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Abstract: : In this paper, we discussed classical and Bayes estimation procedures 

for estimating the unknown parameters as well as the reliability and hazard 

functions of the flexible Weibull distribution when observed data are collected 

under progressively Type-II censoring scheme.  The performances of the maximum 

likelihood and Bayes estimators are compared in terms of their mean squared errors 

through the simulation study. For the computation of Bayes estimates, we proposed 

the use of Lindley’s approximation and Markov Chain Monte Carlo (MCMC) 

techniques since the posteriors of the parameters are not analytically tractable. 

Further, we also derived the one and two sample posterior predictive densities of 

future samples and obtained the predictive bounds for future observations using 

MCMC techniques. To illustrate the discussed procedures, a set of real data is 

analysed. 

 

Key words: Progressive Type-II censored data, reliability and hazard functions, 

maximum likelihood estimation, Bayes estimation, Bayes prediction 

 

1. Introduction 

The probability density function of the flexible Weibull distribution is defined as follows 

𝑓(𝑥) = (𝛼 +
𝛽

𝑥2) exp (𝛼𝑥 −
𝛽

𝑥
) exp (− 𝑒𝑥𝑝(𝛼𝑥 −

𝛽

𝑥
)) ;  𝑥 > 0, 𝛼 > 0, 𝛽 > 0.            (1) 

The flexible Weibull distribution is proposed by [3] and has the nice closed forms of 

reliability and hazard functions are given by  

𝑅(𝑥) = 𝑒𝑥𝑝 (𝑒𝑥𝑝 (−𝑒𝛼𝑥−
𝛽

𝑥)) ; 𝑥 > 0, 𝛼, 𝛽 > 0.                           (2) 

and 

ℎ(𝑥) = (𝛼 +
𝛽

𝑥2) 𝑒𝑥𝑝 (−𝑒𝛼𝑥−
𝛽

𝑥) ;  𝑥 > 0, 𝛼, 𝛽 > 0.                       (3) 
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[3] has discussed the some statistical properties of the flexible Weibull distribution and 

shown  its applicability to a set of real data  of times between failures of secondary reactor  pumps. 

They have also shown that this distribution is able to model various types of data with IFR 

(Increase Failure Rate), IFRA (Average Increase Failure Rate), and MBT (modified bathtub) 

shaped hazard rates. Therefore, this distribution provides an alternative platform to lifetime data 

analysis over other existing well- known lifetime distributions such exp, gamma, and Weibull 

etc. Recently,  [19] discussed the inferential procedures  for estimating the  parameters and  future  

order  statistics of the  flexible Weibull  (FW) distribution under  the Type-II  censoring scheme. 

There are many situations where the experimental units may damaged or lost accidentally or 

intentionally removed  for some  other  purposes  from  the  life-test  at  the  time  before  

completion of the experiment.  For  making  the  inference  from such  type of data  thus  obtained,  

the  conventional Type-I  and  Type-II  censoring  scheme are found to be inappropriate. To 

overcome such a difficulty arise  in  survival  studies, [6] introduced a  methodology of the 

sampling  mechanism  for life-testing procedures  which  facilitate  to  incorporate the  accidental 

breakage  into analysis. Since then, the estimation procedures based on the progressively 

censored samples have been widely discussed in the literature. For a comprehensive review of 

progressive censoring, the readers may be referred to [2, 1]. The estimation of the parameters of 

various lifetime distribution based on the progressive Type-II censoring scheme can also be found 

in [7, 8, 12, 13, 18, 24, 15] and references cited therein. 

[11] and [22] have discussed the prediction problems of future  order statistics from Weibull 

distributions  in case of progressive  censoring  scheme under symmetric and asymmetric loss 

functions  respectively. Very recently, [20] developed the estimation and prediction procedures 

for the generalized Lindley distribution under the progressive Type-II censoring scheme with 

beta-binomial removals (PT- IICBBR). 

In this paper, first we will discuss the estimation of the parameters, reliability and hazard 

function of FW  distribution when only the  progressive  Type-II censored  sample  is available  

for the  analysis purpose,  and secondly, the predictive  inference will be performed  for the future  

samples censored due to the consideration of the progressive Type-II  censoring scheme. 

Under the  above considerations, we organized the rest of the paper as follows: In section 2, 

the construction of the  likelihood  function  of the  FW  distribution is described  while the  

progressively Type  II  right censored  sample  is observed.  Section  3 deals  with  maximum  

likelihood  estimation (MLE)  of the  parameters as well as reliability  and  hazard  functions. In 

section 4, Bayes estimation for the parameters, reliability and hazard functions have been 

discussed. In its subsections, Lindley’s approximations and Markov Chain Monte Carlo (MCMC) 

techniques have been utilized to compute Bayes estimates.  Section 5 deals with simulation study 

to compare classical and Bayes estimators. For illustration, a set of real data is discussed in 

Section 6.  In sections 7 and 8, one and two sample prediction problems have been considered 

for FW distribution respectively. Section 9 provides the conclusions. 

 

2.  Sampling mechanism and likelihood function 
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Let an experiment starts with n identical experimental units at time 0. Here, the number of 

failures corresponds to the stages of the experiment, then, to reach at the m the stage of the 

experiment, we progressively proceeds in the following way. As soon as the first failure 𝑥1 is 

observed, some units say 𝑟1 are removed/lost from the remaining (n-1) surviving units at the first 

stage of the experiment. At the second stage, 𝑥2 is observed and 𝑟2 units are removed/lost from 

remaining 𝑛 − 2 − 𝑟1 units, and so on, and finally at mth stage, failure of the mth unit 𝑥𝑚 is 

observed and experiment is stopped removing all the remaining 𝑟𝑚=𝑛 − 𝑚 − ∑ 𝑟𝑗
𝑚−1
𝑗=1  units from 

the experiment. Such a sampling mechanism is termed as the progressive Type-II censoring 

scheme. Here, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 be a progressively Type II censored sample with progressive 

censoring scheme R = (r1, r2, ⋯ , rm). 

