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Abstract: A powerful methodology for exploring relationships among items, 

association rules analysis can be used to capture a set of rules from any given dataset. 

Little is known, however, that a single dataset can be represented by more than one 

set of rules, i.e., by equivalent models. In fact, most studies on the goodness of 

model can be misleading because they assume the model is unique. These are 

phenomenon that the literature has yet to explore. In our study, we demonstrate that 

equivalent models exist for any dataset and propose a method for converting any 

given model into its dominant model, recommended as the benchmark model. 

Further, we explain how the phenomenon of equivalent models affects decision tree 

analysis and statistical model selection. It is shown that the decision rules from 

decision tree analysis can always be simplified by reducing the decision rules to the 

dominant model. The simulated and real datasets are used for illustration. 

 
Keywords: Association rules analysis, Decision tree analysis, Dominant model, 

Equivalent models.  

 

1. Introduction 

Association rules analysis, introduced in the early 1990s (Agrawal and Srikant 1994), is a 

popular data-mining technique. It is a methodology for exploring relationships among items 

(variables) in terms of rules. The basic idea is straightforward: to determine the rules that are 

effective in explaining a given dataset. These rules must meet some criteria, for example, a 

minimum support and a minimum confidence. Numerous studies make use of association rules 

analysis in a wide variety of areas, including biology (Becquet et al. 2002; Kuo et al. 2007), 

business and marketing (Wang et al. 2005; Shih et al. 2010), geography (Appice et al. 2003; Lee 

et al. 2007), agriculture (Matsumoto 1998; Mclver and Friedl 2002), education (Garcia et al. 2007; 

Merceron and Yacef 2008), photography (Tesic 2003; Liu et al. 2008), and economics (Dopfer 

and Potts 2004; Mosson et al. 2008). Many advances have been made, including methods for 

rules selection that prefer some rules over others based on given criteria and methods for selecting 

sets of rules to represent datasets (Bayardo 1997; Liu et al. 1998; Dong et al. 1999; Bastide et al. 

2000; Yin and Han 2003; Webb and Zhang 2005; Li 2006; Thabtah 2007; Grudzinski et al. 2010). 

However, there is a fundamental phenomenon that has been ignored which may lead to an 

inappropriate comparison between rules selection methodologies. This phenomenon is that of 
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“equivalent models,” whereby a dataset can be perfectly represented by two or more association 

rules models.  

 In the literature (Etchells and Lisboa 2006; Guerreiro and Trigueiros 2010; Marghny and 

El-Semman 2005), a dataset is generated via a known or given model; i.e., each methodology 

under consideration is tested using the generated dataset. The set of rules in the given model are 

the only rules considered to be correct. Any methodology that finds the same rules as those of 

the given model is considered to be competent. On the other hand, any methodology that finds 

rules that differ from those of the given model is considered to be incompetent.  

Such a comparison may not be valid, however, as illustrated by the following example. 

Suppose that the dataset under consideration is generated via the given model, which consists of 

two rules: 

 Rule 1: If X1 = 1, then Y = 1. 

 Rule 2: If X2 = 1, X3 = 1, and X4 = 1, then Y = 1. 

Consider the following two models (U and V): 

Model U: 

 Rule U1: If X1 = 1, then Y = 1. 

 Rule U2: If X2 = 1, X3 = 1, and X4 = 1, then Y = 1. 

Model V: 

 Rule V1: If X1 = 1 and X3 = 0, then Y = 1.  

 Rule V2: If X1 = 1 and X4 = 1, then Y = 1.  

 Rule V3: If X1 = 1, X2 = 1, and X3 = 1, then Y = 1. 

 Rule V4: If X1 = 0, X2 = 1, X3 = 1, and X4 = 1, then Y = 1. 

 Rule V5: If X1 = 1, X2 = 0, X3 = 1, and X4 = 0, then Y = 1. 

The responses generated by Model U and Model V are identical. In other words, the two 

models are equivalent. If the equivalence of models is not fully understood, comparisons among 

methods and among criteria can be misleading. This phenomenon has yet to be explored in the 

literature. 

The next issue pertains to explaining the dataset or explaining the relationships among 

variables if there are multiple models to choose from. Our major finding on this point is that 

although a large number of given models can represent the same dataset; there is one unique 

“dominant model.” We propose the dominant model as the benchmark for explaining the 

relationships between variables among all the equivalent models. By using the dominant model, 

we generate an explanation of the relationships among the variables that is consistent and concise. 

In the other word, the dominant model provides the better explanation for the data while keeping 

the same prediction ability compared to the other equivalent models. The dominant model can 

also be used to verify equivalency among the given models, thereby eliminating inappropriate 

comparisons among the rules selection methodologies.  In the other word, all the models have 

their dominant models. If any two or more models have the same dominant model, those models 

are equivalent.  

The effect of equivalent models is not limited to association rules analysis. In particular, the 

effect of equivalent models also applies to decision tree analysis. A decision tree analysis is 
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characterized by a hierarchical pattern, such that any set of decision rules can generally be 

reduced to a set of more compact rules. Furthermore, the effect of equivalent models also applies 

to statistical techniques that use variables generated from decision tree analysis in order to 

develop a logistic regression model. We show that the decision rules from decision tree analysis 

and the consequent variables can always be simplified by reducing the decision rules to the 

dominant model.  

