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Abstract: Two-part random effects models have been used to fit semi-continuous 

longitudinal data where the response variable has a point mass at 0 and a con-

tinuous right-skewed distribution for positive values. We review methods pro-

posed in the literature for analyzing data with excess zeros. A two-part logit-log-

normal random effects model, a two-part logit-truncated normal random effects 

model, a two-part logit-gamma random effects model, and a two-part logit-skew 

normal random effects model were used to examine effects of a bottle-weaning 

intervention on reducing bottle use and daily milk intake from bottles in toddlers 

aged 11 to 13 months in a randomized controlled trial. We show in all four two-part 

models that the intervention promoted bottle-weaning and reduced daily milk intake 

from bottles in toddlers drinking from a bottle. We also show that there are no 

differences in model fit using either the logit link function or the probit link function 

for modeling the probability of bottle-weaning in all four models. Furthermore, 

prediction accuracy of the logit or probit link function is not sensitive to the 

distribution assumption on daily milk intake from bottles in toddlers not off bottles. 
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1. Introduction 

In many applications, the response variable has a point mass at 0 and a continuous right-

skewed distribution for nonzero values. For example, in a study of health care cost and utilization, 

many patients will have no health care utilization, resulting in no expenditure during the study. 

In a study of a bottle-weaning intervention for reducing bottle use and daily milk intake from 

bottles in 12-month-old toddlers, many toddlers will be off bottles at age of 12-15 months, 

resulting in no daily milk intake from bottles during the study. We refer the response variable 

that can take the value of 0 or any value between its lower bound and upper bound as the semi-

continuous variable. Since the semi-continuous variable has a continuous distribution except for 

a point mass at 0, estimates and inferences from regression models without taking this feature 
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into account can be seriously biased. Several approaches have been proposed in the literature to 

address semi-continuous data. 

One approach is to collapse the semi-continuous response variable into categories and then 

apply logistic or probit models for subsequent analysis (Saei, Ward and McGilchrist, 1996). 

Whereas this approach is simple, information may lose through grouping the response outcomes 

into categories. There may be no sensible way to collapse the positive scale into categories to 

reflect the qualitative distinction between zero and nonzero responses. 

An alternative is to use the Tobit model proposed by Tobin (1958) for analyzing household 

expenditures on durable goods in which data on demand for durable goods had values clustered 

at a limiting value, zero. Tobit models assume that a zero response arises from the underlying 

normal random variable that is censored at 0 by a random mechanism. Under this assumption, 

censored linear regression models can then be applied to model semi-continuous data. It is well 

known that Tobit models are sensitive to minor departures from normality. When the response 

variable is not censored normal, Poirier (1978) suggested using the Box-Cox power 

transformation to correct departures from normality. Powell (1986) proposed a semi-parametric 

least squares estimation based on symmetric censoring or truncation of the upper tail of the 

distribution of the response variable for Tobit models. 

When the zeros are valid observed responses rather than censored values, Tobit models that 

assume a common stochastic process determining both the occurrence of a zero response and the 

intensity of a nonzero response cannot capture the underlying distribution of nonzero values 

because the meaning of the underlying normality becomes dubious and the zeros may respond 

differently to parameters or covariates (Duan et al., 1983). Cragg (1971) extended the Tobit 

model by allowing the determination of the magnitude of a positive response to depend on 

different parameters or covariates from those determining the occurrence of a zero response. This 

model is referred to as the two-part model because the zeros and nonzeros are modeled separately 

in the literature. Specifically, the first part (Part 1) of such a model deals with the point mass at 

0. The response in Part 1 is dichotomous (zero or nonzero). Logistic or probit regression is 

typically used for modeling the probability of observing a zero. The second part (Part 2) of the 

model deals only with positive values conditional on a nonzero response. Cragg (1971) suggested 

employing truncated normal or log-normal to model the mean response among positive values in 

Part 2. Blough, Madden and Hornbrook (1999) proposed using generalized linear models to 

model the nonzero responses. They suggested a quasi-likelihood based method for choosing link 

and variance functions. In practice, two-part models are specified using the same set of covariates 

in both parts. However, distinct sets of covariates may be used in two-part model applications. 

Olsen and Schafer (2001) extended two-part models to repeated measures semi-continuous 

data. Like mixed effects models, they incorporated subject specific random intercepts into both 

the logistic model for modeling the probability of a nonzero response in Part 1 and the conditional 

linear regression model for modeling the mean response in Part 2 to account for repeated 

measures taken from the same subjects over time. The random effects from the two parts are 

assumed to be jointly normal and possibly correlated. If the covariance between the two random 

effects is zero, then the logistic regression in Part 1 and the conditional linear regression in Part 

2 can be modeled separately as in the case of cross-sectional data. Assumptions of independent 
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random effects are often made in practice for computational feasibility. Su et al. (2009) showed 

that bias can be induced for regression coefficients in the second part of the model when random 

effects are truly correlated but misspecified as independent in two-part random effects models. 

