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Abstract: We study a new five-parameter model called the extended Dagum 

distribution. The proposed model contains as special cases the log-logistic and Burr 

III distributions, among others. We derive the moments, generating and quantile 

functions, mean deviations and Bonferroni, Lorenz and Zenga curves. We obtain 

the density function of the order statistics. The parameters are estimated by the 

method of maximum likelihood. The observed information matrix is determined. 

An application to real data illustrates the importance of the new model. 
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1. Introduction 

The Dagum model pionnered by Camilo Dagum (1977, 1980) has been widely used in studies 

of income and wealth distributions. Its structural properties have been extensively investigated 

by several authors. For an excellent survey on the genesis and on empirical applications, see 

Kleiber and Kotz(2003) and Kleiber (2008). If a random variable Z has the Dagum distribution 

with positive parameters β, λ and δ, its cumulative distribution function (cdf) and probability 

density function (pdf) are given by (for z > 0) 

𝐺(𝑧; 𝜃) = (1 + 𝜆𝑧
−𝛿)

−𝛽
                                             (1) 

and 

𝑔(𝑧; 𝜃) = 𝛽𝜆𝛿𝑧
−𝛿−1(1 + 𝜆𝑧

−𝛿)
−𝛽−1

,                                (2) 

respectively, where 𝜃 =  (𝛽, 𝜆, 𝛿). The parameter λ is a scale parameter, whereas β and δ are 

shape parameters. Henceforth, the Dagum distribution with parameters β, λ and δ will be denoted 

by Da(𝛽, 𝜆, 𝛿).  It has positive asymmetry and it is unimodal for βδ > 1 and zero-modal for βδ ≤ 

1. The qth quantile and the rth ordinary moment of Z are given by 𝑧(𝑞) = 𝜆
1

𝛿(𝑞
−

1

𝛽 − 1)−
1

𝛿  and 

𝐸(𝑍𝑟) = 𝛽𝜆
𝑟

𝛿𝛽 (𝛽 +
𝑟

𝛿
, 1 −

𝑟

𝛿
),                                        (3) 

respectively, for 𝑟 < 𝛿, where B(·, ·) is the beta function. 

                                                           
 Corresponding author. 
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Recently, several authors have studied the Dagum distribution under some perspectives. 

Domma(2007) derived the asymptotic distribution of the maximum likelihood estimators (MLEs) 

of the parameters of the right-truncated Dagum ditribution. Domma et al. (2009) determined the 

information matrix in doubly censored data. Domma et al. (2011a) calculated the observed 

information matrix in right censored samples and Domma et al. (2011b) discussed aspects of the 

maximum likelihood estimation for censored data. Shahzad and Asghar (2013) obtained the L-

moments and TL-moments in closed-form. Domma et al. (2011c) studied the Dagum distribution 

from the perspective of reliability, whereas Domma and Perri (2009) investigated some 

developments of the log-Dagum distribution. Oluyede and Rajasoorya (2013) proposed the Mc-

Dagum distribution and studied some mathematical properties. Doma and Condino (2013) 

extended the Dagum distribution based on the beta generator pioneered by Eugene et al. (2002). 

Several methods for generating new classes of distributions by extending well-known models 

and at the same time providing great flexibility in modeling real data have been proposed in the 

last years. The use of new generators of continuous distributions from classical ones has become 

more common in the last ten years or so. Some examples are the beta-generated (Eugene et al., 

2002), gamma-generated (Zografos and Balakrishnan, 2009) and generalized Kumaraswamy 

(Cordeiro and de Castro, 2011) classes of distributions. 

For a continuous baseline cdf G(x), Cordeiro et al. (2013) defined the exponentiated 

generalized (“EG”for short) class of distributions by 

𝐹(𝑥) = [1 − {1 − 𝐺(𝑥)}𝑎]𝑏 ,                                            (4) 

where a > 0 and b > 0 are two extra shape parameters whose role is to add skewness and to vary 

tail weights. Because of its tractable cdf (4), the EG class can be used quite effectively even if 

the data are censored. The pdf corresponding to (4) is given by 

𝑓(𝑥) = 𝑎𝑏[1 − 𝐺(𝑥)]𝑎−1{1 − [1 − 𝐺(𝑥)]𝑎}𝑏−1𝑔(𝑥) 

The baseline distribution G(x) is a basic exemplar of (4) when a = b = 1. Setting a = 1 gives 

the exponentiated-G (exp-G) distribution. The case b = 1 corresponds to the Lehmman type II. 

So, the cdf (4) generalized both the exponentiated and Lehmman type II distributions. 

In this paper, we propose a new lifetime model, named the extended Dagum (EDa) 

distribution with cdf obtained from equation (4) by taking G(x) to be the cdf of the Dagum(β, λ, 

δ) distribution. We obtain some mathematical properties of the new distribution and discuss 

maximum likelihood estimation of its parameters. The rest of the paper is outlined as follows. In 

Section 2, we introduce the EDa distribution and provide a mixture representation for its density 

function. General expressions for the ordinary and incomplete moments are given in Section 3. 