The goal here is to explore this equivalency phenomenon. We discuss all the essential ideas 

and analysis including the definitions, the dominant model, the verification, and the theoretical 

properties of equivalent models. We show the direct effect of equivalent models on association 

rules analysis, decision tree analysis and on statistical model selection methods.  

This paper is organized as follows. Section 2 discusses the basic concept of equivalent models 

through an example. Section 3 proposes the dominant model for equivalent models and the 

derivation to obtain the dominant model. Section 4 describes the theoretical properties of the 

equivalent models. Section 5 demonstrates how this phenomenon is related to the well-known 

MONK’s dataset.  Section 6 demonstrates the effect of equivalent models with real-life 

application.  Section 7 explains the parallel effect of equivalent models on decision tree analysis 

and demonstrates how this phenomenon affects real-life application. Section 8 offers a discussion 

and concluding remarks.  

 

2. An illustrative example  

 
First, we illustrate the equivalency phenomenon of association rules analysis through an 

example showing that multiple models can be used to represent the same dataset. Note that this 

phenomenon is very common but has never been acknowledged in literature. 

 Consider an example with five binary variables (X1–X5) and a binary response (Y) with 

classes 0 and 1. Model A, which consists of two rules, is used to generate response Y:  

Rule A1: If X1 = 1, then Y = 1. 

Rule A2: If X2 = 1 and X3 = 1, then Y = 1. 

 The generated dataset can be used to compare the methodologies in terms of the 

respective performance of each. For this dataset, any technique that finds both Rule A1 and Rule 

A2 is considered competent. Now consider Model B, which consists of 4 rules:  

Rule B1: If X1 = 1 and X2 = 1, then Y = 1.  

Rule B2: If X1 = 1 and X3 = 1, then Y = 1.  

Rule B3: If X1 = 1, X2 = 0, and X3 = 0, then Y = 1. 

Rule B4: If X1 = 0, X2 = 1, and X3 = 1, then Y = 1. 

 Based on the current prevailing methodology, Model B would be considered incompetent 

because it did not find any rule in the given model (Model A). However, Model B generates 

responses that are identical to those produced by Model A. In other words, these two models are 

“equivalent.” A lack of knowledge about model equivalence is likely to result in misleading 

comparisons between methods and rules selection criteria. Note that all the models shown in 
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Table 1 will generate responses that are identical to those generated by Model A and Model B, 

such that all of these models are equivalent.  

 
Table 1: Illustrated Equivalent Models 

Model Rules 
C Rule C1: If X1 = 0 and X2 = 0, then Y = 0.  

Rule C2: If X1 = 0 and X3 = 0, then Y = 0. 
D Rule D1: If X1 = 1, then Y = 1. 

Rule D2: If X1 = 0, X2 = 1, and X3 = 1, then Y = 1. 
E Rule E1: If X1 = 0 and X2  = 0, then Y = 0.  

Rule E2: If X1 = 0, X2 = 1, and X3 = 0, then Y = 0. 
F Rule F1: If X1 = 1 and X4 = 0, then Y = 1.  

Rule F2: If X1 = 1 and X4 = 1, then Y = 1.  
Rule F3: If X2 = 1 and X3 = 1, then Y = 1. 

  
 It is evident that given differences between the terms and the number of rules between 

these equivalents models (Models A–F), that each model explains the relationships among the 

variables differently. This becomes another issue associated with equivalent models. Although it 

is possible, as shown, for a large number of models to represent the same dataset, there is only 

one unique dominant model to which all the equivalent models can refer. In fact, the dominant 

model serves as a point of reference whereby the explanation of the relationships among the 

variables will be consistent and concise. The dominant model can also be used to verify 

equivalency among models in order to eliminate unfair comparisons among the rules selection 

methodologies and criteria. The next section presents a thorough study of equivalent models 

including important definitions related to model equivalency. The concept of a dominant model 

as a representation of equivalent models is proposed, and the procedure for converting equivalent 

models into the dominant model is described. 

  

3. Equivalent Models and the Dominant Model 

 
This section provides a method for converting any given model into its dominant model. First, 

we provide definitions of all the significant terms used. Then, we propose a method for converting 

any given models into the dominant model. Note that the dominant model can also be used to 

verify equivalency among models, as models that have the same dominant model are all 

equivalent.  

3.1 Definitions  

Definition 1: Models are called equivalent if they generate identical responses. 

Note that Models A–F in Section 2 are all equivalent. For simplicity, our study separates the 

equivalent models into two classes of response: class 0 and class 1. The equivalent model with 

all the rules giving conditions for Y = 0 is called the equivalent model for class 0. Likewise, the 
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equivalent model with all the rules giving conditions for Y = 1 is called the equivalent model for 

class 1. Note that equivalent models from one class can be viewed as complementing the 

equivalent models of the other class, as will be discussed later.  

Definition 2:  Of all the equivalent models, the dominant model is the model with the fewest 

condition terms.  

A condition term is represented by one variable and its level, e.g., Xi = 1. We count all the 

repeated condition terms. As there are two classes for a binary response, there are two dominant 

models—one dominant model for each class. Note that the dominant model for each class is 

unique. The proof is provided in Section 4.  