See Lee et al. (2010), Liu et al. (2010), Mahmud et al. (2010), Lee and Xiang (2011), Li et al. 

(2011), and Mills (2013) for recent work on two-part modeling of semi-continuous data. 

When a zero response can either be a valid observed response called a true zero or a partial 

observation censored at 0 as in Tobit analysis from a continuous distribution for the nonzero 

values, the logit or probit link function in Part 1 of two-part models can-not differentiate the true 

zero from the observation censored at 0. Moulton and Halsey (1995) proposed a zero-inflated 

Tobit model by allowing the possibility that some pro-portion of zeros come from a point mass 

distribution at 0 whereas the remaining zeros come from a censored log-normal distribution. Berk 

and Lachenbruch (2002) applied the mixture of a point mass at 0 and a Tobit model proposed by 

Moulton and Halsey (1995) to analyze longitudinal zero-inflated continuous data where a zero 

observation can either be a true zero or a left-censored value from a log-normal distribution. The 

probability of a true zero was modeled with logistic regression with a random intercept and the 

other values were modeled with censored log-normal regression with a random intercept. 

In this paper, we wish to examine effects of a bottle-weaning intervention on reducing bottle 

use and daily milk intake from bottles over 12 months of follow up in toddlers aged 11 to 13 

months. Brotanek et al. (2005) reported that children with prolonged bottle-feeding are at higher 

risk for iron deficiency. Sutcliffe et al. (2006) showed that children drinking milk from a bottle 

during the daytime are more likely to be iron depleted compared with cup-fed children. Excess 

protein intake from milk and formula can increase the risk of overweight or obesity. Several 

studies have shown that prolonged bottle use is associated with overweight or obesity (Bonuck 

and Kahn, 2002 ; Gooze et al., 2011). The American Academy of Pediatrics Committee on 

Nutrition (1992) recommended that infants be introduced to the cup around 6 months of age and 

be fully weaned from the bottle by 15 months to promote feeding skills. Toddlers off bottles will 

have daily milk intake from cups instead of bottles during the study. The repeated measures 

outcome variable, total daily milk intake from bottles, will take either a value of zero, indicating 

bottle-weaning, or a positive value measuring the amount of milk intake from bottles. As many 

toddlers will be weaned from a bottle by 15 months, the outcome variable will have a substantial 

proportion of zero values. We cannot use a Tobit model to examine effects of the bottle-weaning 

intervention on reducing the probability of drinking from a bottle and the amount of daily milk 

intake from bottles because it will require the assumption that an observation that has no daily 

milk intake from bottles is a censored zero from a toddler who drinks from a bottle but happens 

to not drink from a bottle in the current period, rather than a valid zero from a toddler who is 

weaned from bottles. This assumption implies that no toddlers are truly weaned from a bottle 

during the study. It is commonly perceived that weaned toddlers will not return to bottle use and 

hence, an observation that has no daily milk intake from bottles can be considered as a true zero. 

A zero-inflated Tobit model proposed by Moulton and Halsey (1995) may not be suitable for 

analyzing the total daily milk intake from bottles data because it will require the assumption that 

some of weaned toddlers will return to bottle use during the study period and hence, an 
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observation that has no daily milk intake from bottles is either a true zero from a toddler off 

bottles or a censored zero from a toddler who drinks from a bottle but happens to not drink from 

a bottle in the current period. Unlike Tobit or zero-inflated Tobit models, two-part models treat 

an observation that has no daily milk intake from bottles as a true zero from a toddler weaned 

from bottles and do not assume that some of weaned toddlers will return to bottle use during the 

study period. We propose the use of a two-part random effects model to model the response 

variable, total daily milk intake from bottles, that can take a value either from a point mass at 0 

or from a right-skewed, continuous distribution and to assess effects of the bottle-weaning 

intervention on reducing the probability of bottle use and the intensity of total daily milk intake 

from bottles over 12 months of follow up in toddlers aged 11 to 13 months. 

The remaining of this paper is organized as follows. Section 2 presents two-part random 

effects models with logistic or probit regression for modeling the probability of a nonzero 

response in Part 1 and with log-normal, truncated normal, gamma, or skew normal regression for 

modeling the intensity of positive values in Part 2. The four two-part random effects models given 

in Section 2 are applied to analyze semi-continuous data on total daily milk intake from bottles 

in Section 3. Section 3 also presents the receiver operating characteristic (ROC) curve for 

assessing model fit in Part 1 and the normal quantile-quantile (Q-Q) plot of Pearson residuals for 

assessing model fit in Part 2. In addition, results of the four two-part random effects models with 

the logit link function replaced by the probit link function in Part 1 are presented in Section 3. 

Discussions and concluding remarks are presented in Section 4. 