To get a progressive Type-II censored sample of size m from the flexible Weibull distribution, 

we used the algorithm given in [2], which can be described as follows: If 𝑊𝑖~ Uniform(0, 1); i = 

1,2, ⋯,m. The PT-IICS from standard uniform distribution can be obtained by using the following 

relationship 

                                               𝑈𝑖 = 1 − 𝑉𝑚 

𝑈𝑖 = 1 − (1 − 𝑈𝑖−1)𝑉𝑚−𝑖+1; 𝑖 = 2,3, … , 𝑚, 

where, 𝑉𝑖 = 𝑊
𝑖

(1+∑ 𝑟𝑗)𝑚
𝑗=𝑚−𝑖+1

−1
 
 

Using the uniform PT-IICS, the PT-IICS from the FW distribution is thus obtained using the 

probability integral transformation as defined below: 

𝑋𝑖 =
1

2𝛼
[log(− log(1 − 𝑈𝑖)) + √(log(− log(1 − 𝑈𝑖)))2 + 4𝛼𝛽] ; 𝑖 = 1,2, … , 𝑚 

Therefore, based on progressively Type-II censored sample (PT-IICS), 

(𝑥1, 𝑟1), (𝑥2, 𝑟2), (𝑥3, 𝑟3), ⋯ , (𝑥𝑚, 𝑟𝑚), the likelihood function can be defined as: 

ℓ(𝑥, 𝛼, 𝛽|𝑟) = c∗ ∏ 𝑓(𝑥𝑖)[𝑅(𝑥𝑖)]𝑟𝑖𝑚
𝑖=1                                       (4) 

where 𝑐∗ = ∏ (𝑛 − ∑ 𝑟𝑖 − 𝑗 + 1
𝑗−1
𝑖=1 ),𝑚

𝑗=1  and 0 ≤ 𝑟𝑖 ≤ (𝑛 − 𝑚 − ∑ 𝑟𝑗
𝑖−1
𝑗=1 ) for 𝑖 = 1,2,3, . ., 

m − 1 and 𝑟0 = 0, and 𝑓(. ) and R(.) given in the equation (1) and (2) respectively.  

 

3.  Maximum likelihood estimation for  α, β, R (.)  and h (.) 

In this section we obtain the maximum likelihood estimates (MLEs) of the parameter, 

reliability and hazard functions of the flexible Weibull distribution using progressively Type II 

censored sample. The likelihood function (4) can be written as 

ℓ(𝑥, 𝛼, 𝛽|𝑟) = c∗ ∏ [(𝛼 +
𝛽

𝑥𝑖
2) exp (𝛼𝑥𝑖 −

𝛽

𝑥𝑖
)] [exp (− exp (𝛼𝑥𝑖 −

𝛽

𝑥𝑖
))]

𝑟𝑖+1
𝑚
𝑖=1            (5) 

The log-likelihood function is given by 

ℓ(𝑥, 𝛼, 𝛽) = log(𝑐∗) + ∑ log (𝛼 +
𝛽

𝑥𝑖
2) + ∑ (𝛼𝑥𝑖 −

𝛽

𝑥𝑖
) − ∑ (𝑟𝑖 + 1)exp (𝛼𝑥𝑖 −

𝛽

𝑥𝑖
)𝑚

𝑙=1
𝑚
𝑙=1

𝑚
𝑙=1    (6) 
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Let �̂� and �̂�denote the MLEs of the parameters α and β respectively, and can be obtained by 

solving the following log-likelihood equations: 

𝜕𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛼
|𝛼,̂�̂� = 0 ⟹ ∑

1

(�̂�+
�̂�

𝑥𝑖
2)

+ ∑ 𝑥𝑖 − ∑ (1 + 𝑟𝑖)𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1 𝑥𝑖 exp (�̂�𝑥𝑖 −

�̂�

𝑥𝑖
2) = 0      (7) 

𝜕𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛽
|𝛼,̂�̂� = 0 ⟹ ∑

1

(�̂�𝑥𝑖
2+�̂�)

− ∑
1

𝑥𝑖
+ ∑

(1+𝑟𝑖)

𝑥𝑖

𝑚
𝑖=1 exp (�̂�𝑥𝑖 −

�̂�

𝑥𝑖
2)𝑚

𝑖=1 = 0 𝑚
𝑖=1            (8) 

The MLEs  �̂� and �̂� cannot be obtained directly from (7) and (8). Thus, MLEs �̂� and �̂� of 

αand β respectively can be obtained by using the numerical iterative procedure such as fixed 

point iteration method, for the complete algorithm of the fixed point iteration method, see [19]. 