Consider the example in Section 2: Model A is the dominant model for class 1, and Model C 

is the dominant model for class 0. For Model A, the total number of condition terms is three: one 

term from Rule A1 (X1 = 1), and two terms from Rule A2 (X2 = 1 and X3 = 1). For Model C, 

the total number of condition terms is four: two terms from Rule C1 (X1 = 0 and X2 = 0), and 

two terms from Rule C2 (X1 = 0 and X3 = 0). Note that the dominant model is determined not 

by the total number of distinct terms but by the total number of relevant terms that cannot be 

eliminated. 

Definition 3: Dominant rules are all the rules in the dominant model.  

As shown in Section 2, Rules A1, and A2 are dominant rules for class 1, while Rules C1 and 

C2 are dominant rules for class 0.  

Definition 4: A disjoint model is a model wherein there are no rules with overlapping condition 

spaces. 

Models D and E are disjoint models. However, Model A is not a disjoint model, as it includes 

instances that satisfy both Rule A1 and Rule A2. Figure 1a shows that the respective condition 

spaces of Rule A1 and Rule A2 overlap with each other. On the other hand, Figure 1b shows that 

there is no overlapping space between Rule D1 and Rule D2. 

 

 

      Figure 1a. Dominant Model             Figure 1b. Disjoint Model 
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Definition 5: A child rule is a rule whose condition is the subset of another rule, i.e., (the parent 

rule).  

Consider Model A and Model B in Section 2: Rule A1 is the parent rule of Rules B1, B2, and 

B3, whereas Rule A2 is the parent rule of Rule B4. In other words, Rules B1, B2, and B3 are the 

child rules of Rule A1, whereas Rule B4 is the child rule of Rule A2.  

Definition 6: A complement model represents a class that differs from that of the given model.  

If the given model is the model for Y = 1, then the complement model will be the model for 

Y = 0. For example, Model C in Section 2 is the complement model of Model A and vice versa.  

Definition 7: An irrelevant rule is any rule that if eliminated would not change the response.  

Definition 8: An irrelevant term is any term in the condition of the rule that if eliminated would 

not change the response.  

Consider Model F in Section 2: If we eliminate term X4 = 0 in Rule F1 and term X4 = 1 in 

Rule F2, the response would still be the same as it would had these terms not been eliminated. 

(An explanation is given in the following section.) Thus, both of these terms are irrelevant terms.    

Next, we demonstrate how to convert any equivalent models into the dominant model. 
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3.2 Converting to the Dominant Model 

The dominant model is unique and it is the model with the fewest condition terms that can 

be used to explain a dataset. Here, we propose the dominant model as a benchmark model for all 

the equivalent models. A step-by-step procedure for obtaining the dominant model from any 

equivalent models is given at the end of this subsection.  

 

Terms from partitioned rule(s) 

   Suppose there are two rules: “if M1 and M2, then Y = 1” and “if M1 and
c

M2 , then Y = 1,” 

where 
c

M2 is the complement term of M2. The combination of these two rules is equivalent to 

the rule “if M1, then Y = 1.” As we can eliminate M2 and 
c

M2  without changing the response, 

both are considered irrelevant terms. 

   As the example in Table 2 indicates, adding X4 = 0 to Rule A1 generates Rule F1. Similarly, 

adding X4 = 1 to Rule A1 generates Rule F2. Therefore, Model F is equivalent to Model A. 

 

 

            Figure 2a: Model A                            Figure 2b: Model F 

  

As shown in Figure 2, one rule can be partitioned into multiple rules. It is, therefore, possible to 

generate numerous equivalent models as one rule can be partitioned in multiple ways.  

   

Complement terms 

    Suppose the first rule is “if M1, then Y = 1” and the second rule is “if M2 and 
c

M 1 , then Y = 

1,” where 
c

M 1 is the complement term of M1. Note that the term 
c

M 1  is irrelevant because it 

can be eliminated without changing the response. Consider the model condition of Rule D in 

Table 2: the complement A1 is X1 = 0. This term in Rule D2 can be eliminated without changing 

the response of the model. Some examples of irrelevant terms related to this category are shown 

in Figure 3.  
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Figure 3a: Model with              Figure 3b: Model wit           Figure 3c: Model without  

 overlapping spaces       less overlapping spaces              overlapping spaces 

 

   In Figure 3a, the model without any irrelevant terms is represented with three rules. The term 
c

d 2  in Figure 3b and the terms 
c

d1  and 
c

d 2 in Figure 3c are all irrelevant terms, as any of them 

can be eliminated without changing the response. Note that Figure 3c represents the disjoint 

model without any overlapping condition spaces.  

 

Child Rules 
   Suppose we have two rules: “if M1, then Y = 1,” and “if M1 and M2, then Y = 1.” The 

combination of these two rules is equivalent to the rule “if M1, then Y = 1.” Thus, the second rule 

is the child rule of the first rule and can be eliminated without changing the response. The rule 

“if M1 and M2, then Y = 1” is an irrelevant rule.  

 

Procedure for the Dominant Model 
The dominant model can be obtained by deleting all the irrelevant terms and rules. We 

propose the iterative method for eliminating irrelevant rules and irrelevant terms as follows (also 

refer to Figure 4).  

Step 1: Eliminate irrelevant rules 

Suppose that there are k rules at the initial stage. Search for a rule that can be deleted while 

retaining the identical response under the remaining k–1 rules. If such a rule is found, it is 

eliminated. Repeat step 1 until no more irrelevant rules are found.  