 

2. Two-Part Random Effects Model for Repeated Measures Semi-Continuous Data 

Let 𝑌𝑖𝑗  denote a semi-continuous response variable for subject i = 1,…, m at occasion j = 

1, . . . , 𝑛𝑖 . The probability density function of 𝑌𝑖𝑗  is given by 

𝑓(𝑦𝑖𝑗) {

𝑃(𝑌𝑖𝑗 = 0),                               if 𝑦𝑖𝑗 > 0;

𝑃(𝑌𝑖𝑗 > 0)𝑓(𝑦𝑖𝑗|𝑦𝑖𝑗 > 0),   if 𝑦𝑖𝑗 > 0;

0,                                                 if 𝑦𝑖𝑗 < 0.

 

The first part (Part 1) of the two-part model is to model the probability of a nonzero response. 

Conditional on a nonzero response, the second part (Part 2) of the model then models the intensity 

or level of positive values (Cragg, 1971; Olsen and Schafer,2001). 

 

2.1. Part 1 of the Two-Part Random Effects Model 

Let P(𝑌𝑖𝑗   > 0) = 𝑝𝑖𝑗   and P(𝑌𝑖𝑗   = 0) = 1𝑝𝑖𝑗 . A logistic or probit regression model with a 

random effect can be employed to predict which responses will be positive and which responses 

will be zero. Let 𝑢1𝑖 be the random effect due to the ith subject affecting the probability 𝑝𝑖𝑗, and 

it is assumed to follow a normal distribution with mean 0 and variance 𝜏2 . Conditional on 𝑢1𝑖, 

the logit link function for 𝑝𝑖𝑗 is given as 
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𝑙𝑛 (
𝑝𝑖𝑗

1−𝑝𝑖𝑗
) = 𝑋1𝑖𝑗

𝑇 𝛽1 + 𝑢1𝑖,                                               (1) 

where 𝑋1𝑖𝑗 is a vector of covariates associated with the occurrence of a positive response for 

subject i at occasion j, and 𝛽1  is a vector of unknown regression parameters. Similarly, 

conditional on 𝑢1𝑖 , the probit link function for 𝑝𝑖𝑗 is given as 

𝑝𝑖𝑗 = 𝛷(𝑋1𝑖𝑗
𝑡 𝛽1 + 𝑢1𝑖),                                                 (2) 

where Φ(·) is the standard normal cumulative distribution function. 

 

2.2. Part 2 of the Two-Part Random Effects Model 

Conditional on positive values, several possible models for modeling the mean response of 

𝑌𝑖𝑗 can be applied, depending on the distribution assumption on 𝑌𝑖𝑗 . We present four such models 

assuming that the positive values in Part 2 follow a log-normal distribution (Olsen and Schafer, 

2001; Tooze et al., 2002), a truncated normal distribution (Cragg, 1971), a gamma distribution 

(Blough et al., 1999; Lee et al., 2010), and a skew normal distribution (Chai and Baily, 2008; 

Mahmud et al., 2010). Let 𝑢2𝑖 be the unobserved random effect due to the ith subject affecting 

the intensity or level of positive values, and it is assumed to follow a normal distribution with 

mean 0 and variance 𝜈2 . 
 

2.2.1. Log-Normal Distribution 

If 𝑌𝑖𝑗  conditional on 𝑌𝑖𝑗  > 0 and 𝑢2𝑖  is assumed to follow a log-normal distribution with 

parameters 𝜇𝑖𝑗 and σ, then 

𝑓(𝑦𝑖𝑗|𝑦𝑖𝑗 > 0, 𝑢2𝑖) =
1

𝜎𝑦𝑖𝑗√2𝜋
exp [−

(log𝑦𝑖𝑗−𝜇𝑖𝑗)
2

2𝜎2 ],                                (3) 

where 𝜇𝑖𝑗= 𝑋2𝑖𝑗
𝑇 𝛽2  +  𝑢2𝑖 , 𝑋2𝑖𝑗 is a vector of covariates associated with the intensity or level of 

a positive response for subject i at occasion j, and  𝛽2  is a vector of unknown regression 

coefficients. Conditional on 𝑌𝑖𝑗 > 0 and 𝑢2𝑖 , the mean and variance of  𝑌𝑖𝑗 are given respectively 

as 

𝐸(𝑌𝑖𝑗|𝑌𝑖𝑗 > 0, 𝑢2𝑖) = 𝑒𝜇𝑖𝑗+(𝜎2/2),                                          (4) 

and 

𝑉𝑎𝑟(𝑌𝑖𝑗|𝑌𝑖𝑗 > 0, 𝑢2𝑖) = 𝑒2(𝜇𝑖𝑗+𝜎2) − 𝑒2𝜇𝑖𝑗+𝜎2
.                                        (5) 

 

