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Abstract: Motivated by a situation encountered in the Well Elderly 2 study, the 

paper considers the problem of robust multiple comparisons based on K 

independent tests associated with 2K independent groups. A simple strategy is to 

use an extension of Dunnett’s T3 procedure, which is designed to control the 

probability of one or more Type I errors. However, this method and related 

techniques fail to take into account the overall pattern of p-values when making 

decisions about which hypotheses should be rejected. The paper suggests a multiple 

comparison procedure that does take the overall pattern into account and then 

describes general situations where this alternative approach makes a practical 

difference in terms of both power and the probability of one or more Type I errors. 

For reasons summarized in the paper, the focus is on 20% trimmed means, but in 

principle the method considered here is relevant to any situation where the Type I 

error probability of the individual tests can be controlled reasonably well. 
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1. Introduction 

Considers the situation where K independent tests are performed yielding the p-values 

𝑝1, … , 𝑝𝐾 .  In the meta analysis literature, there are well-known methods for testing the 

assumption that all K hypotheses are true based on these K p-values (e.g., Hedges & Olkin, 1985; 

Cousins, 2008). Perhaps the best-known method for accomplishing this goal is a technique 

derived by Fisher (1932), which is reviewed in section 2. But a limitation of all these methods is 

that they do not indicate which are significant given the goal of controlling the familywise error 

rate (FWE), meaning the probability of one or more Type I errors. That is, rejecting via Fisher's 

method, for example, indicates that not all K hypotheses are true, but of course it can be of interest 

to determine which of the K hypotheses should be rejected. One goal in the paper is to suggest a 

generalization of Fisher's method, called method F here, which is aimed at dealing with this issue. 

                                                           
 Corresponding author. 
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Recently, Chen and Nadarajah (2014) suggested an alternative to Fisher's method. It will be 

evident that the Chen and Nadarajah method can replace Fisher's method when applying method 

F. The resulting multiple comparisons procedure will be called method CN. 

The motivation for this paper stems from a situation encountered in the Well Elderly 2 study 

(Jackson et al., 2009; Clark, et al., 1997). A portion of the study dealt with the impact of an 

intervention program aimed at reducing depressive symptoms in older adults. One goal was to 

compare a control group to an experimental group with a separate analysis done for three ethnic 

groups: Caucasian, Black/African American and Hispanic/Latino. For convenience, these three 

ethnic groups are labeled A, B and C, respectively. The data were skewed with outliers, so the 

control group was compared to the experimental group using 20% trimmed means in conjunction 

with the method derived by Yuen (1974). The resulting p-values were .022, .126 and .096, 

respectively. With FWE set at .05, none of the three tests are significant using a simple 

generalization of Dunnett’s (1980) T3 procedure; see Wilcox (2012, section 7.4.1), which will 

be called method YSM henceforth. (Details of this method are summarized in section 2.) Using 

instead the improvement on the Bonferroni method derived by Hochberg (1988), or the method 

derived by Benjamini and Hochberg (1995) aimed at controlling the false discovery rate, again 

all three tests are not significant. However, Fisher's (1932) method for testing the hypothesis that 

all three hypotheses are true, based on these three p-values, yields a significant result at the .011 

level. But what, if anything, can be said about which tests should be rejected? More generally, 

how might global tests based on p-values be extended to multiple comparisons and under what 

circumstances, if any, would such a method offer a practical advantage in terms of power? 

A simple step-down technique is suggested for performing multiple tests based on p-values. 

A criticism of the new method is that it does not provide confidence intervals for the differences 

between the measures of location. However, certainly there is some interest regarding the strength 

of the empirical evidence that the typical response in say an experimental group is greater than 

the typical response for participants in a control group. In an 2 exploratory study, particularly 

when the sample sizes are relatively small, if there is evidence that an experimental treatment has 

practical value, this might help motivate further study with the goal of getting a reasonably 

precise estimate of some appropriate measure of effect size.   

The method studied here is based in part on 20% trimmed means. As is well known, heavy-

tailed distributions, roughly meaning distributions for which outliers are likely to occur, appear 

to be quite common based on modern outlier detection techniques, as predicted by Tukey (1960). 