Once, the MLEs  �̂� and �̂� are obtained, we can easily obtain the MLEs of reliability and hazard 

function at epoch t as follows: 

�̂�(𝑡) = exp (−𝑒𝑥𝑝 (�̂�𝑡 −
�̂�

𝑡
))                                             (9) 

ℎ̂(𝑡) = (�̂� +
�̂�

𝑡2) (exp (�̂�𝑡 −
�̂�

𝑡
))                                        (10) 

4. Bayes estimation 

In  this  section,  we discuss  the  Bayes  estimation of the  parameter, reliability  and  hazard  

functions of the  flexible Weibull  distribution using progressively  Type-II  censored  sample  

while the  unknown parameters α and β have the gamma  priors with the density  function  of the 

following forms: 

𝑔(𝛼) ∝ 𝑒−𝑎𝛼𝛼𝑏−1;  𝛼 > 0, 𝑎, 𝑏 > 0                                    (11) 

𝑔(𝛽) ∝ 𝑒−𝑐𝛽𝛽𝑑−1;  𝛽 > 0, 𝑐, 𝑑 > 0                                    (12) 

Using the likelihood function (5) and the priors in (11) and (12), the joint posterior 

distributions of α and β is then given by 

𝜋 (𝛼, 𝛽|𝑥
~

) ∝ 𝛼𝑏−1𝛽𝑑−1 exp (−𝛽(∑ 𝑥𝑖
−1 + 𝑐𝑚

𝑖=1 )) exp(−𝛼(𝑎 − ∑ 𝑥𝑖
𝑚
𝑖=1 ))    

exp (−(ri + 1) ∑ exp (𝛼𝑥𝑖 −
𝛽

𝑥𝑖
)𝑚

𝑖=1 ) exp (∑ log (𝛼 +
𝛽

𝑥𝑖
2)𝑚

𝑖=1 )    (13) 

Since it is not easy to summarise the above posterior analytically, we proposed the use of the 

Lindley’s approximation and Markov Chain Monte Cralo (MCMC) techniques for obtaining the 

Bayes estimates of parameters as well as reliability and hazard functions of flexible Weibull 

distribution in the next two subsections. 

 

4.1 Lindley’s approximation  

The ratio of integrals often occurs in Bayesian analysis is given by 
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𝐼 (𝑥
~

) =
∫
𝜃

𝑢(𝜃)exp{𝐿(𝜃)+𝜌(𝜃)}𝑑𝜃
~

∫
𝜃

exp{𝐿(𝜃)+𝜌(𝜃)}𝑑𝜃
~

                                          (14) 

Where, 

𝜃 =  {𝜃1 , 𝜃2 , . . . , 𝜃𝑚 }, 

𝑢(𝜃) = function of θ, 

𝐿(𝜃) = log-likelihood function, and 

𝜌(𝜃) = log of joint prior of θ, 

 

In 1980, Lindley [14] provided the asymptotic solution for the ratio of two integrals that is 

encountered in Bayesian calculation as given in (14). Many authors have proposed the use of 

Lindley’s approximation for obtaining the Bayes estimates of the parameters of various lifetime 

distributions, see [16, 17] and references cited therein. For large sample and under some 

regularity conditions, the above expression can be approximated by the following expansion 

𝐼 (𝑥
~

) ≈ 𝑢 +
1

2
∑ ∑ (𝑢𝑖𝑗 +  2𝑢𝑖𝜌𝑗)𝑚

𝑗=1
𝑚
𝑖=1 𝜎𝑖𝑗 +

1

2
∑ ∑ ∑ ∑ 𝐿𝑖𝑗𝑘𝑢𝑙𝜎𝑖𝑗𝜎𝑘𝑙 .𝑚

𝑙=1
𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1     (15) 

In our case, 𝜃 =  {𝛼, 𝛽} 𝑖. 𝑒. 𝑚 =  2, where, 

𝐿111 =
𝜕3𝐿𝑜𝑔ℓ(𝛼,𝛽)

𝜕𝛼𝜕𝛼𝜕𝛼
= ∑

2

(𝛼+
𝛽

𝑥𝑖
2)3

𝑚
𝑖=1 − ∑ (1 + 𝑟𝑖)𝑥𝑖

3𝑚
𝑖=1 𝑒

(𝛼𝑥𝑖−
𝛽

𝑥𝑖
)
, 

𝐿221 = 𝐿212 = 𝐿122 =
𝜕3𝐿𝑜𝑔ℓ(𝛼,𝛽)

𝜕𝛽𝜕𝛽𝜕𝛼
= ∑

2𝑥𝑖
2

(𝛼𝑥𝑖
2+𝛽)3

𝑚
𝑖=1 − ∑

(1+𝑟𝑖)

𝑥𝑖

𝑚
𝑖=1 𝑒

(𝛼𝑥𝑖−
𝛽

𝑥𝑖
)
, 

𝐿222 = ∑
2

(𝛼𝑥𝑖
2+𝛽)

3
𝑚
𝑖=1 + ∑

(1+𝑟𝑖)

𝑥𝑖
3

𝑚
𝑖=1 𝑒

(𝛼𝑥𝑖−
𝛽

𝑥𝑖
)
, 𝐿112 = 𝐿121 = 𝐿211 =

𝜕3𝐿𝑜𝑔ℓ(𝛼,𝛽)

𝜕𝛼𝜕𝛼𝜕𝛽
= 

∑
2𝑥𝑖

4

(𝛼𝑥𝑖
2+𝛽)

3
𝑚
𝑖=1 + ∑ (1 + 𝑟𝑖)𝑚

𝑖=1 𝑥𝑖𝑒
(𝛼𝑥𝑖−

𝛽

𝑥𝑖
)
, 𝜌1 =

𝑏−1

𝛼
− 𝑎, 𝜌2 =

𝑑−1

𝛽
− 𝑐, 𝑢1 =

𝜕𝑢

𝜕𝛼
, 𝑢2 =

𝜕𝑢

𝜕𝛽
, 

𝑢12 = 𝑢21 =
𝜕𝑢

𝜕𝛼𝜕𝛽
, 𝑢22 =

𝜕2𝑢

𝜕𝛽𝜕𝛽
, 𝑢11 =

𝜕2𝑢

𝜕𝛼𝜕𝛼
 and 𝜎𝑖,𝑗 = (𝑖, 𝑗) th element of the matrix△−1 

defined as 

△−1= [
𝜎11 𝜎12

𝜎21 𝜎22
] = (

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛼2

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛼𝜕𝛽

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛽𝜕𝛼

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛽2

)