2.2.2. Truncated Normal Distribution 

If 𝑌𝑖𝑗 conditional on 𝑌𝑖𝑗 > 0 and u2i is assumed to follow a truncated normal distribution with 

parameters µ𝑖𝑗 and σ (Barr and Sherrill, 1999), then 
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𝑓(𝑦𝑖𝑗|𝑦𝑖𝑗 > 0, 𝑢2𝑖) =
1

𝜎
𝜙(

𝑦𝑖𝑗−𝜇𝑖𝑗

𝜎
)

1−Φ(
−𝜇𝑖𝑗

𝜎
)
                                          (6) 

where 𝜙 (·) is the standard normal density function, Φ(·) is the standard normal cumulative 

distribution function, 𝜇𝑖𝑗 = 𝑋2𝑖𝑗
𝑇 𝛽2  +  𝑢2𝑖 ,  𝑋2𝑖𝑗  is a vector of covariates associated with the 

intensity or level of a positive response for subject i at occasion j, and 𝛽2 is a vector of unknown 

regression coefficients. Conditional on 𝑌𝑖𝑗 > 0 and 𝑢2𝑖 , the mean and variance of 𝑌𝑖𝑗 are given 

respectively as 

 
and 

 
 

2.2.3. Gamma Distribution 

If 𝑌𝑖𝑗   conditional on 𝑌𝑖𝑗  > 0 and 𝑢2𝑖  is assumed to follow a gamma distribution with 

parameters α and 𝜆𝑖𝑗 , then 

                  
(9)

 
where 𝜆𝑖𝑗 is the unknown shape parameter, and α is the unknown scale parameter and is assumed 

constant. Conditional on 𝑌𝑖𝑗  > 0 and 𝑢2𝑖 , the mean and variance of  𝑌𝑖𝑗 are given respectively as 

                 
(10)

 
and 

      
(11) 

where 𝑋2𝑖𝑗 is a vector of covariates associated with the intensity or level of a positive response 

for subject i at occasion j and 𝛽2 is a vector of unknown regression coefficients. 

 

2.2.4. Skew Normal Distribution 

If  𝑌𝑖𝑗 conditional on 𝑌𝑖𝑗 > 0 and 𝑢2𝑖 is assumed to follow a skew normal distribution with 

parameters 𝜇𝑖𝑗 , σ, and δ (Chai and Bailey, 2008), then 

               
(12)
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where 𝜙 (·) is the standard normal density function, Φ(·) is the standard normal cumulative 

distribution function, 𝜇𝑖𝑗 = 𝑋2𝑖𝑗
𝑇 𝛽2  +  𝑢2𝑖 ,  𝑋2𝑖𝑗  is a vector of covariates associated with the 

intensity or level of a positive response for subject i at occasion j, 𝛽2 is a vector of unknown 

regression coefficients, and δ is the skewness parameter. The distribution is skewed to right when 

δ > 0, skewed to left when δ < 0, reduces to the normal distribution when δ = 0, and converges to 

the half normal distribution when δ → ∞ Conditional on 𝑌𝑖𝑗 > 0 and 𝑢2𝑖 , the mean and variance 

of 𝑌𝑖𝑗 are given respectively as 

                            
(13)

 
and 

                          
(14)

 
 

2.3. Maximum Marginal Likelihood Estimation 

Part 1 and Part 2 are linked through correlated random effects. Assume that the random effects, 

𝑢𝑖  =  (𝑢1𝑖  𝑢2𝑖)𝑇  , follow a bivariate normal distribution with mean  (0 0)𝑇  and variance-

covariance matrix Σ given as 

                                                     
(15)

 
where ρ is the correlation of 𝑢1𝑖 and 𝑢2𝑖. The correlation coefficient ρ quantifies the cross-part 

correlation between Part 1 for determining the occurrence of a nonzero response and Part 2 for 

determining the level of a positive response. Let 𝑧𝑖𝑗 be 1 if 𝑦𝑖𝑗 = 0 and 0 if  𝑦𝑖𝑗  > 0. Given the 

random effects, the marginal likelihood contribution from subject i is given as 

𝐿𝑖(𝛽1, 𝛽2, |∑) = ∫ ∫ ∏ (1 − 𝑝𝑖𝑗)
𝑧𝑖𝑗

[𝑝𝑖𝑗𝑓(𝑦𝑖𝑗|𝑦𝑖𝑗 > 0, 𝑢2𝑖)]
1−𝑧𝑖𝑗

𝑔(𝑢1𝑖, 𝑢2𝑖)𝑑𝑢1𝑖𝑑𝑢2𝑖
𝑚𝑖
𝑗=1    (16) 

where 𝑚𝑖 is the number of repeated measurements on subject i, 𝑝𝑖𝑗 is given in (1) if the logit link 

function is used in Part 1 or given in (2) if the probit link function is used in Part 1, 𝑓(𝑦𝑖𝑗  |𝑦𝑖𝑗  >

 0, 𝑢2𝑖 ) is given in (3), (6), (9), or (12), depending on the distribution assumption on 𝑦𝑖> 0, and 

𝑔(𝑢1𝑖 , 𝑢2𝑖 ) is the bivariate normal density of the two random effects 𝑢1𝑖 and 𝑢2𝑖. Let n be the 

total number of subjects. Assume that the measurements on different subjects are independent. 