Consequently, when comparing groups using the usual sample mean, power can be relatively 

poor. In addition, skewed distributions can result in poor control over the Type I error probability 

and inaccurate confidence intervals (e.g., Wilcox, 2012a, b). These practical concerns are reduced 

substantially using Yuen's (1974) method (e.g. Wilcox, 2012b). In the event sampling is from 

normal distributions, power is nearly as high as methods based on means. This follows almost 

immediately from results reported by Rosenberger and Gasko (1983) who studied the efficiency 

of trimmed means. In terms of maximizing power when dealing with data from actual studies, 

there is some evidence that a 20% trimmed mean is usually preferable (e.g., Wu, 2002.) This is 

not to suggest, however, that a 20% trimmed mean is always optimal-it is not. For example, when 
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dealing with sufficiently heavy-tailed distributions, the usual sample median can have a 

substantially smaller standard error than the mean or 20% trimmed mean, which might translate 

into substantially higher power and shorter confidence intervals. But a concern about the usual 

sample median is that for normal distributions, it can have a relatively large standard error, 

roughly because it trims too many observations. As will be made evident, the methods studied 

here are relevant when using any method for comparing measures of location that provide 

reasonably good control over the Type I error probability. 

Section 2 describes the details of the proposed method. Section 3 reports simulation results 

on the ability of the new method to control FWE and how it compares to a generalization of 

Dunnett’s T3 procedure in terms of both Type errors and power. 

  

2. Description of the Method   

Momentarily consider a single random sample: 𝑋1, … , 𝑋𝑛.  Let 𝑋(1) ≤ ⋯ ≤ 𝑋(𝑛)  be the 

values written in ascending order and let 𝑔 =  ⌊𝛾𝑛⌋, where 0 ≤ 𝛾 ≤  .5, where ⌊𝛾𝑛⌋  is the 

greatest integer less than or equal to 𝛾𝑛. Then the γ-trimmed mean is 

X̅𝑡 =
1

𝑛 − 2𝑔
∑ 𝑋(𝑖).

𝑛−𝑔

𝑖=𝑔+1

 

For reasons already explained, the focus is on 𝛾 =.2, the 20% trimmed mean. The sample 

Winsorized mean is 

�̅� =
1

𝑛
∑ 𝑊𝑖

𝑛

𝑖=1

 

and the sample Winsorized variance is 

𝑠{𝑤}
2 =

1

𝑛 − 1
∑(𝑊𝑖 − �̅�)2, 

where for 𝑖 =  1, … , 𝑛, 

Wi = {

𝑋(𝑔+1), if 𝑋𝑖 ≤ 𝑋(𝑔+1)          

         𝑋𝑖,        if 𝑋(𝑔+1) < 𝑋𝑖 < 𝑋(𝑛−𝑔)

𝑋(𝑛−𝑔), if 𝑋𝑖 ≥  𝑋(𝑛−𝑔).       

                        (1) 

 

Method YSM 

For two independent groups let 𝜇𝑡1 and 𝜇𝑡2 denote the population trimmed means, which are 

estimated by �̅�𝑡1and �̅�𝑡2, respectively. Let 𝑔𝑗  = ⌊. 2𝑛𝑗⌋ where 𝑛𝑗  is the sample size associated 

with the jth group (j = 1, 2). Let 

𝑑𝑗 =
(𝑛𝑗−1)𝑠𝑤𝑗

2

ℎ𝑗(ℎ𝑗−1)
,                                                    (2) 
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Where S𝑤𝑗
2  is the Winsorized variance for the jth group and  ℎ𝑗 =  𝑛𝑗 − 2𝑔𝑗. Yuen’s 

methodfor testing 𝐻0: 𝜇𝑡1 and 𝜇𝑡2  is based on the test statistic 

Ty =
�̅�𝑡1−�̅�𝑡2

√𝑑1+𝑑2
                                                        (3) 

The null distribution is approximated with a Student's t distribution having degrees of 

freedom 

𝑣 =
(𝑑1 + 𝑑2)2

𝑑1
2

ℎ1 − 1
+

𝑑2
2

ℎ2 − 1

. 

 

When Yuen’s method is applied K times, method YSM consists of controlling FWE using a 

critical value based on the Studentized maximum modulus distribution  �̂�𝒋𝒌 degrees of freedom, 

where �̂�𝒋𝒌 is the value of  �̂� based on the data associated with groups j and k. 