In Section 4, we derive the moment generating function (mgf). In Section 5, we provide an 

expression for the quantile function (qf). The R ényi entropy is determined in Section 6. The 

mean deviations are calculated in Section 7. The Bonferroni, Lorenz and Zenga curves are 

obtained in Section 8. The density of the order statistics is determined in Section 9. The maximum 

likelihood estimation is addressed in Section 10. An application to real data is discussed in 

Section 11. Finally, concluding remarks are given in Section 12. 
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2. The Extended Dagum Distribution 

Replacing (1) in equation (4), we obtain the EDa distribution defined by the cdf and pdf  

𝐹(𝑥; 𝜍) = {1 − [1 − (1 + 𝜆𝑥−𝛿)
−𝛽

]𝑎}𝑏                              (5) 

and 

𝑓(𝑥; 𝜍) = 𝑎𝑏𝛽𝜆𝛿𝑥−𝛿−1(1 + 𝜆𝑥−𝛿)
−𝛽−1

[1 − (1 + 𝜆𝑥−𝛿 )
−𝛽

]𝑎−1{1 − [1−(1 + 𝜆𝑥−𝛿)
−𝛽

]𝑎}𝑏−1,  (6) 

respectively, where 𝜍 =  (𝛽, 𝜆, 𝛿, 𝑎, 𝑏)  is the parameter vector. Henceforth, a random 

variable X having the EDa pdf (6) with parameter vector & is denoted by X ∼ 𝐸𝐷𝑎(𝛽, 𝜆, 𝛿, 𝑎, 𝑏). 

The hazard rate function (hrf) and reverse hazard function of X are given, respectively, by 

ℎ(𝑥; 𝜍) =
𝑎𝑏𝛽𝜆𝛿𝑥−𝛿−1(1 + 𝜆𝑥−𝛿)−𝛽−1[1 − (1 + 𝜆𝑥−𝛿 )−𝛽]

𝑎−1
{1 − [1−(1 + 𝜆𝑥−𝛿)−𝛽]

𝑎
}

𝑏−1

1 − {1 − [1−(1 + 𝜆𝑥−𝛿)−𝛽]
𝑎
}

𝑏
, 

and 

𝑟(𝑥; 𝜍) =
𝑎𝑏𝛽𝜆𝛿𝑥−𝛿−1(1 + 𝜆𝑥−𝛿)−𝛽−1[1 − (1 + 𝜆𝑥−𝛿 )−𝛽]

𝑎−1
{1 − [1−(1 + 𝜆𝑥−𝛿)−𝛽]

𝑎
}

𝑏−1

{1 − [1−(1 + 𝜆𝑥−𝛿)−𝛽]
𝑎
}

𝑏
. 

Plots of the EDa pdf and hrf are displayed in Figures 1 and 2, respectively. The pdf (6) 

includes several distributions as special models. In fact, the Dagum distribution (with parameters 

β, λ and δ) is clearly a basic exemplar for a = b = 1. The extended Fisk (EFisk) and extended Burr 

III (EBuIII) distributions are new models which arise for β = 1 and λ = 1, respectively. The case 

b = 1 corresponds to the Lehmman type II Dagum distribution. 
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Figure 1: Plots of the EDa pdf. 

 

For ρ > 0 real non-integer and |𝑧|  <  1, we have 

(1 − 𝑧)𝜌 = ∑ (−1)𝑗 (
𝜌
𝑗 ) 𝑧𝑗∞

𝑗=0 .                                     (7) 

Expanding the binomials in (6) as in (7), we obtain 𝑓(𝑥;  𝜍) as a mixture of Dagum densities 

𝑓(𝑥;  𝜍) = ∑ 𝑤𝑗+1𝑔(𝑥; (𝑗 + 1)𝛽, 𝜆, 𝛿),∞
𝑗=0                              (8) 

where 

𝑤𝑗+1 = 𝑎𝑏 ∑
(−1)𝑗+𝑘

(𝑗+1)
(

𝑏 − 1
𝑘

) (
(𝑘 + 1)𝑎 − 1

𝑗
)∞

𝑘=0 ,                             (9) 

and 

𝑔(𝑥; (𝑗 + 1)𝛽, 𝜆, 𝛿) = (𝑗 + 1)𝛽𝜆𝛿𝑥−(𝛿+1)(1 + 𝜆𝑥−𝛿)
−(𝑗+1)𝛽−1
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denotes the Da(((𝑗 + 1)𝛽, 𝜆, 𝛿) density function. We can demonstrate using Mathematica that 

∑ 𝑤𝑗+1
∞

𝑗=0
= 1. The cdf corresponding to (8) is given by 

𝐹(𝑥; 𝜍) = ∑ 𝑤𝑗+1𝐺(𝑥; (𝑗 + 1)𝛽, 𝜆, 𝛿).∞
𝑗=0                                (10) 

Following Corderio et al. (2013), we can simulate observations from the 𝐸𝐷𝑎(𝛽, 𝜆, 𝛿, 𝑎, 𝑏) 

distribution from the relation 

𝑋 = 𝜆
1

𝛿{[1 − (1 − 𝑈
1

𝑏)
1

𝑎]
−

1

𝛽 − 1}−
1

𝛿,                                        (11) 

where U is uniform random variable. 