The likelihood to be maximized is 

𝐿(𝛽1, 𝛽2, |∑) = ∏ 𝐿𝑖
𝑛
𝑖=1 (𝛽1, 𝛽2, ∑).                                     (17) 

The likelihood in (17) involves integrating a nonlinear function over the two random effects 

given in (16). Numerical methods incorporated with some technique to approximate the integral 

are needed to find the maximum likelihood estimators for 𝛽1 , 𝛽2 , and Σ. Olsen and Schafer 

(2001) used a sixth-order Laplace approximation to first approximate the marginal likelihood and 
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then used an approximate Fisher scoring algorithm to maximize the likelihood. Tooze et al. (2002) 

used the quasi-Newton algorithm along with adaptive Gaussian quadrature to maximize the 

likelihood. This approach can be easily implemented in standard statistical software such as SAS, 

Stata, or R to find the maximum likelihood estimates. 

 

3. An Example 

Consider data from n=245 parent-child dyads from a bottle-weaning intervention study. 

Parents of toddlers aged 11 to 13 months who were consuming at least 2 bottles of milk per day 

were randomized to the bottle-weaning intervention or control group. Nutritionists at Women, 

Infants, and Children (WIC) Supplemental Feeding Program sites delivered the educational 

intervention, counseling guided by a flip-chart. The flip-chart presented message about healthy 

weight, dental caries, and iron deficiency anemia effects from bottle-weaning. The intervention 

group also received a pamphlet to share with family members and a lidded, two-handled 6 ounce 

sippy cup with a hard spout and no internal leak proof valve. The intervention recommended that 

parents gradually replace bottles with cups. Details on the educational intervention for bottle-

weaning are given in Hyden, Kahn and Bonuck (2012). Bottle use and total daily milk intake in 

ounces from bottles were assessed at baseline, 15, 18, 21, and 24 months old. Details on the study 

design are given in Bonuck et al. (2010). We wish to assess effects of the intervention on bottle-

weaning and reducing daily milk intake from bottles over 12-months of follow-up. 

Of  245 toddlers aged 11 to 13 months who were consuming at least 2 bottles of milk per day, 

118 toddlers were randomly assigned to the intervention and 127 toddlers were randomly 

assigned to the control. There were no significant differences in baseline child characteristics 

such as age, sex, total sleep per day, and race, number of bottles at baseline, total daily milk 

intake from bottles at baseline, total daily energy intake at baseline, and weight for length at 

baseline between the intervention and control. There were no significant differences in caregiver 

characteristics such as age, education, and child care between the intervention and control. Fifty-

eight children had one repeated measure, 64 children had two repeated measures, 65 children had 

three repeated measures, and 58 children had 4 repeated measures post intervention. The 

histogram of total daily milk intake in ounces from bottles is given in Figure 1.  

Figure 1 shows that the response variable, total daily milk intake from bottles, was a semi-

continuous variable with 246 (40.1%) values equal to zero and a continuous right-skewed 

distribution among the positive values. The zeros were from 126 children (67 intervention and 

59 control) who were weaned from a bottle and corresponded to no daily milk intake from bottles 

at follow-up. None of these 126 weaned children returned to bottle use during 12 months of 

follow-up. Hence, the observations that had no daily milk intake from bottles are considered as 

true zeros, not as censored zeros that would have arisen from toddlers who drink from a bottle 

but happen to not drink from a bottle in the current period. Two-part random effects models given 
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Figure 1: Historgram of tatal daily milk intake from bottles from 245 children aged 11 to 13 months 

 

in Section 2 can be used to assess effects of the intervention on bottle-weaning and reducing total 

daily milk intake from bottles accounting for the excess zeros and repeated measurements on 

each subject over 12 months of follow-up. Part 1 of such a model models the probability that a 

toddler is weaned from a bottle or drinks from a bottle. Conditional on drinking from a bottle, 

Part 2 of the model then models how much milk a toddler drinks. 