−1

  

with 

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛼2 = − ∑
1

(𝛼−
𝛽

𝑥𝑖
2)2

− ∑ (1 + 𝑟𝑖)𝑥𝑖
2𝑒

(𝛼𝑥𝑖−
𝛽

𝑥𝑖
)𝑚

𝑖=1
𝑚
𝑖−1                          (16) 

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛽2 = − ∑
1

(𝛼𝑥𝑖
2+𝛽)2 − ∑

(1+𝑟𝑖)

𝑥𝑖
2 𝑒

(𝛼𝑥𝑖−
𝛽

𝑥𝑖
)𝑚

𝑖=1
𝑚
𝑖−1                           (17) 

𝜕2𝐿𝑜𝑔ℓ(𝑥,𝛼,𝛽)

𝜕𝛽𝜕𝛼
= − ∑

𝑥𝑖

(𝛼𝑥𝑖
2+𝛽)

+ ∑ (1 + 𝑟𝑖)𝑒
(𝛼𝑥𝑖−

𝛽

𝑥𝑖
)𝑚

𝑖=1
𝑚
𝑖=1                          (18) 
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Note that all the above terms and derivatives are calculated at the maximum likelihood 

estimates of α and β. Thus, the value of 𝐼(𝑥
~

) is calculated by 𝐼 (𝑥
~

) =  I − (𝑥
~

)
𝑎,�̂�

 

 

4.2 Bayes estimates of α and β using Lindley’s approximation  

If 𝑢(𝛼, 𝛽) = 𝛼 , then  𝑢1 = 1, 𝑢2 = 𝑢12 = 𝑢21 = 𝑢22 = 𝑢11 = 0.  Therefore, the Bayes 

estimate of α is then defined as follows:  

�̂�𝐿𝐷 = �̂�𝑀𝐿 + 𝜎11𝜌1 + 𝜎12𝜌1 + 𝜎22𝜌2 + 0.5{𝐿111𝜎11
2 + 3𝐿112𝜎11𝜎12 + 𝐿122(𝜎11𝜎22 + 2𝜎12

2 )} (19) 

If 𝑢(𝛼, 𝛽)  = β, then 𝑢2 = 1, 𝑢1 = 𝑢12 = 𝑢21 = 𝑢22 = 𝑢11 = 0.  Therefore, the Bayes 

estimate of β can be calculated by the following formula: 

�̂�𝐿𝐷 = �̂�𝑀𝐿 + 𝜎21𝜌1 + 𝜎22𝜌2 + 0.5{𝐿222𝜎22
2 + 𝐿112(𝜎11𝜎22 + 2𝜎12

2 + 3𝐿122𝜎12𝜎22 + 𝐿111𝜎11𝜎12)}  (20) 

 

4.3  Bayes estimates of R(.) and h(.) using Lindley's approximation  

If 𝑢(𝛼, 𝛽 ) = exp (exp (−eαx−
𝛽

𝑥)), Bayes estimate of R(t) is given by 

�̂�𝐿𝐷(𝑡) ≈ 𝑢𝑟 +
1

2
∑ ∑ (𝑢𝑖𝑗

𝑟 + 2𝑢𝑖
𝑟𝜌𝑗)𝜎𝑖𝑗 +

1

2
∑ ∑ ∑ ∑ 𝐿𝑖𝑗𝑘𝑢𝑙

𝑟𝜎𝑖𝑗
𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑗=1 𝜎𝑘𝑙

𝑚
𝑖=1 .    (21) 

Here, 

      𝑢1
𝑟 = −𝑡(𝑢𝑟) 𝑒𝑥𝑝 (𝛼𝑡 −

𝛽

𝑡
),      

      𝑢2
𝑟 = −

(𝑢𝑟)

𝑡
𝑒𝑥𝑝 (𝛼𝑡 −

𝛽

𝑡
),    

      𝑢12
𝑟 = 𝑢21

𝑟 = − 𝑒𝑥𝑝 (𝛼𝑡 −
𝛽

𝑡
) ((𝑢2

𝑟)𝑡 − 𝑢𝑟),    

      𝑢22
𝑟 =

1

𝑡2 𝑒𝑥𝑝 (𝛼𝑡 −
𝛽

𝑡
) (𝑢2

𝑟𝑡 − 𝑢𝑟),  

      𝑢11
𝑟 = −𝑡 𝑒𝑥𝑝 (𝛼𝑡 −

𝛽

𝑡
) (𝑡𝑢𝑟 − 𝑢1

𝑟),  

In the same way, we can also obtain the Bayes estimate of the hazard function as follows: 

ℎ̂Ld(𝑡) ≈ 𝑢𝑟 +
1

2
∑ ∑ (𝑢𝑖𝑗

𝑟 + 2𝑢𝑖
ℎ𝜌𝑗)𝜎𝑖𝑗

𝑚
𝑗=1

𝑚
𝑖=1 +

1

2
∑ ∑ ∑ ∑ 𝐿𝑖𝑗𝑘𝑢𝑙

𝑟𝜎𝑖𝑗𝜎𝑘𝑙
𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 .    (22) 

By expending the summation terms, we have 

ℎ̂𝐿𝐷(𝑡) ≈ 𝑢ℎ + 0.5[𝜎11(𝑢11
ℎ + 2𝑢1

ℎ𝜌1) + σ12(𝑢12
ℎ + 2𝑢1

𝑟𝜌2) + 𝜎21(𝑢21
ℎ + 2𝑢2

ℎ𝜌1) +   𝜎22(𝑢22
ℎ  

+2𝑢2
ℎ𝜌2)] + 0.5 [𝐿111(𝑢1

ℎ𝜎11
2 + 𝑢2

ℎ𝜎11𝜎12) + 𝐿112 (3𝑢1
ℎ𝜎11𝜎12 + 𝑢2

ℎ(𝜎11𝜎22 + 2𝜎12
2 ))] 

