by NonStationary Markovchain model. A case study of secondary school Enrolment in Ogun State. Journal of Information communication and computing Technologies. Maiden Edition pp 90-94.
- [10] Osisiogu U. A, Nwosu C. A. (2013), Comparison Between Stationary Markov Chain Model and Non Stationary Markov Chain Model In The Tracking of CD₄ Cell Counts In An HIV/AIDS Patients And Determining Their Expected Life Expectancy, ICASTOR Journal of Mathematical Sciences Vol. 7, No. 2. pp 95-108.
- [11] Guiseppe Di Biase, Gughelimo D. Amico, Arturo Di Girolomo, Jacque Jansee, Stefeno Jacobilli, Nicola Tinari, Raimando Manca (2007): A Stochastic model for HIV/AIDS Dynamic evolution. Journal of Mathematical problem in Engineering vol. I Article 65636.
- [12] Milaslev Hajek and Yashik Sing (2011). *Medical A1-HIV/AIDS Treatment Management System*. Proceeding Extended Abstract Presented at the international conference Beyond A1-2011. Pilsen Czech Republic.
- [13] Young R. A. (1992): Seroprevalence of HIV among adolescent attendees in Mississippi STD clinics. A rural epidemic. Southern medical Journals, 85, 460-463.
- [14] Bowler SS, Sheon A. R., and D'Angelo L. J. (1992). HIV and AIDS among adolescents in the US. Increasing risk in the 1990's. Journal of Adolescence, 15, 345-371.
- [15] Center for Disease Control (CDC) (1995): MMWR Morbidity and Mortality weekly report. Recommended data and Report. vol. 44-No. RR-11.

Received March 15, 2013; accepted November 10, 2013.

U. A. Osisiogu Department of industrial mathematics and applied statistics Ebonyi State University P.M.B. 053, Abakaliki, Ebonyi STATE, NIGERIA. uaosisiogu1@yahoo.com Nwosu C. A. Department of Statistic Anambra State University Uli P.M.B.02 Uli. Ihiala L.G.A. Anambra State vikkycee@yahoo.com 114 Predicting Future CD4 Cell Counts of HIV/AIDS Patients by Non Stationary Markov Chain