 

Step 2: Eliminate an irrelevant term 

From the model obtained in step 1, search for the condition term that can be deleted while 

the identical response is retained. If such a term is found, delete it from the corresponding rule, 

and return to step 1. (Note that only one term should be deleted from only one rule in each 

iteration of step 2.) If no irrelevant term can be found, the dominant model has been obtained. 

  

 

Remark.  
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The process stops when there are no longer any irrelevant terms in the model. The form after all the 

irrelevant rules and all the irrelevant terms have been deleted is the dominant model.  
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     Figure 4: Decision chart for the search procedure for the dominant model  

 
Consequently, model equivalency is verified by comparing the dominant models identified 

via the process just outlined. If the dominant models are the same, the models subjected to this 

comparison are equivalent.  

 
4. Theoretical Properties  

In this section, we present some theoretical properties. These properties distinguish 

equivalent models from non-equivalent models. We also prove the theorem that the dominant 

model is unique.  

Property 1: Any rule in any equivalent model must be a child rule of a dominant rule or a dominant 

rule itself.  

By definition, the dominant rules define the scope of the conditions for the defined class. 

Including any rule that is not a child rule of a dominant rule will introduce instance(s) beyond 

the scope of the equivalent models.  

Property 2: The complement models of any equivalent models are also equivalent. 

 This property can be shown through graphical presentation (Figure 3). The three models are 

equivalent, with the area inside the three circles belonging, for example, to class 1. The 

complement models for these three equivalent models cover the same area (outside the three 

circles) for class 0. The three models and their complement models are clearly equivalent in terms 

of responses. 

Theorem 1: The dominant model for each class is unique.  

Proof: Suppose the dominant model is represented as  

                          If   ij

k

j

d

i

m
i


11 

  then Y = 1.                                                    

Note that d is the number of rules; m1, m2, …, md are the terms included in the conditions for 

rules 1, 2,…, d, respectively; and k1, k2, …, kd are the numbers of the terms for the conditions 

for rules 1, 2,…, d, respectively. Y is the response, which is either 0 or 1 (we will use 1, without 

loss of generality). 

The complement model is then in the following form: 

If 
djjjall ,...,, 21

)...(
2211

c

jd

c

j

c

j d
mmm  , then Y = 0,               (a) 

where 1j = 1…k1, 2j  = 1…k2, and dj  = 1…kd. 
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From property 1, the rule in the equivalent models must be either the child rule of the 

dominant rule or the dominant rule itself. Therefore, the complement model of any equivalent 

model will be in the form  

If 
djjjall ,...,, 21

)...(
2211

c

jd

c

j

c

j d
mmm  termsxtrae , then Y = 0,         (b) 

where extra terms are the products of excessive condition terms.  

 From property 2, the complement models of the equivalent models will be equivalent. 

This implies that Model (a) and Model (b) are equal. Thus, the extra terms, ( termsxtrae ), are 

irrelevant and can be eliminated.  

 Note that we can further compress the term 
djjjall ,...,, 21

)...(
2211

c

jd

c

j

c

j d
mmm 

 
by 

eliminating any irrelevant terms and/or irrelevant rules to establish a dominant model for class 0. 

The term 
djjjall ,...,, 21

)...(
2211

c

jd

c

j

c

j d
mmm  is unique; therefore, the dominant model is 

unique. This completes the proof of the theory.  

Corollary. All the condition terms in the dominant model appear in all the equivalent models.  

The importance of uniqueness suggests that all the equivalent models can refer to this 

dominant model. The proof implies that all the equivalent models can be compressed into their 

simplest final form, i.e., the dominant model. We propose to use this model as a benchmark for 

explaining the relationships among variables for all the equivalent models. An example of how 

to convert any model into its dominant model follows. 

 

5. Case Study: The MONK’s dataset 

The MONK’s dataset was compiled by Sebastian Thrun of Carnegie Mellon University using 

propositional formulas over six factors (Thrun et al 1991). It can be obtained from the UCI 

machine learning website (http://archive.ics.uci.edu/ml/datasets.html). The MONK’s problem is 

the basis for the first international comparison of learning algorithms.  

This dataset has been used in numerous studies to compare methodologies. Among these, 

some of the papers that focus on finding the classification error rate without considering the 

model are Philip and Joseph (2000), Karaçali and Krim (2003), Shin (2006), Naval and Yusiong 

(2007), Zhang and Wang (2008), Appavu and Rajaram (2009), Qodmanan et al. (2011). 

Additionally, other studies search for models that represent the dataset (Etchells and Lisboa 2006; 

Guerreiro and Trigueiros 2010; Marghny and El-Semman 2005). These papers focus on the 

underlined rules that are given to the dataset without considering other possible equivalent 

models. According to these studies, methodologies that discover the given rules are competent. 

The problem is that the methodology can be competent even when the underlined rules are not 

found, as other equivalent models can be found instead. In the literature, many methodologies 

http://archive.ics.uci.edu/ml/datasets.html
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have been studied in order to determine whether they can be used to find the given model 

(Etchells and Lisboa 2006; Guerreiro and Trigueiros 2010; Marghny and El-Semman 2005). We 

use the MONK’s dataset to illustrate the effect of equivalent models with association rules. The 

derivation used to obtain the dominant model is also presented.   