+0.5[𝐿222(𝑢2
ℎ𝜎22

2 + 𝑢1
ℎ𝜎12𝜎22) + 𝐿122(3𝑢2

ℎ𝜎12𝜎22 + 𝑢1
ℎ(𝜎11𝜎22 + 2𝜎12

2 )) ]                   (23) 

where, 

𝑢ℎ = (𝛼 +
𝛽

𝑡2) 𝑒𝑥 𝑝 (𝛼𝑡 −
𝛽

𝑡
),  

𝑢
1

ℎ
= 𝑒𝑥𝑝 (𝛼𝑡 −

𝛽

𝑡
) + 𝑢

ℎ
𝑡,  
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𝑢11
ℎ = 𝑡 𝑒𝑥𝑝 (𝛼𝑡 −

𝛽

𝑡
) + 𝑢1

ℎ𝑡,  

𝑢2
ℎ =

exp(𝛼𝑡−
𝛽

𝑡
)

𝑡2 −
𝑢ℎ

𝑡
,  

𝑢22
ℎ = −

exp(𝛼𝑡−
𝛽

𝑡
)

𝑡3 −
𝑢2

ℎ

𝑡
,  

𝑢12
ℎ = 𝑢21

ℎ = −
exp(𝛼𝑡−

𝛽

𝑡
)

𝑡
+ 𝑢2

ℎ𝑡,  

 

4.4 MCMC techniques 

The MCMC techniques are the most widely used computation tools in the Bayesian analysis.  

Basically, we draw a sample based inference to the posteriors of the parameters of interest.  So 

doing this,  we need  to  have  a posterior  sample  and  in many  situations it  not  an  easy job to  

draw  a sample  from the  posterior, specially in the  multivariate case.  Therefore, the reduction 

of the dimensionality of the problem is the only possible solution. In such away,  we can generate  

the  sample  from the  joint posterior  using the  algorithm known as the  Gibbs  sampler  which 

reduces the  k dimensions  problem into  a  single dimension. If we are  interested to  draw  a  

sample  from  𝜋(𝛼, 𝛽|𝑥
~

) ,  two  stage  Gibbs ∼algorithm  can be utilized  as follows: 

Step1. Set starting points, say 𝛼(0) , 𝛽(0) and then at ith stage 

Step2. Generate 𝛼𝑖~𝜋1(𝛼|𝛽(𝑖−1), 𝑥
~

) 

Step3. Generate 𝛽𝑖~𝜋2(𝛽|𝛼𝑖, 𝑥
~

) 

Step4. Repeat steps 2 and 3, M(=1500) times to get the samples of sizes M from the 

correspondings 

Step5. Obtain the Bayes estimates of  𝛼 and 𝛽 using the formulae �̂�𝑀𝐶 =
1

𝑀−𝑀0
 

Step6. Similarly, the Bayes estimates of R(t) and h(t) are  

�̂�𝑀𝐶(𝑡) =
1

𝑀 − 𝑀0
∑ exp (− exp (𝛼𝑗𝑡 −

𝛽𝑗

𝑡
))

𝑀

𝐽=𝑀0+1
 

and 

ℎ̂𝑀𝐶(𝑡) =
1

𝑀 − 𝑀0
∑ (𝛼𝑗 +

𝛽𝑗

𝑡2) exp (𝛼𝑗𝑡 −
𝛽𝑗

𝑡
)

𝑀

𝐽=𝑀0+1

 

respectively. 

Here, 𝜋1(𝛼|𝛽, 𝑥
~

) and 𝜋2(𝛽|𝛼, 𝑥
~

) are the full conditional posteriors of 𝛼 and 𝛽 respectively 

and given by  

𝜋1 (𝛼|𝛽, 𝑥
~

) ∝ 𝛼b−1 exp (−𝛼 (𝑎 − ∑ 𝑥𝑖

𝑚

𝑖=1

)) exp (−(𝑟𝑖 + 1) ∑ exp (𝛼𝑥𝑖 −
𝛽

𝑥𝑖

)

𝑚

𝑖=1

) exp (∑ log (𝛼 +
𝛽

𝑥𝑖
2

𝑚

𝑖=1

)) 

(24) 
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𝜋2 (𝛽|𝛼, 𝑥
~

) ∝ 𝛽𝑑−1 exp (−𝛽 (∑ 𝑥𝑖
−1

𝑚

𝑖=1

+ 𝑐)) exp (−(𝑟𝑖 + 1) ∑ 𝑒𝑥𝑝 (𝛼𝑥𝑖 −
𝛽

𝑥𝑖

)

𝑚

𝑖=1

) exp (∑ 𝑙𝑜𝑔 (𝛼 +
𝛽

𝑥𝑖
2)

𝑚

𝑖=1

) 

 (25) 

The full conditionals (24) and (25) are not the standard distributions from which the 

simulation is easy. Therefore, we use the independent Metropolis Hastings (MH) algorithm to 

generate the samples from (24) and (25) in Steps 2 and 3 of the above algorithm. For more detail 

on the implications of the MCMC techniques i.e. Gibbs sampler and MH algorithm, readers may 

be referred to [4, 10, 9, 21]. 