 

2.1  Description of the Method  

Now consider a situation where Yuen’s method is applied K times where all K tests are 

independent and p-values are based on Student’s t distribution with �̂� degrees of freedom. 

Denote the resulting p-values by 𝑝1, … , 𝑝𝐾. As previously noted, there are several methods 

for testing the global hypothesis that all K tests are not significant based on these K independent 

p-values. The method derived by Fisher (1932) is based on the test statistic 

F = −2 ∑ log(𝑝𝑖), 

which has a chi-squared distribution with 2K degrees of freedom when all K hypotheses are true. 

That is, reject at the α level if F exceeds the 1 − 𝛼 quantile of a chi-squared distribution with 2K 

degrees of freedom. 

Recently, Chen and Nadarajah (2014) suggested an alternative to Fisher's method. The test 

statistic (for two-sided hypotheses) is 

𝐶 = ∑ Φ−1(𝑝𝑖/2), 

where Φ−1(𝑝𝑖/2)  is the 𝑝𝑖/2 quantile of a standard normal distribution. The null distribution of 

C is a chi-squared distribution with K degrees of freedom. Simulation results reported by Chen 

and Nadarajah (2014) indicate that their method and Fisher's method tend to have higher power 

compared to several other test statistics that have been proposed. Regarding Fisher's test, this is 

consistent with other studies summarized by Cousins (2008). However, it is also known that the 

power of alternative methods can depend on the pattern of the p-values. 

Consider, for example, the largest of the K p-values, say 𝑝𝑀. If all K hypotheses are true, then 

a simple modification of the method derived by Tippett (1931) would be to conclude that at least 
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one of the K hypotheses is false if 𝑝𝑀 is less than or equal to the α quantile of a beta distribution 

with parameters K and 1. If, for example, six independent tests are performed and all six p-values 

are equal to .2, both Fisher's method and the method derived by Chen and Nadarajah are not 

significant at the .05 level. In contrast, 𝑝𝑀   rejects at the .001 level. For this reason, 𝑝𝑀  was 

considered in the context of the multiple comparison technique described in section 2.1, but 

simulations indicated that generally its power does not compare well to the Fisher or Chen-

Nadarajah techniques, so pM is not discussed further. 

  Momentarily focus on Fisher's method. The multiple comparison technique studied here is 

based on a simple step-down strategy. An approach that is not quite satisfactory is described first, 

followed by a modification aimed at improving the control over the probability of one or more 

Type I errors. 

  Let 𝑝(1) ≤ ⋯ ≤ 𝑝(𝐾)  denote the ordered p-values and suppose the goal is to have the 

probability of one or more Type I errors equal to 𝛼. First, perform Fisher’s global test based on 

all K p-values. If not significant at the 𝛼 level, stop. If significant, reject the hypothesis associated 

with the smallest p-value and then apply Fisher's method based on 𝑝(2) ≤ ⋯ ≤ 𝑝(𝐾) again at the 

𝛼 level. If not significant, stop. If significant, reject the hypothesis associated 𝑝(2) and then apply 

Fisher's method based on 𝑝(3) ≤ ⋯ ≤ 𝑝(𝐾) at the 𝛼 level. Continue in this fashion until a non-

significant is obtained or all K hypotheses are rejected. 

  A rough argument that the step-down procedure just described will provide reasonably good 

control over the probability of one or more Type I errors is as follows. First consider the case 

where all K hypotheses are true. Then when using the step-down approach, the probability of one 

or more Type I errors is controlled at the 𝛼 level simply because the probability of rejecting at 

the first step is 𝛼. Consider the case where exactly one of the K hypotheses is false. Further 

imagine that for the one false hypothesis, power is close to one, in which case, with near certainty, 

step 2 will be reached and Fisher's method would be applied based on 𝐾 − 1 true hypotheses. 

Because, Fisher's method controls the probability of one or more Type I errors based on the 𝐾 −

1 true hypotheses, the probability of one or more Type I errors will be equal to 𝛼. In a similar 

manner, if two hypotheses are false and there is a high probability that they are rejected, then in 

step 3, again the probability of rejecting one or more of the 𝐾 − 2 true hypotheses is 𝛼. 