5.1 Background of the MONK’s Dataset  

The objective of the MONK’s dataset is to classify 432 robots into two classes (class 0 and 

class 1) based on six attributes. The details of all the attributes are shown in Table 3. The given 

model assigns each robot to one of the two classes with a subset of the six attributes. Note that 

the given model for the MONK’s dataset is designed on the basis of the following logic (the 

truth):   

(1) If the head shape and the body shape of the robot are the same, then the robot is in class 

1, and 

(2) If the robot wears a red jacket, then the robot is in class 1. 

We convert the original attributes into dummy variables, as shown in Table 2. The table also 

shows the role of equivalent rules in explaining the same dataset. 

 
Table 2: Attributes for the MONK’s Dataset 

Attribute Level Binary Variable 
head_shape round, square, octagon X1 = 1 if head_shape is round, and X1 = 0 otherwise. 

X2 = 1 if head_shape is square, and X2 = 0 otherwise. 
body_shape round, square, octagon X3 = 1 if body_shape is round, and X3 = 0 otherwise. 

X4 = 1 if body_shape is square, and X4 = 0 otherwise. 
is_smiling yes, no X5 = 1 if smiling, and X5 = 0 otherwise. 
holding sword, balloon, flag X6 = 1 if holding a sword, and X6 = 0 otherwise. 

X7 = 1 if holding a balloon, and X7 = 0 otherwise. 
jacket_color red, yellow, green, blue X8 = 1 if jacket color is red, and X8 = 0 otherwise. 

X9 = 1 if jacket color is yellow, and X9 = 0, otherwise. 
X10 = 1 if jacket color is green, and X10 = 0 otherwise. 

has_tie yes, no X11 = 1 if wearing a tie, and X11 = 0 otherwise. 

 

5.2 Equivalent Models for the MONK’s dataset 

If we follow the given logic with binary variables, the conditions are expressed in four 

rules—the dominant rules that form the dominant model, i.e., Model M, as shown in Table 3.    

 

Table 3: Dominant Model of Class 1 for the MONK’s Dataset (Model M) 

Rule Explanation 
M1: If X1 = 1 and X3 = 1, then Y = 1. If the robot has a round head shape and a round body 

shape, then the robot is in class 1.  
M2: If X2 = 1 and X4 = 1, then Y = 1. If the robot has a square head shape and a square 

body shape, then the robot is in class 1. 



 
Pannapa Changpetch1, Dennis K. J. Lin2                                             725 

 

M3: If X1 = 0, X2 = 0, X3 = 0, and X4 = 0, then  
Y = 1. 

If the robot has an octagonal head shape and an 

octagonal body shape, then the robot is in class 1. 
M4: If X8 = 1, then Y = 1. If the robot wears a red jacket, then the robot is in 

class 1. 

 
    These four rules are the benchmark for comparing goodness of model and the criteria. Consider 

Model R, as shown in Table 4. There are seven rules, none of which appears in Model M (Table 

3). Thus, by any existing criteria, Model R is not a good model. However, it can easily be verified 

that the responses generated by Model R are identical to those generated by Model M (Table 3). 

In other words, Model R is equivalent to Model M.  

 
Table 4: Equivalent Model for the MONK’s Dataset (Model R) 

Rule  Explanation   
R1: If X8 = 1 and X1 = 1, then Y = 1. 
 

If the robot wears a red jacket and has a round head 

shape, then the robot is in class 1. 

R2: If X8 = 0, X1 = 1, and X3 = 1, then Y = 1. 
 

If the robot has a round head shape, has a round 

body shape, and does not wear a red jacket, then 

the robot is in class 1. 
R3: If X8 = 1 and X4 = 1, then Y = 1. 
 

If the robot wears a red jacket and has a square 

body shape, then the robot is in class 1. 

R4: If X8 = 0, X2 = 1, and X4 = 1, then Y = 1. 
 

If the robot has a square head shape, has a square 

body shape, and does not wear a red jacket, then 

the robot is in class 1. 
R5: If X1 = 0, X3 = 0, and X8 = 1, then Y = 1. 
 

If the robot does not have a round head shape, does 

not have a round body shape, and wears a red 

jacket, then the robot is in class 1. 
R6: If X1 = 0, X2 = 0, X3 = 0, X4 = 0, and X8 = 0, 

then Y = 1. 
 

If the robot has an octagonal head shape, has an 

octagonal body shape, and does not wear a red 

jacket, then the robot is in class 1. 

R7: If X1 = 0, X4 = 0, and X8 = 1, then Y = 1. 
 

If the robot has a square head shape, has a square 

body shape, and wears a red jacket, then the robot 

is in class 1. 

                                                           

These two models are equivalent in that they possess identical responses. However, they differ 

in regard to how they explain the relationships between input variables and responses.  

 

5.3 Dominant Model for MONK’s Dataset 

For Model R, the original seven rules cannot be deleted in the first step. Therefore, we 

consider irrelevant terms. The term that can be deleted from Rule R1 is X1 = 1, which leaves 

only the term X8 = 1 in Rule R1. Then Rule R3, Rule R5, and Rule R7 are deleted in the 
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consecutive steps, as they become the child rules of the modified Rule R1. Next, the term X8 = 

0 is deleted from Rule R2, which leaves only the terms X1 = 1 and X3 = 1 in Rule R2. Again, as 

there is no irrelevant rule, we consider the next irrelevant term. The term X8 = 0 is deleted from 

Rule R4, which leaves only terms X2 = 1 and X4 = 1 in Rule R4. As there is no other irrelevant 

rule we consider the next irrelevant term. The term X8 = 0 is deleted from Rule R6, which leaves 

only the terms X1 = 0, X2 = 0, X3 = 0, and X4 = 0 in Rule R6. At this point, the dominant model, 

Model M, is obtained. 