 

5. Simulation study  

In this section, we studied the behaviour of the proposed estimators on the basis of simulated 

sample from FW distribution. Using the algorithm given in section 2, different progressive Type-

II censored samples have been generated from the FW distribution for given values of n = 20, 30, 

50, α = 2 and β = 2. For this study, we considered different removal patterns for given n and m 

as follows: 

Scheme 0.  No censoring i.e. complete study, 

Scheme 1.  All (n − m) items are removed at first stage,  

Scheme 2.  All (n − m) items are removed at mth stage,  

Scheme 3.  Items are removed at some beginning stages,  

Scheme 4.  Items are removed at some last stages, Scheme 5. Items are removed at some 

middle stages. 

All considered censoring schemes are summarised in Table 1. In Table 1, (a ∗r) represents 

the vector of containing r times a.  For example, consider a censoring scheme (0 ∗ 2, 3 ∗ 2, 0 ∗ 3) 

gives (0, 0, 3, 3, 0, 0, 0). 

Applying the procedures discussed in the previous sections on each sample, we calculated 

the maximum 

Table 1: Progressive censoring schemes used in simulation study 

 
likelihood  and  Bayes  estimates of the  parameters, reliability  and  hazard  function  at  t = 

1. This process is repeated 1000 of times and, average estimates and corresponding mean square 

errors of all estimators are reported in Tables [2,3,4,5,6]. Where A(.) and M (.) represent the 

average estimate  and mean squared  error respectively, if 𝜃1 , 𝜃2  ,· · · , 𝜃1000  are the 1000 
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estimates  of θ obtained  from 1000 different samples,  then  average  estimate  and  mean  square  

error  can  be calculated  by the  following formulae, 

A (�̂�(𝜃)) =
1

1000
∑ (𝜙�̂�(𝜃))

1000

𝑖=1

, 𝑀 (�̂�(𝜃)) =
1

1000
∑ (𝜙�̂�(𝜃) − 𝜙(𝜃)2),

1000

𝑖=1

 

where �̂� (𝜃) is an estimate  of 𝜑(𝜃).  For Bayes estimation, we take two combinations (0, 0, 

0, 0) and (3, 6, 3, 6) of the hyper-parameters (a, b, c, d) respectively.  The values (0, 0, 0, 0) of 

the hyper parameters corresponds  to the vague priors of the unknown  parameters of the flexible 

Weibull  distribution  while the combination (3, 6, 3, 6) is taken under the consideration of the 

informative  gamma priors by setting the prior means equal to the true  values of the  parameters. 

From the above study, we can made the following conclusions. 

• In all considered censoring schemes, as sample size increases, the mean square 

error (mse) of all estimators decrease. 

• Bayes estimators obtained under informative priors show smaller mean square error 

than maximum likelihood estimators. However, Bayes estimators obtained under 

non-informative behave more or less same as maximum likelihood estimators. 

• When the non-informative prior is considered, Bayes estimators obtained by using 

MCMC techniques are superior than Bayes estimators obtained by using Lindley’s 

approximation. 

• Under the assumption of informative gamma priors, Bayes estimators obtained by 

using Lindley’s approximation perform well than Bayes estimators obtained by 

using MCMC techniques. 

• Lindley’s approximation is useful for obtaining the Bayes estimates when sample 

size is large enough. 

• The maximum likelihood and Bayes estimators of reliability function show 

relatively small mean square errors. The maximum likelihood and Bayes estimators 

of hazard function show large mean square errors. That signals, we should take care 

in estimating the hazard function. 

• Finally, we can conclude that Bayes estimates can be superiorly preferred for 

estimating the parameters, reliability and hazard functions of flexible Weibull 

distribution. 
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Table 2: The ML estimates and MSE of the estimators of the parameters, reliability and hazard function for 

α = 2, β = 2 
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Table 3: Using Lindley’s approximation, Bayes estimates and MSE of the estimators of the parameters, 

reliability and hazard function for α = 2, β = 2 and hyper-parameters 𝑎 =  𝑏 =  𝑐 = 𝑑 = 0 
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Table 4: Using MCMC techniques, Bayes estimates and MSE of the estimators of the parameters, reliability 

and hazard function for α = 2, β = 2 and hyper-parameters 𝑎 =  𝑏 =  𝑐 =  𝑑 =  0 
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Table 5: Using Lindley’s approximation, Bayes estimates and MSE of the estimators of the parameters, 

reliability and hazard function for α = 2, β = 2 and hyper-parameters 𝑎 =  𝑐 = 3, 𝑏 =  𝑑 = 6 
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Table 6: Using MCMC techniques, Bayes estimates and MSE of the estimators of the parameters, 

reliability and hazard function for α = 2, β = 2 and hyper-parameters 𝑎 = 𝑐 = 3, 𝑏 = 𝑑 = 6 

 

 

6. Real data study 

In this section, we provided a real data illustration applying the methodologies discussed in 

the above sections to a set of real data representing the times between failures of the secondary 

reactor pumps. This data set is originally reported by [23] in the literature.  After  that, [3] have 



 

 Sanjay Kumar Singh, Umesh Singh, Vikas Kumar Sharma, Manoj Kumar                 35 
 

modelled this  data set by assuming  that the  waiting  times  between  failures  of the  secondary  

reactor  pumps  follow the flexible Weibull distribution. [19] have used this data set for estimating 

the parameters of the flexible Weibull  distribution under  Type-II  censoring scheme. 

We estimated the parameters, reliability and hazard functions of the flexible Weibull 

distribution under the different progressive Type-II censoring schemes. Table 7 shows the  

estimates  of α  and  β based  on the  different progressive  Type-II  censored  samples  artificially  

generated  from the  given set of real data. The estimates of the reliability and hazard rate are 

presented in Table 8.  For Bayesian estimation, the non-informative priors are considered for the 

parameters α and β. The density and trace plots for simulated MCMC samples of α and β are 

shown in Figure 1. 