 

Method F  

However, this argument for using the step-down method is not completely satisfactory. 

Consider a situation where some of the hypotheses are true but some are false. For the true 

hypotheses, the goal is to have the probability of one or more Type I errors approximately equal 

to some specified α value. A speculation was that in situations where the power associated with 

the false hypotheses is relatively low, it might be possible that the probability of one or more 

Type I errors exceeds α for the true hypotheses. This was found to be the case in simulations. 

The probability of one or more Type I errors was found to be as high as .075, and in one case .08, 

when testing at the .05 level. To guard against this possibility, the step-down method was 

modified to terminate as follows. At step k, if Fisher's method is significant at the 𝛼/𝑘 level, 

reject the hypothesis associated with 𝑝(𝑘) and continue to the next step, otherwise stop. In effect, 
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a novel application of the sequentially rejective method derived by Hochberg (1988) is used to 

control the probability of one or more Type I errors. This will be called method F henceforth. 

Simulations in section 3 strongly indicate that the probability of one or more Type I errors will 

not exceed the nominal level under normality. Indeed, the probability of one or more Type I 

errors was found to be very close to the nominal level for K = 4, 10 and 20 and when sampling 

from a normal distribution. For non-normal distributions, simulations indicate that FWE is again 

controlled well, even when there is heteroscedasticity. 

 

Method CN 

Method F was described in terms of Fisher’s test, but of course the argument for considering 

the proposed approach applies to any reasonable alternative to Fisher’s test such as the Chen-

Nadarajah method. Method CN refers to method F but with Fisher's test replaced by the Chen-

Nadarajah test. 

Table 1: Some properties of the g-and-h distribution 

 
 

3. Description of the Method   

Simulations were used to check the properties of the step-down method and how it compares 

to method YSM. As a partial check on the impact of non-normality, observations were generated 

from g-and-h distributions, which contain normal distributions as a special case.  

To elaborate, let Z be a standard normal random variable. Then 

𝑊 = {

exp(𝑔𝑍) − 1

𝑔
exp(ℎ𝑍2/2) , if  𝑔 > 0

𝑍𝑒𝑥𝑝(ℎ𝑍2/2),                                 if    𝑔 = 0

 

has a g-and-h distribution where 𝑔 and h are parameters that determine the first four moments 

(Hoaglin, 1985). The standard normal distribution corresponds to 𝑔 = ℎ = 0. The case 𝑔 = 0 

corresponds to a symmetric distribution, and as 𝑔 increases, skewness increases as well. The 

parameter h determines heavy tailedness. As h increases, heavy tailedness increases. The six 

marginal distributions considered here are (𝑔, h) = (0,0), (0, 2), (.2, 0) and (2., .2 ). So a standard 

normal distribution is included and corresponds to 𝑔 = h = 0. Table 1 summarizes the skewness 

(𝜅1) and kurtosis (𝜅2) for the g-and-h distributions used in the simulations. 

Let 𝑋𝑖𝑘  and 𝑌𝑖𝑘  (𝑖 = 1, … , 𝑛;  𝑘 = 1, … , 𝐾) denote the data generated from 2K independent 

groups. For each k the hypothesis of equal trimmed means is tested via Yuen’s method using the 
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𝑋𝑖𝑘 and 𝑌𝑖𝑘 values. The sample sizes used were 𝑛1 = 𝑛2 = 20 and 200. A few simulations were 

run with additional sample sizes as will be indicated. No new insights were achieved with  𝑛1 =
𝑛2 = 200, so for brevity they are not reported. To assess power, the impact of heteroscedasticity, 

as well as FWE when fewer than K of the hypotheses are true, 𝑌𝑖𝑘 was replaced by 𝜆𝑌𝑖𝑘 + 𝛿𝑘 . 