We first fitted data on total daily milk intake from bottles to two-part random effects models 

with the logit link function given in (1) for modeling the probability of drinking from a bottle in 

Part 1 and log-normal regression given in (3) denoted by Model 1, truncated normal regression 

given in (6) denoted by Model 2, gamma regression given in (9) denoted by Model 3, or skew 

normal regression given in (12) denoted by Model 4 for modeling the intensity of total daily milk 

intake from bottles conditional on drinking from a bottle in Part 2, depending on the distribution 

assumed for the positive values. We began our modeling including months post baseline, 

intervention, total daily milk intake from bottles at baseline, an interaction between intervention 

and baseline daily milk intake from bottles, and an interaction between intervention and months 

post baseline in both Part 1 and Part 2 for all four models. Starting values for the parameters in 

Part 1 can be obtained from fitting a logistic regression model with a subject-specific random 
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intercept using the binary response only. Similarly, starting values for the parameters in Part 2 

can be obtained from fitting a mixed effects model limited to the positive values. The SAS 

NLMIXED procedure with the adaptive Gaussian quadrature and quasi-Newton method was used 

to obtain the maximum likelihood estimates for the parameters in both Part 1 and Part 2. 

The parameter estimates and their corresponding standard errors for the four two-part models 

are given in Table 1. The logit link for modeling the probability of drinking from a bottle included 

terms for total daily milk intake from bottles at baseline, intervention, and months post baseline 

in each of four models. The four models gave nearly identical estimates for the parameters and 

random intercept variance 𝜏2  in Part 1. Specifically, higher baseline daily milk intake from 

bottles was associated with higher odds of drinking from a bottle at follow-up. The intervention  

 

Table 1: Parameter estimates and standard errors for the four two-part random effects models fitted to the 

total daily milk intake from bottles data 

 
reduced odds of drinking from a bottle compared to the control. Each month post baseline was 

associated with decreased odds of drinking from a bottle at follow-up. There were no significant 
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inter-action between intervention and baseline daily milk intake from bottles, and interaction 

between intervention and months post baseline in any of the four models. The estimate of the 

random intercept variance 𝜏2 was about 3.4 times larger than its standard error in all four models, 

which suggests that there was considerable subject-specific variability in trajectories of drinking 

from a bottle over time. Conditional on drinking from a bottle, Part 2 for modeling the intensity 

of total daily milk intake from bottles included terms for baseline total daily milk intake from 

bottles, intervention, and months post baseline in each of four models. The parameter estimates 

for the intercept and the three factors in Model 1 and Model 3 are similar whereas the parameter 

estimates in Model 2 and Model 4 are similar. In all four models, higher baseline daily milk 

intake predicted higher total daily milk intake from bottles at follow-up conditional on drinking 

from a bottle. Conditional on drinking from a bottle, toddlers in the intervention had less daily 

milk intake from bottles compared to toddlers in the control. Conditional on drinking from a 

bottle, each month post baseline was associated with reduced daily milk intake from bottles. 

There were no significant interaction between intervention and baseline daily milk intake from 

bottles, and interaction between intervention and months post baseline in any of the four models. 

The estimate of the random intercept variance 𝜈2 was statistically significant in all four models. 

Model 2 and Model 4 suggest considerable amounts of subject-specific variability in trajectories 

of total daily milk intake from bottles over time whereas Model 1 and Model 3 suggest non-trivial 

amounts of subject-specific variance. The estimated correlation coefficient between the two 

random intercepts was 0.59 (p = 0.0004) in Model 1, 0.62 (p = 0.0003) in Model 2, 0.64 (p = 

0.0002) in Model 3, and 0.74 (p = 0.0005) in Model 4. This substantially positive cross-part 

correlation suggests the higher the odds of drinking from a bottle, the greater the amount of daily 

milk intake from bottles. That is, if a toddler is more likely to drink from a bottle over time, the 

toddler is more likely to have large amount of daily milk intake from bottles. 
We assessed model fit in Part 1 through the receiver operating characteristic (ROC) curve. 

The ROC curve displays the relationship between sensitivity and 1 − specificity across all 

possible cut-points for defining the positivity (bottle use). The area under the ROC curve 

measures the ability of the logit model in Part 1 to discriminate be-tween those toddlers who 

drink from a bottle and those who are weaned from a bottle. The higher area under the ROC 

curve, the better the overall performance of the logit model. We first estimated the predicted 

probabilities of drinking from a bottle from the logit link with a random intercept in Part 1 and 

then used these predicted probabilities to construct the ROC curve. We defined sensitivity as the 

proportion of true positives (bottle use) correctly classified by the model and specificity as the 

proportion of true negatives (bottle-weaning) correctly classified by the model. For example, if 

the predicted probability exceeds 0.5, we will classify a toddler as drinking from a bottle. Using 

the cut-off point 0.5, the logit part in all four models yielded a sensitivity of 95.6% and a 

specificity of 91.1%. The ROC curves for Model 1, Model 2, Model 3, and Model 4 are given in 

Figure 2. Figure 2 indicates that the four models had almost identical ROC curves. All the curves 

followed closely the left-hand border and then the top border of the ROC space, indicating that 

the logit model in Part 1 gave excellent prediction of toddlers drinking from a bottle in all four 

models. The estimated area under the ROC curve was 0.9795 for Model 1, 0.9794 for Model 2, 
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0.9795 for Model 3, and 0.9796 for Model 4, with the corresponding standard errors given by 

0.00465, 0.00467, 0.00468, and 0.00462. The estimated areas under the ROC curves in four 

models were nearly identical. An area of 0.9795 can be interpreted as follows: if we select two 

toddlers at random, one drinking from a bottle and one weaned from a bottle, the probability is 

0.9795 that a toddler drinking from a bottle will be classified as bottle use by the model. We 

conclude from the above results that model fit in Part 1 is not sensitive to the distribution 

assumption on the response variable in Part 2. 