 

Table 7: The ML and Bayes (Lindley’s approximation and MCMC) estimates of α and β for  

 

Table 8: The ML and Bayes (Lindley’s approximation and MCMC) estimates of 𝑅 (𝑡 =  �̅� = 1.57787) and 

ℎ(�̅�)  for different progressive Type-II censored sample from real data. 
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Figure 1: The density and trace plots of simulated 𝛼 and 𝛽 based on complete data. 

7.  One sample Bayes prediction 

Under the progressive Type-II censoring scheme, the experiment is terminated as soon as the 

desired numbers of units obtained and so some surviving units are removed from the test. In 

practice, the experimenter may be interested to know the life-times of the (n − m) removed 

surviving units at mth stage on the basis of observed sample.  Let Ys   =  Xm+s , m <  s ≤

 n represents the failure life time of the remaining units, then conditional distribution of 𝑌(𝑠)th 

order statistics given progressive Type-II censored sample 𝑥
~

 is given by 

𝑓(y(𝑠)|𝑥(𝑚), 𝛼, 𝛽) =
(𝑛−𝑚)![1−𝐹(𝑦(𝑠))]

𝑛−𝑚−𝑠

(𝑠−1)!(𝑛−𝑚−𝑠)![1−𝐹(𝑥(𝑚))]
𝑛−𝑚 [𝐹(𝑦𝑠) − 𝐹(𝑥𝑚)]𝑠−1𝑓(𝑦(𝑠))         (26) 

Substituting (1) and (2) in (26), we will have 
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𝑓(y(s)|𝑥(𝑚), 𝛼, 𝛽) =
(𝑛−𝑚)!

(𝑠−1)!(𝑛−𝑚−𝑠)!
(𝛼𝑦(𝑠) +

𝛽

𝑦𝑠
2) 𝜙(𝑦(𝑠)) ∑ (−1)𝑘 (

𝑠 − 1
𝑘

)𝑠−1
𝑘=1           (27) 

where, 𝜑(𝑧) = 𝑒𝑥𝑝 (𝛼𝑧 −
𝛽

𝑧
) . One sample Bayes predictive density of 𝑦(𝑠) th ordered future 

sample can be obtained as follows 

𝑓 (𝑦(𝑠)|𝑥
~

) = ∫ ∫ 𝑓 (𝑦(𝑠)|𝑥
~

, 𝛼, 𝛽) 𝜋 (𝛼, 𝛽|𝑥
~

) 𝑑𝛼𝑑𝛽
∞

0

∞

0
                      (28) 

Putting (13) in (28), we get 

𝑓 (y(s)|𝑥
~

) =
(𝑛−𝑚)!

(𝑠−1)!(𝑛−𝑚−𝑠)!
∫ ∫ 𝛼𝑏−1𝛽𝑑−1 exp [𝛼(𝑆 − 𝑎) − 𝛽(𝑆1 + 𝑐) (𝛼𝑦(𝑠) −

𝛽

𝑦(𝑠)
)]

∞

0

∞

0
  

𝜙(𝑦(𝑠))exp(−(𝑟𝑖 + 1) ∑ 𝜙(𝑥𝑖)𝑚
𝑖=1 ) exp (∑ log (𝛼 +

𝛽

𝑥𝑖
2)𝑚

𝑖=1 ) ∑ (−1)𝑘 (
𝑠 − 1

𝑘
) exp [(𝑛 −𝑠−1

𝑘=1   

−𝑚 − 𝑠 + 𝑘 + 1)𝜙(𝑥(𝑚)) − (𝑘 + 𝑛 − 𝑚 − 𝑠 + 1)𝜙(𝑦(𝑠))𝑑𝛼𝑑𝛽                                    (29) 

where, 𝑆1  =  ∑ 𝑥𝑖
−1𝑚

𝑖=1 , ∑ 𝑥𝑖
𝑚
𝑖=1 . The above equation for 𝑓(𝑦(𝑠) |𝑥

~
) cannot be expressed in 

closed form and hence it cannot be evaluated analytically. Therefore, the MCMC techniques have 

been used for obtaining the approximate solution of the above predictive density. If (𝛼𝑖 , 𝛽𝑖);  𝑖 =

 1, 2, … , 𝑀 obtained from 𝜋(𝛼, 𝛽|𝑥
~

) using Gibbs sampling can be utilized to obtain the consistent 

estimate of  𝑓(𝑦 (𝑠) |𝑥
~

). It can be obtained by 

𝑓 (𝑦(𝑠)|𝑥
~

) =
1

𝑀
∑ 𝑓(𝑦(𝑠)|𝛼𝑖, 𝛽𝑖)𝑀

𝑖=1                                  (30) 

Thus, we can obtain the two sided 100(1 −  𝜓)% prediction interval (𝐿, 𝑈)  for future 

sample by solving the following two equations: 

𝑃 (𝑌(𝑠) > 𝑈|𝑥
~

) =
𝜓

2
 and 𝑃 (𝑌(𝑠) > 𝐿|𝑥

~
) = 1 −

𝜓

2
. 