For K = 6 the choices for the 𝛿𝑘  values included 𝛿 = (0,0,0,0,0,0), meaning that all six hypotheses 

are true, (.1,.2,.2,0,0,0), (.1,.2,.2,0,0,0),(5,.5,.5,0,0,0), (1.5,1.5,1.5,0,0,0), in which case three 

hypotheses are true and three are false, and finally (1,1,1,1,1,1) and (4,.4,.4,.4,.4,.4). The choices 

for 𝜆 were 1 (homoscedasticity) and 4. Skewed distributions were shifted so that the population 

trimmed mean is zero, in which case the population trimmed mean associated with 𝜆𝑌𝑖𝑘 is not 

altered when 𝜆 ≠ 1. 
Table 2 reports the estimated Type I error probabilities for the situations where all hypotheses 

are true, and where three hypotheses are true. For the case where three hypotheses are true, results 

are reported for 𝛿 = (.1, .2, .2,0,0,0) and 𝛿 = (.5, .5, .5,0,0,0). So the last six columns of Table 2 

indicate the estimate of FEW among the three true hypotheses. Both X and Y have the g-and-h 

distribution indicated by column 1 and 2. Estimated Type I error probabilities were based on 

4000 replications. If, for example, the actual level is .05, then the standard error of the estimated 

level is√. 05(.95)/4000 = .003. Results using Fisher's method, the Chen-Nadarajah method, 

and the extension of Yuen's method (Wilcox, 2012, section 7.4.1) are labeled F, CN and YSM, 

respectively. As can be seen, the highest estimate using F is .060 and .061 when using CN, which 

occurred 𝑔 = .2, ℎ =  0 and 𝜆 = 4. Increasing n to 30 the estimates are .0.57, 0.61 and 0.61 for 

methods F, CN and YSM, respectively. For n=50 the estimates are .052, .051 and .054. The 

lowest estimates are .027, .028 and .019 for F, CN and YSM, respectively. So all indications are 

that generally F and CN have actual levels about as close or closer to nominal level than YSM. 

Table 2: Estimated probability of one or more Type I errors, α=.05,n_1=n_2=20,K=6 

 
 

A few additional simulations were run with n = 400, 𝑔 = ℎ = 0 and λ =1 as a partial check 

on the software and the large sample properties of method F and CN. For situations where three 

of the six hypotheses are true, again the estimated FWE was close to the nominal level. For the 

situation where one hypothesis is true, the expectation was that the probability of a Type I error 

would be less than or equal to the nominal level, particularly when power is relatively low for 
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the hypotheses that are false, simply because the likelihood of reaching the true hypothesis is 

relatively low. For the situation where the difference between the population trimmed means is .2 

for five of the hypotheses, the probability of rejecting the one true hypothesis was estimated to 

be .039 using F. (For n = 20 the estimate is .019.) (A similar result was obtained with CN.) 

Increasing the differences in the population trimmed means to .5, the probability of rejecting the 

one true hypothesis was estimated to be .010. So even with a fairly large sample size there is 

room for improvement. 

Table 3 reports estimated power, meaning the probability of detecting one or more false 

hypotheses. As can be seen, all indications are that F and CN have more power than YSM, with 

F seeming to have a slight advantage over CN. 

 

Table 3: Estimated power, the probability of detecting one or more true difference, α=.05, 𝑛1 = 𝑛2 =
20, 𝐾 = 6 

 
 

Additional simulations were run with K=10 and 20 yielding results that were very similar to 

those reported in Table 2 and 3. For example, when K =20, 𝑔 = ℎ = 0, 𝜆 = 1 and all K hypothese 

are true, FEW was estimated to be .055, .052 and .058 for methods F, CN and YSM, repectively. 

 

4. Concluding Remarks 

As previously noted, a step-down variation of method YSM was considered in the 

simulations in section 3 that is based on a generalization of the technique derived by Holm (1979). 

Simulations indicate that it performs in a very similar manner to YSM in terms of both Type I 

errors and power. That is, it offers no advantage and does not perform as well as methods F and 

CN, so details about the method were not provided.  

All indications are that the step-down method studied here controls FWE fairly well, better 

than the extension of Yuen’s method, and simultaneously it provides better power, sometimes 

substantially so. But as previously noted, a limitation of the method is that it does not provide 

confidence intervals having some specified simultaneous probability coverage. Also, while all of 

the simulation results indicate that the step-down method performs well in terms of controlling 

FWE, it is evident that this does not constitute a proof that this will always be the case. The only 
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point is that the empirical evidence indicates that it has practical value in terms of both FWE and 

power. 
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