Note that the modified Rule R1 is identical to Rule M4, that the modified Rule R2 is identical 

to Rule M1, that the modified Rule R4 is identical to Rule M2, and that the modified Rule R6 is 

identical to Rule M3. As stated in Theorem 1, as this is the dominant model, it is unique. Note 

that we do not delete term X8 = 0 from Rule R2, Rule R4, and Rule R6 at the same time because 

deleting repeated terms does not always work with all equivalent models.  

In the next section, we show that the issue of equivalent model can happen to any real-life 

applications illustrated through the Lenses dataset (Cendrowska 1987).  

 

6. Application: Lenses Dataset 

The Lenses dataset was donated by Benoit Julien and it can be obtained from the UCI 

machine learning website (http://archive.ics.uci.edu/ml/datasets.html). The objective of the 

Lenses dataset is to classify 24 patients into two classes (class 0: does not need contact lenses; 

and class 1: needs contact lenses) based on four attributes. Note that the original data classify the 

patients into three classes (those who need hard contact lenses, those who need soft contact lenses, 

and those who do not need contact lenses). We modified this dataset for the purpose of illustration. 

The details of all the attributes are shown in Table 5.  

 

Table 5: Attributes for the Lense Dataset 

Attribute Level Binary Variable 

Age of the 

patient 

young, pre-presbyopic,  

presbyopic 

X1 = 1 if young, and X1 = 0 otherwise. 

X2 = 1 if pre-presbyopic, and X2 = 0 otherwise. 

 

Spectacle 

prescription 

myope, hypermetrope X3 = 1 if myope, and X3 = 0 otherwise. 

 

Astigmatic no, yes X4 = 1 if no, and X4 = 0 otherwise. 

 

Tear production 

rate 

reduced, normal X5 = 1 if reduced, and X5 = 0 otherwise. 

 

 

To find a model for Lenses dataset, we use the CBA program (Liu et al. 1998) developed by 

the Department of Information Systems and Computer Sciences at the National University of 

Singapore (website: http://www.comp.nus.edu.sg/~dm2/). The model from the default setup by 

CBA is shown in Table 6.  

Table 6: Model from association rules analysis for the Lenses Dataset 

http://archive.ics.uci.edu/ml/datasets.html
http://www.comp.nus.edu.sg/~dm2/
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Rule Explanation  

If X1 = 1 and X5 = 0, then Y = 1. If the patient is young and has a normal tear 

production rate, then the patient should wear contact 

lenses.   

If X3 = 1, X4 = 0,and X5 = 0,  

then Y = 1. 

If the patient has a myope spectacle prescription, is 

astigmatic, and has a normal tear production rate, 

then the patient should wear contact lenses.   

If X3 = 0, X4 = 1,and X5 = 0,  

then Y = 1. 

If the patient has a hypermetrope spectacle 

prescription, is not astigmatic, and has a normal tear 

production rate, then the patient should wear contact 

lenses.   

If X3 = 1, and X5 = 0, then Y = 1. If the patient has a myope spectacle prescription and 

has a normal tear production rate, then the patient 

should wear contact lenses.   

 

We show via the Lenses dataset that association rules analysis produces an irrelevant rule 

and irrelevant term. The second rule and the term X3 = 0 in the third rule, as shown in Table 6, 

will be eliminated to obtain the dominant model, as shown in Table 7.  

 

Table 7: Dominant Model of Class 1 for the Lenses Dataset 

Rule Explanation  

If X1 = 1 and X5 = 0, then Y = 1. If the patient is young and has a normal tear 

production rate, then the patient should wear contact 

lenses.   

If X4 = 1 and X5 = 0, then Y = 1. If the patient is not astigmatic and has a normal tear 

production rate, then the patient should wear contact 

lenses.   

If X3 = 1, and X5 = 0, then Y = 1. If the patient has a myope spectacle prescription and 

has a normal tear production rate, then the patient 

should wear contact lenses.   

 
The illustration through the Lenses dataset shows the importance of obtaining the dominant 

model since the explanation from the dominant model in Table 7 is more sensible compared to 

the explanation from the model in Table 6.  

Moreover, the phenomenon of equivalent models not only affects the association rules 

analysis, but it also affects the statistical techniques developed from the association rules analysis. 

For example, the model selection methodology for logistic regression by Changpetch and Lin 

(2013) performs variable selections among all the input variables and the variables generated 

from the selected association rules in order to build the optimal logistic regression model. 

Changpetch and Lin (2013) shows that the proposed methodology finds the dominant rules for 

the MONK’s dataset. However, if the methodology finds the other equivalent models instead, the 

dominant model will be obtained by applying the procedure discussed in Section 3. 
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7. Parallel Effects to Decision Tree Analysis and the Statistical Model Selection 

Method 

The effect of equivalent models is also relevant to decision tree analysis—a well-known 

method used to predict the class of response by decision rules. This technique has been used for 

many years with a wide range of applications (Yada et al. 2007; Wang and Liu 2008; Jaeger and 

Chen 2010; Lee 2010; Kim et al. 2011; Gepp et al. 2012; Delen et al. 2013).   