 
Figure 2: Plots of the EDa hrf. 
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3. Ordinary and Incomplete Moments 

The rth ordinary moment of X for 𝑟 < 𝛿 comes from equations (3) and (8) as 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = 𝛽𝜆

𝑟

𝛿 ∑ (𝑗 + 1)𝑤𝑗+1𝐵 ((𝑗 + 1)𝛽 +
𝑟

𝛿
, 1 −

𝑟

𝛿
) .∞

𝑗=0                    (12) 

Further, the central momnets(𝜇𝑝) and cumulants(𝜅𝑝) of X are easily obtained from equation 

(12) by 

𝜇𝑝 = ∑ (
𝑝
𝑘

) (−1)𝑘𝜇1
′𝑘𝑝

𝑘=0 𝜇𝑝−𝑘
′     and   𝜅𝑝 = 𝜇𝑝

′ − ∑ (
𝑝 − 1
k − 1

) 𝜅𝑘𝜇𝑝−𝑘
′𝑝−1

𝑘=1 , 

respectively, where 𝜅1 = 𝜇1
′ . Thus, 𝜅2 = 𝜇2

′ − 𝜇1
′2

, 𝜅3 = 𝜇3
′ − 3𝜇2

′ 𝜇1
′ + 2𝜇1

′3
,etc. 

Finally, the rth imcomplete moment X (for r < λ) is given by 

𝑚𝑟(𝑥) = ∑ 𝑤𝑗+1 ∫ 𝑡𝑟𝑔(𝑡; (𝑗 + 1)𝛽, 𝜆, 𝛿)
𝑥

0
∞
𝑗=0 𝑑𝑡  

= 𝛽λ
r

δ ∑ (𝑗 + 1)𝑤𝑗+1𝐵 (𝑦∗; (𝑗 + 1)𝛽 +
𝑟

𝛿
, 1 −

𝑟

𝛿
)∞

𝑗=0 ,             (13) 

where 𝑦∗ = (1 + 𝜆𝑥−𝛿)
−1

< 1 and 𝐵(𝑧; 𝑣1; 𝑣2) = ∫ 𝑤𝑣1−1(1 − 𝑤)𝑣2−1𝑑𝑤
𝑧

0
 is the incomplete 

beta function. 

This result can be useful in the study of the income inequality measures. 

 

4. Generating Function  

Here, we derive an explicit expression for the mgf 𝑀(𝑡;  𝜍) of X. First, we have from (2), the 

mgf of the Da(𝛽, 𝜆, 𝛿) distribution 

𝑀𝐷𝑎(𝑡) = 𝛽𝜆𝛿 ∫ 𝑒𝑡𝑥𝑥−𝛿−1(1 + 𝜆𝑥−𝛿)
−𝛽−1

𝑑𝑥.
∞

0
                       (14) 

Using the power series (𝑎𝑥 + 𝑏)−𝑘 = ∑
𝑎𝑗

𝑏𝑗+𝑘 (
−𝑘

𝑗
) 𝑥𝑗∞

𝑗=0  in equation (14) for k > 0 and the 

integral ∫ 𝑥𝛼−1𝑒−𝑝𝑥𝑑𝑥 = Γ(𝛼)𝑝𝛼∞

0
 (Prudnikove et al., 1986), we obtain (for t < 0) 

𝑀𝐷𝑎(𝑡) ∑ 𝜆𝑙 (
−𝛽 − 1

𝑙
) Γ(−(𝑙 + 1)𝛿)(−𝑡)−(𝑙+1)𝛿 .

∞

𝑙=0

 

Combining (8) and the last result, the mgf of X follows as 

𝑀(𝑡, 𝜍) = 𝛽𝜆𝛿 ∑ (𝑗 + 1)𝑤𝑗+1𝜆𝑙 (
−(𝑗 + 1)𝛽 − 1

𝑙
) 𝛤(−(𝑙 + 1)𝛿)(−𝑡)−(𝑙+1)𝛿 .∞

𝑗,𝑙=𝑜      (15) 

where 𝑤𝑗 + 1 is given by (9). 

 

5. Quantile Function  

By inverting equation (5), the qf of X is given by 



 
 Alisson de O. Silva, Luana Cecília M. da Silva, Gauss M. Cordeiro                      59 

 

𝑄(𝑢) = 𝜆
1

𝛿{[1 − (1 − 𝑢
1

𝑏)

1

𝑎
]

−
1

𝛽 − 1}−
1

𝛿
 .                              (16) 

The effect of the shape parameters a and b on the skewness and kurtosis of the new 

distribution can be based on quantile measures. The shortcomings of the classical skewness and 

kurtosis measures are well-known. One of the earliest skewness measures to be suggested is the 

Bowley skewness (Kenney and Keeping,1962) defined by the average of the quartiles minus the 

median divided by half the interquartile range, namely 

𝐵 =
𝑄(3/4) + 𝑄(1/4) − 2𝑄(1/2)

𝑄(3/4) − 𝑄(1/4)
. 

The Moors kurtosis is based on octiles 

𝑀 =
𝑄(7/8) − 𝑄(5/8) + 𝑄(3/8) − 𝑄(1/8)

𝑄(6/8) − 𝑄(2/8)
. 

These measures are less sensitive to outliers and they exist even for distributions without 

moments. 

In Figures 3 and 4, we plot the measures B and M for the EGDa distribution as functions of 

a and b for fixed values of the other parameter, respectively. These plots indicate that there is a 

great flexibility of the skewness and kurtosis curves of the new distribution. 

 
Figure 3: Skewness and kurtosis of X as a function of a for some values of b. 
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Figure 4: Skewness and kurtosis of X as a function of b for some values of a. 

 

6. R�́�nyi Entropy 

Entropy has been used in various situations in science and engineering. Numerous entropy 

measures have been proposed and studied in the literature. The entropy of a random variable X 

with pdf 𝑓(𝑥) is a measure of variation of the uncertainty. The Rényi entropy is defined by 

𝐼𝑅(𝜌) =
1

1−𝜌
𝑙𝑜𝑔{∫ 𝑓(𝑥)𝜌𝑑𝑥},                                      (17) 

where 𝜌 > 0 and 𝜌 ≠ 1. For further details, see Song (2001). 