It is not possible to obtain the solutions analytically. We need to apply suitable numerical 

techniques for solving these non-linear equations. Alternatively, we can also use the MCMC 

approach by [5], in the following way: Let (y(i:s)) ;  𝑖 =  1, 2,· · · , 𝑀 be the corresponding 

ordered MCMC sample of (𝑦𝑖;𝑠 ) ;  𝑖 =  1, 2,· · · , 𝑀 from (29). Then, the 100(1 −  𝜓)% HPD 

intervals for 𝑦(𝑠) is y(j∗:s) , yj∗ + [(1 − 𝜓)𝑀 ]: s , where j∗ is chosen so that 

𝑦𝑗∗ + [(1 − 𝜓)𝑀]: s}  − 𝑦(𝑗∗:𝑠)  = min
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

[𝑦𝑗∗ + [(1 − 𝜓)𝑀: 𝑠]−𝑦(𝑗∗:𝑠)] 

 

8.  Two sample Bayes prediction 

Let 𝑦(1) , 𝑦(2) , . . . , 𝑦(𝑚)  be a ordered future sample of size m from flexible Weibull 

distribution, indepen- dent of the informative sample 𝑥(1) , 𝑥(2) , . . . , 𝑥(𝑛). The density function of 

𝑦(𝑘)th ordered future sample is 

𝑝( 𝑦(𝑘) ∣∣ 𝛼, 𝛽 ) =
𝑚!

(𝑘−1)!(𝑚−𝑘)!
[𝐹( 𝑦(𝑘) ∣∣ 𝛼, 𝛽 )]

𝑘−1
[1 − 𝐹( 𝑦(𝑘) ∣∣ 𝛼, 𝛽 )]

𝑚−𝑘
𝑓( 𝑦(𝑘) ∣∣ 𝛼, 𝛽 )(31) 

By substituting (1) and (2) in (31), we get 



 

38                  Estimation for flexible Weibull extension under progressive Type-II censoring 
 

𝑝( 𝑦(𝑘) ∣∣ 𝛼, 𝜆 ) =
𝑚!

(𝑘−1)!(𝑚−𝑘)!
(𝛼𝑦(𝑘) +

𝛽

𝑦(𝑘)
2 ) 𝜙(𝑦(𝑘)) ∑ (−1)𝑖 (

𝑘 − 1
𝑖

)𝑘−𝑖
𝑖=1 exp[−(𝑖 + 𝑚 − 𝑘 + 1)𝜙(𝑦(𝑘))]                                                                                                

(32) 

Two sample Bayes predictive density of 𝑦(𝑘)th ordered future sample can be obtained as 

follows 

𝑝 ( 𝑦(𝑘) ∣∣
∣ 𝑥

~
) = ∫ ∫ 𝑝( 𝑦(𝑘) ∣∣ 𝛼, 𝛽 )𝜋(𝛼, 𝛽|𝑥

~
)

∞

0
𝑑𝛼𝑑𝛽

∞

0
                     (33) 

The above equation for 𝑝(𝑦(𝑘) |𝑥
~

) cannot be expressed in closed form and hence it cannot be 

evaluated analytically. Therefore, the MCMC techniques have been used for obtaining the 

approximate solution of the above predictive density. If {(𝛼𝑖 , 𝛽𝑖 ) ;  𝑖 =  1, 2,· · · , 𝑀 } obtained 

from 𝜋(𝛼, 𝛽|𝑥
~

)  using Gibbs sampling can be utilized to obtain the consistent estimate of 

 𝑝(𝑦(𝑘) |𝑥
~

). It can be obtained by 

𝑝 (𝑦(𝑘) |𝑥
~

) =
1

𝑀
∑ 𝑝(𝑦(𝑘) |𝛼𝑖, 𝛽

𝑖
)𝑀

𝑖=1                                     (34) 

Thus, we can obtain the two sided 100(1 −  𝜓)%  prediction interval (𝐿, 𝑈) for future 

sample by solving the following two equations: 

𝑃 (𝑌(𝑘) > 𝑈|𝑥
~

) =
𝜓

2
 and 𝑃 (𝑌(𝑘) > 𝐿|𝑥

~
) = 1 −

𝜓

2
. 

It is not possible to obtain the solutions analytically. We need to apply suitable numerical 

techniques for solving these non-linear equations. Alternatively, we can also use the MCMC 

approach by [5], in the following way: Let 𝑦(𝑖:𝑘) ;  𝑖 =  1, 2,· · · , 𝑀 be the corresponding ordered 

MCMC sample of  {(𝑦𝑖:𝑘 ) ;  𝑖 =  1, 2,· · · , 𝑀 }  from (33). Then, the 100(1 −  𝜓)%  HPD 

intervals for 𝑦(𝑘) is 𝑦(𝑗∗:𝑘) , 𝑦𝑗
∗ + [(1 − 𝜓)𝑀 ]: 𝑘 , where 𝑗∗ is chosen so that 

𝑦𝑗∗ +  [(1 − 𝜓)𝑀]: 𝑘}  − 𝑦(𝑗∗:𝑘)  = min
1≤𝑗≤𝑀−[(1−𝜓)𝑀]

[𝑦𝑗∗ + [(1 − 𝜓)𝑀: 𝑘]−𝑦(𝑗∗:𝑘)] 

For considered real data set, we calculated the mean and 95% credible intervals (predictive 

bounds) for future samples using one and two sample prediction techniques. The results are 

summarised in Table 9. 

 

Table 9: Mean and 95 % predictive bounds for future samples based on real data for scheme 4, 𝑚 = 18. 
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9. Conclusions 

In this article, we have discussed classical and Bayes estimation of the parameters, reliability 

and hazard functions based on progressive Type-II censored sample draw from flexible Weibull 

distribution. From the simulation study, it was observed that Bayes estimators are superior than 

maximum likelihood estimators under different censoring schemes. The Lindley’s approximation 

and MCMC techniques are utilized for Bayesian calculation. In addition, one and two sample 

prediction problems are also discussed under Bayesian set-up. The discussed procedures have 

been verified through a real data study. Finally, we can conclude that the methodology discussed 

in the previous sections provides the complete analysis of the progressive Type-II censored 

sample having flexible Weibull distribution. 
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