Decision tree analysis often involves unavoidable irrelevant terms because of the hierarchical 

structure of this methodology. These irrelevant terms can appear in decision rules even with the 

most compact tree wherein the branches cannot be reduced any further. This study provides the 

methodology to establish the dominant model for decision tree analysis which is a different 

concept from that of finding the most compact decision tree (Quinlan 1986; Kienappel and 

Kneser 2001; Pal and Mather 2003; Pulkkinen and Koivisto 2008; Chandra and Varghese 2009; 

Cha and Tappert 2009). The present study shows that we can eliminate irrelevant terms or rules 

after obtaining the decision rules from the decision tree. Even though we obtain the most compact 

tree, the irrelevant rules and terms are tentative because of the hierarchical structure. To illustrate, 

we present examples of relevant terms and how to obtain the dominant models through the 

Lymphography dataset (Polat and Güneş 2007). 

 

7.1 Application: Lymphography Dataset 

In this section, we use the Lymphography dataset from the University Medical Centre at the 

Institute of Oncology in Ljubljana, Yugoslavia, which was graciously provided by M. Zwitter 

and M. Soklic. Here, we illustrate an application of our proposed method by eliminating the 

irrelevant terms from the decision rules.    

The Lymphography dataset comprises records of lymph disease diagnoses in four classes: 

normal, metastases, malign lymph, and fibrosis. The dataset consists of 148 total instances: 2 

normal diagnoses, 81 metastases diagnoses, 61 malign lymph diagnoses, and 4 fibrosis diagnoses. 

As there were so few normal and fibrosis diagnoses, we did not include them in our analysis. The 

modified dataset, therefore, comprised two classes and 142 instances. The goal was to determine 

the response classes for metastases and malign lymph. There were 18 numerically valued 

attributes, which we converted into binary variables, listed in Table 8.  

 

Table 8: Responses and Attributes for the Lymphography Dataset 

Attribute Levels Binary Variables 

Diagnosis class malign lymph, metastases Y = 1 if the class is malign lymph 

Y = 0 if the class is metastases 

Lymphatic arched, deformed, 

displaced 

X1 = 1 if arched, and X1 = 0 otherwise 

X2 = 1 if deformed, and X2 = 0 otherwise 

Block of afferent yes, no X3 = 1 if yes, and X3 = 0 otherwise 
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Block of lymph c yes, no X4 = 1 if yes, and X4 = 0 otherwise 

Block of lymph s yes, no X5 = 1 if yes, and X5 = 0 otherwise 

Bypass yes, no X6 = 1 if yes, and X6 = 0 otherwise 

Extravagates yes, no X7 = 1 if yes, and X7 = 0 otherwise 

Regeneration yes, no X8 = 1 if yes, and X8 = 0 otherwise 

Early uptake yes, no X9 = 1 if yes, and X9 = 0 otherwise 

Lymph node 

dimensions 

1, 2 X10 = 1 if 2, and X10 = 0 otherwise 

Lymph nodes 

enlarged 

1, 2, 3, 4 

 

 

X11 = 1 if 1, and X11 = 0 otherwise 

X12 = 1 if 2, and X12 = 0 otherwise 

X13 = 1 if 3, and X13 = 0 otherwise 

Changes in lymph bean, oval, round  X14 = 1 if bean, and X14 = 0 otherwise 

X15 = 1 if oval, and X15 = 0 otherwise 

Defects in node no, lacunars, lacunars 

marginal, lacunars central 

X16 = 1 if no, and X16 = 0 otherwise 

X17 = 1 if lacunars, and X17 = 0 otherwise 

X18 = 1 if lacunars marginal, and X18 = 0 

otherwise 

Changes in node no, lacunars, lacunars 

marginal, lacunars central 

X19 = 1 if no, and X19 = 0 otherwise 

X20 = 1 if lacunars, and X20 = 0 otherwise 

X21 = 1 if lacunars marginal, and X21 = 0 

otherwise 

Changes in 

structure 

no, grainy, drop-like, 

coarse, diluted, reticular, 

stripped, faint 

– 

Special forms no, chalices, vesicles X22 = 1 if no, and X22 = 0 otherwise 

X23 = 1 if chalices, and X23 = 0 otherwise 

Dislocation of 

node 

yes, no  X24 = 1 if yes, and X24 = 0 otherwise 

Exclusion of node  yes, no  X25 = 1 if yes, and X25 = 0 otherwise 

Number of nodes 0–9, 10–19, 20–29, 30–39, 

40–49, 50–59, 60–69,  

> = 70 

X26 = 1 if 0–9, and X26 = 0 otherwise 

X27 = 1 if 10–19, and X27 = 0 otherwise 

  
In the original dataset, there are more levels within some variables. However, when we 

deleted the six instances of normal and fibrosis diagnoses, some levels were eliminated. We 

decided to eliminate the attribute change in structure, as we did not have a solid criterion on 

which to discretize it because it had eight levels within the binary variable. We discretized 

number of nodes by dividing the observations into three groups based on distribution 

characteristics.  

Figure 5 shows one of the decision trees for the Lymphography dataset. With this decision 

tree, irrelevant terms are attached to the decision rules, as shown in Table 9.  
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Figure 5: Decision tree for the Lymphography dataset 

 

We show via the Lymphography dataset that decision tree analysis produces irrelevant terms. 