The entropy of X can be express as 

𝐼𝑅(𝜌) =
1

1−𝜌
𝑙𝑜𝑔 {(𝑎𝑏𝛽𝜆𝛿)𝜌 ∫ 𝑥−𝜌(𝛿+1)(1 + 𝜆𝑥−𝛿)

−𝜌(𝛽+1)
[1 − (1 + 𝜆𝑥−𝛿)

−𝛽
]𝜌(𝑎−1)∞

0
×

{1 − [1 − (1 + 𝜆𝑥−𝛿)
−𝛽

]𝑎}𝜌(𝑏−1)𝑑𝑥} .                                                              (18) 

By using the power series (7) twice in equation (18), we have 

𝐼𝑅(𝜌) =
1

1 − 𝜌
𝑙𝑜𝑔 {(𝑎𝑏𝛽𝜆𝛿)𝜌 ∑ (−1)𝑗+𝑘 (

𝜌(𝑏 − 1)

𝑘
) (

(𝑘 + 𝜌)𝑎 − 𝜌
𝑗

)

∞

𝑗,𝑘=0

× ∫ 𝑥−𝜌(𝛿+1)(1 + 𝜆𝑥−𝛿)
−[𝛽(𝑗+𝜌)+𝜌]

∞

0

𝑑𝑥} . 

Setting 𝑦 = (1 + 𝜆𝑥−𝛿)
−1

 , such that 𝑥 = (
1−𝑦

𝜆𝑦
)

−
1

𝛿
, and after some algebra, we obtain 
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𝐼𝑅(𝜌) =
1

1 − 𝜌
log {𝜅(𝜌) ∑ 𝑣𝑗𝐵

∞

𝑗=0

(𝛽(𝑗 + 𝜌) −
(𝜌 − 1)

𝛿
,
𝜌

𝛿
(𝛿 + 1) −

1

𝛿
)} ,  

for 0 <  𝜌 < 1, where 𝜅(𝜌) = (𝑎𝑏𝛽)𝜌𝛿𝜌−1𝜆ρ−δ−1[𝜌(𝛿+1)−1]. 
and 

𝑣𝑗 = 𝑣𝑗(𝑎, 𝑏, 𝜌) = ∑(−1)𝑗+𝑘 (
𝜌(𝑏 − 1)

𝑘
) (

(𝑘 + 𝜌)𝑎 − 𝜌
𝑗

) .

∞

𝑘=0

 

 

7. Mean Deviation 

The amount of scatter in a population is evidently measured to some extent by the totality of 

deviations from the mean and median. These are know as the mean deviations about the mean 

and about the median defined by 

𝛿1 = ∫ |𝑥 − 𝜇1
′ |

∞

0
𝑓(𝑥)𝑑𝑥 and 𝛿2 = ∫ |𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥

∞

0
, 

respectively, where 𝜇1
′ = 𝐸(𝑋) and M = Median(X) denotes the median. From equation (16) 

𝑀 = 𝜆
1
𝛿{[1 − (1 − 2−

1
𝑏)

1
𝑎]

−
1
𝛽 − 1}

−
1
𝛿 .  

These measures can be determined using the following relationships 

𝛿1 = 2𝜇1
′ 𝐹(𝜇1

′ ) − 2𝑚1(𝜇1
′ ) and 𝛿2 = 𝜇1

′ − 2𝑚1(𝑀), 

where 𝐹(𝜇1
′ ) is calculated from (5) and 𝑚1(q) is the first incomplete moment of X obtained 

from (13) with r = 1. 

Finally, we have (for δ > 1) 

 
and 

 
 

8. Bonferroni, Lorenz and Zenga Curves 

Bonferroni and Lorenz curves have applications in several fields, principally economics and 

engineering. They are defined by  𝐵(𝑝) = 𝑚1(𝑞)/(𝑝𝜇1
′ )and 𝐿(𝑝) =  𝑚1(𝑞)/𝜇1

′ ,  respectively, 

where 𝜇1
′ =  𝐸(𝑋) and 𝑞 = 𝐹−1(𝑝). In addition, Zenga (2007) proposed an alternative curve 

based on the ratio of lower upper means defined by 
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𝐴(𝑝) = 1 −
𝜇−(𝑝)

𝜇+(𝑝)
, 

where 𝜇−(𝑝) =
𝑚1(𝑞)

𝑝
 and 𝜇+(𝑝) = [𝜇1

′ − 𝑚1(𝑞)]/(1 − 𝑝) are the lower and upper means, 

respectively. 

 We can write the Bonferroni, Lorenz and Zenga curves of X from (12) and (13) as (for δ >1) 
 

𝐵(𝑝) =
∑ 𝐵∞

𝑗=0 ((1 + 𝜆𝑞
−𝛿)

−1
; (𝑗 + 1)𝛽 +

1
𝛿

 , 1 −
1
𝛿

)

𝑝 ∑ 𝐵(∞
𝑗=0 (𝑗 + 1)𝛽 +

1
𝛿

 , 1 −
1
𝛿

)
, 

. 