 

Figure 2: The receiver operating characteristic curves for the logit link function in Part 1 for (a) Model 1: a 

two-part logit-log-normal random effects model, (b) Model 2: a two-part logit-truncated normal random 

effects model, (c) Model 3: a two-part logit-gamma random effects model, and (d) Model 4: a two-part 

logit-skew normal random effects model. AUC stands for the area under the curve. 

 

Model fit in Part 2 conditional on drinking from a bottle was assessed through the quantile-

quantile (Q-Q) plot of Pearson (or standardized) residuals. Pearson residuals in Part 2 were 

calculated by taking the difference between actual and fitted values and dividing by the estimated 

standard deviation. The Fitted value and estimated standard deviation in Part 2 were obtained 

respectively from (4) and (5) for Model 1, (7) and (8) for Model 2, (10) and (11) for Model 3, 

and (13) and (14) for Model 4. Under a well-specified model in Part 2, Pearson residuals are 

expected to be standard normal when the sample size is large. The Q-Q plots of Pearson residuals 

against the standard normal distribution are given in Figure 3. There are departures from the line 

in Figure 3(a) for Model 1. However, these do not suggest severe divergence from the standard 

normal distribution. The quantiles of the theoretical and data distribution agree except in the 

lower tail of the plots in Figure 3(b) for Model 2 and Figure 3(c) for Model 3. Although not all 
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plotted points fall on or near the line, Figure 3(b) and Figure 3(c) do not indicate substantial 

departures from the standard normal distribution. There are departures from the line in the lower  

 

Figure 3: The Q-Q plots of Pearson residuals against the standard normal distribution in Part 2 for (a) 

Model 1: a two-part logit-log-normal random effects model, (b) Model 2: a two-part logit-truncated normal 

random effects model, (c) Model 3: a two-part logit-gamma random effects model, and (d) Model 4: a two-

part logit-skew normal random effects model. 

 

and upper tails of the Q-Q plot in Figure 3(d) for Model 4, indicating a poor fit in Part 2. In 

summary, the lower tail is not well captured by any of four models. Except in the lower tail, the 

Q-Q plots for Model 2 and Model 3 are close to the 45-degree straight line, suggesting Model 2 

and Model 3 fitted to the data better than Model 1 and Model 4 conditional on drinking from a 

bottle in Part 2. 

The maximum marginal log-likelihood was -1615.0 for Model 1, -1612.6 for Model 2, -

1603.4 for Model 3, and -1613.9 for Model 4 (see Table 1). It can be seen that Model 3 has the 

largest value of the maximum marginal log-likelihood or the smallest deviance (minus twice log-

likelihood). This indicates that Model 3 fitted the data better than Model 1, Model 2, and Model 

4. Because Model 1, Model 2, Model 3, and Model 4 are not nested within each other, the 

traditional likelihood ratio test cannot be applied to assess differences in model fit among these 

four models. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) 

were used to select among competing two-part models. When comparing competing models, we 

selected the model with the lowest information criterion based on the AIC or BIC as the model 

demonstrating better fit than its comparison models. The AIC was 3253.9 for Model 1, 3249.2 
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for Model 2, 3230.8 for Model 3, and 3253.8 for Model 4 (see Table 1). The BIC was 3295.9 for 

Model 1, 3291.2 for Model 2, 3272.8 for Model 3, and 3299.3 for Model 4. It can be seen that 

Model 3 had the smallest AIC and BIC. Both the AIC and BIC criteria favor Model 3 over Model 

1, Model 2, and Model 4. Based on the results from the information criteria, the maximum 

marginal likelihood, and Q-Q plots of Pearson residuals, we conclude that Model 3, a two-part 

logit-gamma random effects model, is the best fit model. 

We next fitted data to Model 1, Model 2, Model 3, and Model 4 with the logit link function 

in Part 1 replaced by the probit link function given in (2) to examine whether prediction accuracy 

of drinking from a bottle in Part 1, the parameter estimates in Part 2, and the estimated cross-part 

correlation coefficient vary with the link function used in Part 1. The parameter estimates and 

their corresponding standard errors for the four models are given in Table 2. The four models 

gave nearly identical estimates for the parameters and random intercept variance 𝜏2 in Part 1. 