As shown in Table 9, the term X22 = 1 in the first rule, the term X23 = 1 in the third rule, and 

the term X7 = 0 in the sixth rule are eliminated to obtain the dominant model, as shown in Table 

10.  

 
Table 9: Model from Decision Tree Analysis for the Lymphography Dataset 

Rule  Explanation  

If X21 = 0, X26 = 1, X3 = 0, X22 = 1, and 

X7 = 1, then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is 0–9, block of afferent is no, 

special forms is no, and extravagates is yes, then 

the patient is in the malign lymph class. 

If X21 = 0, X26 = 1, X3 = 0, and X22 = 0, 

then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is 0–9, block of afferent is no, 
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and special forms is either chalices or vesicles, 

then the patient is in the malign lymph class. 

 

If X21 = 0, X26 = 0, X25 = 1, X23 = 1, and 

X12 = 1, then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is not 0–9, exclusion of node 

is yes, special forms is chalices, and lymph 

nodes enlarged is 2, then the patient is in the 

malign lymph class. 

 

If X21 = 0, X26 = 0, X25 = 1, and X23 = 0, 

then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is not 0–9, exclusion of node 

is yes, and special forms is not chalices, then the 

patient is in the malign lymph class. 

 

If X21 = 1, X3 = 0, and X7 = 1, then Y = 

1. 

If changes in node is lacunars marginal, block 

of afferent is no, and extravagates is yes, then 

the patient is in the malign lymph class. 

 

If X21 = 1, X3 = 0, X7 = 0, X2 = 0, and 

X9 = 1, then Y = 1. 

If changes in node is lacunars marginal, block 

of afferent is no, extravagates is no, lymphatic 

is not deformed, and early uptake is yes, then 

the patient is in the malign lymph class. 

 
 

Table 10: Dominant Model of Class 1 for the Lymphography Dataset 

Rule  Explanation  

If X21 = 0, X26 = 1, X3 = 0, and X7 = 1, then 

Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is 0–9, block of afferent is no, 

and extravagates is yes, then the patient is in the 

malign lymph class. 

If X21 = 0, X26 = 1, X3 = 0, and X22 = 0, 

then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is 0–9, block of afferent is no, 

special forms is either chalices or vesicles, then 

the patient is in the malign lymph class. 

 

If X21 = 0, X26 = 0, X25 = 1, and X12 = 1, 

then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is not 0–9, exclusion of node is 

yes, and lymph nodes enlarged is 2, then the 

patient is in the malign lymph class. 
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If X21 = 0, X26 = 0, X25 = 1, and X23 = 0, 

then Y = 1. 

If changes in node is not lacunars marginal, 

number of nodes is not 0–9, exclusion of node is 

yes, and special forms is not chalices, then the 

patient is in the malign lymph class. 

 

If X21 = 1, X3 = 0, and X7 = 1, then Y = 1. If changes in node is lacunars marginal, block of 

afferent is no, and extravagates is yes, then the 

patient is in the malign lymph class. 

 

If X21 = 1, X3 = 0, X2 = 0, and X9 = 1, then 

Y = 1. 

If changes in node is lacunars marginal, block of 

afferent is no, lymphatic is not deformed, and 

early uptake is yes, then the patient is in the malign 

lymph class. 

 

 
The application demonstrates that decision trees always generate irrelevant terms, which can 

be eliminated by our method. Accordingly, the dominant model can be found for any model from 

a decision tree.  

 As a consequence, the statistical techniques that use the variables generated from decision 

tree analysis will have this effect as well. For example, Kim (2009) combined the logistic 

regression model with decision tree analysis. Each branch of the decision tree becomes the 

variable (or cluster) for logistic regression model selection. Our approach can help to eliminate 

the irrelevant ones to formulate a consistent and concise explanation of the dataset.  

 
8. Conclusion 

 The concept of model equivalency based on two or more models generating identical 

responses has not been adequately considered in the literature. Its effects are not only evident in 

association rules analysis, but also in decision tree analysis and other related statistical techniques. 

Our analysis shows that two models, which may not appear similar, can equally represent the 

same dataset. Therefore, failing to account for equivalency can lead to misleading results in 

regard to developing a methodology and making comparisons, as previously discussed.  

On the other hand, the consequence of having different sets of rules to represent the same 

dataset is that we have more than one explanation for the dataset and these explanations may not 

be compatible. Our major finding is that although a large number of models may represent the 

same dataset, there is one unique model, i.e., the “dominant” model, to which all equivalent 

models can refer. The benefits of the dominant model are that it can be used as a benchmark to 

explain the relationships among the variables and to verify equivalency among models such that 

unfair comparisons among the rules selection methodologies and criteria are eliminated.  
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 This paper explored the phenomenon of equivalent models. First, we showed that 

misleading results are likely to be obtained if this phenomenon is not taken into consideration. 

Second, we considered and defined the concept of the dominant model among all equivalent 

models. We also elaborated our method for deriving the dominant model. Third, we proposed 

using the dominant model as the benchmark model for explaining the relationships between 

variables. We hope that this discovery will now be considered in association rules analysis, 

decision tree analysis, and other related data analysis and statistical methodologies.  

 Although we demonstrated the model equivalency phenomenon using predictive rules 

(supervised learning), these are generally class association rules (Li et al. 2001). We think it is 

likely that model equivalency is a factor in more general association models.  
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