𝐿(𝑝) =
∑ 𝐵∞

𝑗=0 ((1 + 𝜆𝑞
−𝛿)

−1
; (𝑗 + 1)𝛽 +

1
𝛿

 , 1 −
1
𝛿

)

∑ 𝐵(∞
𝑗=0 (𝑗 + 1)𝛽 +

1
𝛿

 , 1 −
1
𝛿

)
, 

 

and 
 

𝐴(𝑝) = 1 −
(1 − 𝑝) ∑ 𝐵∞

𝑗=0 ((1 + 𝜆𝑞
−𝛿)

−1
; (𝑗 + 1)𝛽 +

1
𝛿

 , 1 −
1
𝛿

)

𝑝 ∑ 𝐾𝑗
∞
𝑗=0

, 

where 𝐾𝑗 = 𝐵((𝑗 + 1)𝛽 +
1

𝛿
, 1 −

1

𝛿
) − 𝐵((1 + 𝜆𝑞

−𝛿)
−1

; (𝑗 + 1)𝛽 +
1

𝛿
, 1 −

1

𝛿
. 

 

9. Order statistics 

Order statistics appear in many areas of statistics and play an important role in practice. The 

density  𝑓𝑖:𝑛(𝑥) of the ith order statistic, for 𝑖 =  1, . . . , 𝑛,  from independent and identically 

distributed random variables 𝑋1, . . . , 𝑋𝑛 is given by 
 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖; 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖. 

The binomial expansion yields 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖;𝑛−𝑖+1)
∑ (−1)𝑘(𝑛−𝑖

𝑘
)𝐹(𝑥)𝑘+𝑖−1.𝑛−𝑖

𝑘=0                           (19) 

Substituting (5) and (6) in equation (19), we can write 

𝑓𝑖:𝑛(𝑥) =
𝑎𝑏𝛽𝜆𝛿

𝐵(𝑖; 𝑛 − 𝑖 + 1)
𝑥−𝛿−1(1 + 𝜆𝑥−𝛿)

−𝛽−1
[1 − (1 + 𝜆𝑥−𝛿)

−𝛽
]

𝑎−1

× ∑(−1)𝑘 (
𝑛 − 𝑖

𝑘
)

𝑛−𝑖

𝑘=0

{1 − [1 − (1 + 𝜆𝑥−𝛿)
−𝛽

]
𝑎

}
𝑏(𝑘+𝑖)−1

. 

Appling the binomial expansion twice in the previous equation, we obtain 
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𝑓𝑖:𝑛(𝑥) =
𝑎𝑏𝛽𝜆𝛿

𝐵(𝑖; 𝑛 − 𝑖 + 1)
𝑥−𝛿−1 ∑ ∑ ∑(−1)𝑙+𝑘+𝑟 (

(𝑟 + 1)𝑎 − 1
𝑙

)

∞

𝑟=0

(
𝑛 − 𝑖

𝑘
) (

𝑏(𝑘 + 𝑖) − 1
𝑟

)

𝑛−𝑖

𝑘=0

∞

𝑙=0

× (1 + 𝜆𝑥−𝛿)
−(𝑙+1)𝛽−1

. 

Finally, we have 

𝑓𝑖:𝑛(𝑥) = ∑ 𝑠𝑙+1𝑔(𝑥; (𝑙 + 1)𝛽, 𝜆, 𝛿),

∞

𝑙=0

 

where 

𝑠𝑙+1 =
𝑎𝑏

(𝑙 + 1)𝐵(𝑖; 𝑛 − 𝑖 + 1)
∑ ∑(−1)𝑙+𝐾+𝑟

∞

𝑟=0

𝑛−𝑖

𝑘=0

(
(𝑟 + 1)𝑎 − 1

𝑙
) (

𝑛 − 𝑖
𝑘

) (
𝑏(𝑘 + 𝑖) − 1

𝑟
) 

Then, the density of the EDa order statistics is a linear combination of Dagum densities. So, 

some mathematical properties of the EDa order statistics follow from the Dagum distribution. 

 

10. Maximum likelihood estimation 

We consider estimation of the parameters of the EDa distribution by the method of maximum 

likelihood. Let 𝑥 =  (𝑥1, … , 𝑥𝑛)⊤be a sample of size n from the EDa distribution with unknown 

parameter vector 𝜍 = (𝛽, 𝜆, 𝑎, 𝑏). The total log-likelihood function for 𝜍 is 
 

ℓ(𝜍) = 𝑛 𝑙𝑜𝑔(𝑎) + 𝑛 𝑙𝑜𝑔(𝑏) + 𝑛 𝑙𝑜𝑔(𝛽) + 𝑛 𝑙𝑜𝑔(𝜆) + 𝑛 𝑙𝑜𝑔(𝛿) − (𝛿 + 1) ∑ 𝑙𝑜𝑔(𝑥𝑖)

𝑛

𝑖=1

+ (1

+
1

𝛽
) ∑ 𝑙𝑜𝑔(𝑧𝑖) + (𝑎 − 1) ∑ 𝑙𝑜𝑔(𝑧�̅�) + (𝑏 − 1) ∑ log(𝑧�̅�

𝑎)

𝑛

𝑖=1

,

𝑛

𝑖=1

𝑛

𝑖=1

  

where zi = 𝑧𝑖(𝛽, 𝜆, 𝛿) = (1 + 𝜆𝑥𝑖
−𝛿)

−𝛽
and 𝑧�̅� = 1 − 𝑧𝑖 ,  for 𝑖 = 1, … , 𝑛. By taking the 

partial derivative of the above log-likelihood function with respect to β , λ , δ , a and b, we obtain 

the components of the score vector 𝑈𝜍 = (𝑈𝛽 , 𝑈𝜆 , 𝑈𝛿 , 𝑈𝑎 , 𝑈𝑏)
⊤

 