There were no changes in the sign of the parameter estimates for predicting the probability of 

drinking from a bottle compared to the same models with the logit link function in Part 1 given 

in Table 1. ROC curves for the probit link function in Part 1 for the four models are given in 

Figure 4. Figure 4 indicates that the four models have nearly identical ROC curves. Like the ROC 

curves for the logit link function in Part 1, all the curves followed closely the left-hand border 

and then the top border of the ROC space. The estimated area under the ROC curve was 0.9796 

for Model 1, 0.9796 for Model 2, 0.9796 for Model 3, and 0.9798 for Model 4, with the 

corresponding standard errors given by 0.00453, 0.00454, 0.00456, and 0.00446. The estimated 

area under the ROC curve for the probit link in Part 1 is nearly identical to that for the logit link 

in Part 1 for all four models. Comparisons of the parameter estimates in Part 2 and the estimated 

correlation coefficient between two random intercepts given in Table 2 with those in Part 2 given 

in Table 1 indicate that there are no changes in these parameter estimates and their significance 

levels for all four models. We conclude from these results that prediction accuracy does not vary 

with the link function used in Part 1, and the parameters estimates in Part 2 and the estimated 

cross-part correlation coefficient are not sensitive to the link function used in Part 1. 
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Table 2: Parameter estimates and standard errors for the four two-part random effects models with the logit 

link function replaced by the probit link function fitted to the total daily milk intake from bottles data 
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Figure 4: The receiver operating characteristic curves for the probit link function in Part 1 for (a) Model 1: 

a two-part probit-log-normal random effects model, (b) Model 2: a two-part probit-truncated normal 

random effects model, (c) Model 3: a two-part probit-gamma random effects model, and (d) Model 4: a 

two-part probit-skew normal random effects model. AUC stands for the area under the curve. 

 

4. Discussion 

We have demonstrated the use of two-part random effects models to assess effects of the 

bottle-weaning intervention on reducing bottle use and daily milk intake from bottles when the 

longitudinal response variable has a point mass at 0 and a continuous right-skewed distribution 

for positive values. We show in all four two-part random effects models (Model 1 to Model 4) 

that the bottle-weaning intervention promoted bottle-weaning and reduced daily milk intake from 

bottles in toddlers not off bottles adjusted for baseline total daily milk intake from bottles and age 

in children aged 11 to 13 months. We also show that there are no differences in model fit using 

either the logit link function or the probit link function for modeling the probability of drinking 

from a bottle in Part 1. Prediction accuracy of the logit or probit link function in Part 1 is not 

sensitive to the distribution assumption on the response variable in Part 2. The parameter 

estimates in Part 2 and the estimated cross-part correlation coefficient do not vary with the link 

function used in Part 1. We conclude that Model 3, a two-part logit-gamma random effects model, 

provides the best overall description of the data compared to the other three two-part models 

based on the results from the information criteria, the maximum marginal likelihood, and 

assessing model fit in Part 1 and Part 2 for each of the four competing model. However, it is 

worth noting that the results of Model 3 being preferred in the current study do not imply that 

one should favor 
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Model 3 over the other three models for other repeated measures semi-continuous data sets 

without thorough assessment of model fit. We have applied Model 1 to Model 4 to fit data on 

total milk intake from bottles. However, we do not mean to imply that these four models are the 

only approaches to model repeated measures semi-continuous data. Other distributions such as 

Weibull or beta ( Blough et al., 1999) may be used to model the positive part of a semi-continuous 

variable. As in some cases, Model 1, Model 2, Model 4, or other models may provide a better fit, 

the advocacy of one particular model for semi-continuous data either in particular data sets or in 

general, is not tenable. We suggest fitting all competing two-part models to the data being 

analyzed and then selecting the model with the best fit, unless there is prior information or expert 

knowledge on choosing certain two-part models. For example, if positive values are known to be 

skewed with variance proportional to the mean, gamma regression (Model 3) or log-normal 

regression (Model 1) can be the choice of the second part model. If positive values are 

percentages or proportions, beta regression can be the choice of the second part model. 

We have fitted the data to two-part models under the assumption that once toddlers are 

weaned, they will not return to bottle use. This assumption is supported by our data in which all 

weaned toddlers did not return to bottle use during the study. If some proportion of weaned 

toddlers return to bottle use during the study, an observation that has no daily milk intake from 

bottles can be considered as either a true zero from a toddler off bottles or a partial observation 

censored at 0 from a toddler who drinks from a bottle but happens to not drink from a bottle in 

the current period. Without further assumptions, two-part models cannot differentiate the true 

weaned toddlers from those who happen not to use bottles during the study period. Following 

Moulton and Halsey (1995), the probability of a true zero can be modeled with logistic or probit 

regression and the other values can be modeled with censored log-normal regression or censored 

skew normal regression. 
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