 

𝑈𝛽 =
𝑛

𝛽
+

1

𝛽
∑ log(𝑧𝑖) −

(𝑎 − 1)

𝛽

𝑛

𝑖=1

∑
log (𝑧𝑖)

𝑧𝑖
−1 − 1

−
𝑎(𝑏 − 1)

𝛽
∑

𝑧�̅�
𝑎log (𝑧𝑖)

(𝑧𝑖
−1 − 1)(𝑧�̅�

𝑎 − 1)
,

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑈𝜆 =
n

𝜆
− (𝛽 + 1) ∑

1

𝜆 + 𝑥𝑖
𝛿

+ (𝑎 − 1)𝛽 ∑
1

(𝜆 + 𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)

𝑛

𝑖=1

𝑛

𝑖=1

 

          +𝑎(𝑏 − 1)𝛽 ∑  
𝑧�̅�

𝑎

(𝜆 + 𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

,

𝑛

𝑖=1
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𝑈𝛿 =
𝑛

𝛿
− ∑ log(𝑥𝑖) − (𝛽 + 1)𝜆

𝑛

𝑖=1

∑
log (𝑥𝑖)

𝜆 + 𝑥𝑖
𝛿

− (𝑎 − 1)𝛽𝜆 ∑
log (𝑥𝑖)

(𝜆 + 𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)

𝑛

𝑖=1

𝑛

𝑖=1

 

          −𝑎(𝑏 − 1)𝛽𝜆 ∑
𝑧�̅�

𝑎 log(𝑥𝑖)

(𝜆 + 𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

,

𝑛

𝑖=1

 

𝑈𝑎 =
𝑛

𝑎
+ ∑ log(𝑧�̅�) + (𝑏 − 1) ∑

𝑧�̅�
𝑎 log(𝑧�̅�)

𝑧�̅�
𝑎 − 1

,

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑈𝑏 =
𝑛

𝑏
+ ∑ 𝑙𝑜𝑔(1 − 𝑧�̅�

𝑎) .

𝑛

𝑖=1

 

 

The maximum-likelihood estimate(MLE) 𝜍̂ = (�̂�, �̂�, 𝛿, �̂�, �̂�)
⊤

of  𝜍 = (𝛽, 𝜆, 𝛿, 𝑎, 𝑏)⊤ is obtain 

by solving the nonlinear equations 𝑈𝛽 = 0, 𝑈𝜆 = 0, 𝑈𝛿 = 0, 𝑈𝑎 = 0  and 𝑈𝑏 = 0.  These 

equations cannot be solved analytically, but we can use iterative techniques such as a Newton-

Raphson type algorithm to calculate ς ̂. The Broyden-Fletcher-Goldfarb-Shanno method (see e.g., 

Nocedal and Wright, 1999; Press et al., 2007) with analytical derivatives has been used for 

maximizing the log-likehood function ℓ(𝜍).  
The normal approximation of the MLE of 𝜍  can be used for constructing approximate 

confidence intervals and for testing hypotheses on the parameters 𝛽, 𝜆, 𝛿, 𝑎 and 𝑏. The elements 

of the observed information matrix 𝐽(𝜍) = −𝜕2ℓ(𝜍)/𝜕𝜍 𝜕𝜍⊤ are given in the Appendix. We can 

construct approximate confidence regions for the parameters based on the multivariate normal 

𝑁5(0, 𝐽(𝜍̂)−1) distribution. 

  Further, the likelihood ratio (LR) statistic can be used for comparing this distribution with 

some of its special models. We can compute the maximum values of the unrestricted and 

restricted log-likelihoods to obtain LR statistics for testing some sub-models of the EDa 

distribution. 

 

11. Application 

We use a real data set to compare the fits of the EDa distribution with three of its sub-models 

and with two other non-nested models, namely: 

 the Kumaraswamy Burr XII (KwBuXII) distribution (Parana´ıba et al., 2012). Its pdf 

(for x > 0) is given by 

𝑓𝐾𝑤𝐵𝑢𝑋𝐼𝐼|(𝑥) = 𝑎𝑏𝑐𝑘𝑠−𝑐𝑥𝑐−1 [1 + (
𝑥

𝑠
)

𝑐

]
−𝑘−1

{1 − [1 + (
𝑥

𝑠
)]

−𝑘

}

𝑎−1

[1 − {1 + (
𝑥

𝑠
)

−𝑘

}

𝑎

]

𝑏−1

. 

 the beta Dagum (BDa) distribution (Doma and Condimo, 2013). Its pdf (for x > 0) is 

given by 

𝑓BDa(𝑥) =
𝛽𝜆𝛿𝑥−𝛿−1

𝐵(𝑎, 𝑏)
(1 + λx−δ)

−β−1
[(1 + 𝜆𝑥−𝛿)

−𝛽
]𝑎−1[1−(1 + 𝜆𝑥−𝛿)

−𝛽
]𝑏−1. 



 
 Alisson de O. Silva, Luana Cecília M. da Silva, Gauss M. Cordeiro                      65 

 

The parameters are estimated by maximum likelihood as described in Section 10 using the R 

software. The data set was studied by Andrews and Herzberg (1985), Cooray and Ananda (2008) 

and, more recently, by Paranaı́ba et al. (2012). The n = 101 observations represent the stress-

rupture lifes of kevlar 49/epoxy strands subjected to constant sustained pressure at the 90% stress 

level until all had failed such that we obtain a complete data with exact failure times. 

  Table 1 lits the MLEs (and their standard errors) of the parameters and the Akaike 

information criterion (AIC) for the fitted models. These results indicate that the EDa distribution 

has the lowest AIC value among all fitted models, and so it could be chosen as the best model. 

In order to assess if the model is appropriate Figure 5(a) and 5(b) display the histogram of the 

data and the plots of the fitted EDa, exp-Da and BDa distributions and the empirical and their 

estimated survival functions, respectively. These plots indicate that the EDa distribution provides 

the best fit to these data. 

 
Table 1: MLEs and AIC. 
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Figure 5: (a) The estimated densities of the EDa, exp-Da and BDa models for stress data. (b) The estimated 

survival functions from the fitted EDa, exp-Da and BDa distributions and the empirical survival for stress 

data. 

 

In addition, we use the formal goodness-of-fit tests in order to verify which distribution fits 

better to the current data. We consider the Cramér-von Mises (𝑊∗) and Anderson-Darling (𝐴∗) 

statistics (Chen and Balakrishnan, 1995). In general, the smaller the values of the statistics W∗ 

and A∗, the better the fit to the data. The values of the statistics 𝑊∗ and 𝐴∗ for all models are 

listed in Table 2. Based on the values of these statistics, we conclude that the EDa model yields 

the best fit to the current data. 

 

Table 2: Goodness-of-fit tests. 

 
 

12. Concluding remarks 

We propose a new five-parameter lifetime model referred to as the extended Dagum (EDa) 

distribution, which is based on the exponentiated generalized class of distributions recently 

introduced by Cordeiro et al. (2013). The new distribution contains as special models the 

extended Dagum, extended Burr III, extended log-logistic, log-logistic, Burr III and Dagum 
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distributions. We demonstrate that the EDa density function can be expressed as a linear 

combination of the Dagum densities. Based on this result, we derive some structural properties 

of the proposed distribution and provide the ordinary and incomplete moments, generating 

function and quantile function. We also obtain the Rényi entropy, mean deviations, Bonferroni, 

Lorenz and Zenga curves and the density of ith order statistic. The estimation of the model 

parameters is approached by maximum likelihood and the observed information matrix is derived. 

The usefulness of the new distribution is illustrated by means of a real data set. 
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Appendix 

The observed information matrix for the parameter vector 𝜍̂ = (�̂�, �̂�, �̂�, �̂�, �̂�)
⊤

 is given by 

𝐽(𝜍) =
∂2ℓ(𝜍)

𝜕𝜍𝜕𝜍⊤
= {−𝑈𝑟𝑠}, 

Where 𝑟, 𝑠 ∈ {𝛽, 𝜆, 𝛿, 𝑎, 𝑏} and the elements are given by  

𝑈𝛽𝛽 = −
𝑛

𝛽2
−

(𝑎 − 1)

𝛽2
∑

𝑧𝑖
−1log2(𝑧𝑖)

(𝑧𝑖
−1 − 1)2

−
𝑎(𝑏 − 1)

𝛽2
∑

log2(𝑧𝑖) 𝑧�̅�
𝑎[𝑧𝑖

−1(𝑧�̅�
𝑎 − 1) + 𝑎]

(𝑧𝑖
−1 − 1)

2
(𝑧�̅�

𝑎 − 1)
2 ,

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑈𝜆𝜆 =  −
𝑛

𝜆2
 + (β + 1) ∑

1

(𝜆 + 𝑥𝑖
𝛿)

2

𝑛

𝑖=1

−  (𝑎 −  1)𝛽 ∑
𝛽 𝑧𝑖

−1  +  𝑧𝑖
−1  −  1

(𝜆 +  𝑥𝑖
𝛿)

2
(𝑧𝑖

−1  −  1)
2

𝑛

𝑖=1

 

             − a(b −  1)β ∑
𝑧�̅�

𝑎[(𝛽𝑧𝑖
−1 + 𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)𝛼𝛽]

(𝜆 + 𝑥𝑖
𝛿)

2
(𝑧𝑖

−1 − 1)
2

(𝑧�̅�
𝑎 − 1)

2

𝑛

𝑖=1

, 

𝑈𝛿𝛿  = −
𝑛

𝛿2
− (𝛽 + 1)𝜆 ∑

𝑥𝑖
𝛿𝑙𝑜𝑔2(𝑥𝑖)

(𝜆 + 𝑥𝑖
𝛿)

2

𝑛

𝑖=1

− (𝑎 −  1)𝛽𝜆 ∑
𝑙𝑜𝑔2(𝑥𝑖)[𝛽𝜆 𝑧𝑖

−1  − 𝑥𝑖
𝛿(𝑧𝑖

−1  −  1)]

(𝜆 +  𝑥𝑖
𝛿)

2
(𝑧𝑖

−1  −  1)
2

𝑛

𝑖=1

 

−𝑎(𝑏 − 1)𝛽𝜆 ∑
𝑙𝑜𝑔2(𝑥𝑖)𝑧�̅�

𝑎{𝛽𝜆 [𝑧𝑖
−1( 𝑧�̅�

𝑎 − 1) + 𝑎] −  𝑥𝑖
𝛿(𝑧𝑖

−1  −  1)(𝑧�̅�
𝑎 − 1)}

(𝜆 +  𝑥𝑖
𝛿)

2
(𝑧𝑖

−1  −  1)
2

(𝑧�̅�
𝑎 − 1)

2

𝑛

𝑖=1

,  

𝑈𝑎𝑎 = −
𝑛

𝑎2
− (𝑏 − 1) ∑

𝑧�̅�
𝑎 log2 𝑧�̅�

(𝑧�̅�
𝑎 − 1)2 

,

𝑛

𝑖=1

 

𝑈𝑏𝑏 = −
𝑛

𝑏2
, 

𝑈𝛽𝜆 = − ∑
1

𝜆 +  𝑥𝑖
𝛿

𝑛

𝑖=1

+ (𝑎 − 1) ∑
𝑧𝑖

−1 + 𝑧𝑖
−1 𝑙𝑜𝑔(𝑧𝑖) − 1

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)
2

𝑛

𝑖=1
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           +𝑎(𝑏 − 1) ∑
𝑧�̅�

𝑎{𝑙𝑜𝑔(𝑧𝑖) [𝑧𝑖
−1(𝑧�̅�

𝑎 − 1) + 𝑎] + (𝑧𝑖
−1 − 1)(𝑧�̅�

𝑎 − 1)}

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)
2

(𝑧�̅�
𝑎 − 1)

2

𝑛

𝑖=1

, 

𝑈𝛽𝛿 = 𝜆 ∑
𝑙𝑜𝑔(𝑥𝑖)

𝜆 +  𝑥𝑖
𝛿

𝑛

𝑖=1

+ (𝑎 − 1)𝜆 ∑
𝑙𝑜𝑔(𝑥𝑖)[−𝑧𝑖

−1 − 𝑧𝑖
−1 log(𝑧𝑖) + 1]

(𝜆 + 𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)
2

𝑛

𝑖=1

 

           −𝑎(𝑏 − 1)𝜆 ∑
𝑙𝑜𝑔(𝑥𝑖) 𝑧�̅�

𝑎{log (𝑧𝑖)[𝑧𝑖
−1(𝑧�̅�

𝑎 − 1) + 𝑎] + (𝑧𝑖
−1 − 1)(𝑧�̅�

𝑎 − 1)

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)
2

(𝑧�̅�
𝑎 − 1)

2

𝑛

𝑖=1

, 

𝑈𝛽𝑎 = −
1

𝛽
∑

𝑙𝑜𝑔(𝑧𝑖)

𝑧𝑖
−1 − 1

𝑛

𝑖=1

−
(𝑏 − 1)

𝛽
∑

log (𝑧𝑖)𝑧�̅�
𝑎[𝑧�̅�

𝑎 − 𝑎log(𝑧�̅�) − 1]

(𝑧𝑖
−1 − 1)(𝑧�̅�

𝑎 − 1)
2

𝑛

𝑖=1

 

𝑈𝛽𝑏 = −
𝛼

𝛽
∑

𝑙𝑜𝑔(𝑧𝑖)𝑧�̅�
𝑎

(𝑧𝑖
−1 − 1)(𝑧�̅�

𝑎 − 1)
,

𝑛

𝑖=1

 

𝑈𝜆𝛿 = (𝛽 + 1) ∑
𝑥𝑖

𝛿 𝑙𝑜𝑔(𝑥𝑖)

(𝜆 +  𝑥𝑖
𝛿)

2 + (𝑎 − 1)

𝑛

𝑖=1

𝛽 ∑
log (𝑥𝑖)[𝛽𝜆𝑧𝑖

−1 − 𝑥𝑖
𝛿(𝑧𝑖

−1 − 1)]

(𝜆 +  𝑥𝑖
𝛿)

2
(𝑧𝑖

−1 − 1)
2

𝑛

𝑖=1

 

            +𝑎(𝑏 − 1)𝛽 ∑
𝑙𝑜𝑔(𝑥𝑖) 𝑧�̅�

𝑎{𝛽𝜆[𝑧𝑖
−1(𝑧�̅�

𝑎 − 1) + 𝑎] − 𝑥𝑖
𝛿(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

(𝜆 + 𝑥𝑖
𝛿)

2
(𝑧𝑖

−1 − 1)
2

(𝑧�̅�
𝑎 − 1)

2

𝑛

𝑖=1

, 

𝑈𝜆𝑎 = 𝛽 ∑
1

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)

𝑛

𝑖=1

+ (𝑏 − 1)𝛽 ∑
𝑧�̅�

𝑎[𝑧�̅�
𝑎 − 𝑎log(𝑧�̅�) − 1]

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

2 ,

𝑛

𝑖=1

 

𝑈𝜆𝑏 = 𝛼𝛽 ∑
𝑧�̅�

𝑎

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

,

𝑛

𝑖=1

 

𝑈𝛿𝑎 = −𝛽𝜆 ∑
log (𝑥𝑖)

(𝜆 + 𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)
− (𝑏 − 1)𝛽𝜆 ∑

log (𝑥𝑖)𝑧�̅�
𝑎[𝑧�̅�

𝑎 − 𝑎log(𝑧�̅�) − 1]

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

2 ,

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑈𝛿𝑏 = −𝛼𝛽𝜆 ∑
log(𝑥) 𝑖)𝑧�̅�

𝑎

(𝜆 +  𝑥𝑖
𝛿)(𝑧𝑖

−1 − 1)(𝑧�̅�
𝑎 − 1)

,

𝑛

𝑖=1

 

and 

𝑈𝑎𝑏 = ∑
𝑧�̅�

𝑎log (𝑧�̅�)

𝑧�̅�
𝑎 − 1

𝑛

𝑖=1

 

where 𝑧𝑖and 𝑧�̅� are defined in Section 10. 
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