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Abstract: Despite the unreasonable feature independence assumption, the naive 
Bayes classifier provides a simple way but competes well with more sophisticated 
classifiers under zero-one loss function for assigning an observation to a class given 
the features observed. However, it has been proved that the naive Bayes works 
poorly in estimation and in classification for some cases when the features are 
correlated. To extend, researchers had developed many approaches to free of this 
primary but rarely satisfied assumption in the real world for the naive Bayes. In this 
paper, we propose a new classifier which is also free of the independence 
assumption by evaluating the dependence of features through pair copulas 
constructed via a graphical model called D-Vine tree. This tree structure helps to 
decompose the multivariate dependence into many bivariate dependencies and thus 
makes it possible to easily and efficiently evaluate the dependence of features even 
for data with high dimension and large sample size. We further extend the proposed 
method for features with discrete-valued entries. Experimental studies show that 
the proposed method performs well for both continuous and discrete cases.  
 
Key words: Classification, Copulas, D-Vine Tree, Multivariate Dependence, Naive 
Bayes, Supervised Learning outlier. 

 

1. Introduction 

An The naive Bayes, as one of the most popular learning algorithms for machine learning 
and data mining, has been widely used in many areas for classifying new instances given a vector 
of features. Its simplicity and competitive performance are applausive despite the model is 
derived based on a critical and rarely satisfied assumption, i.e., given a class all features are 
independent. Addition, its computational efficiency, achieved by the fact that the training 
procedure is linear in features, makes it suitable to fitting for high dimensional data. Although 
some literatures (Domingos and Pazzani, 1997; Rish, 2001; and Zhang, 2004) had illustrated the 
reasons that the naive Bayes works surprisingly well in some cases where even the feature 
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independence assumption is violated, the fact remains that the naive Bayes works poorly in 
estimation and in some other cases when the assumption does not hold. To extend the naive Bayes 
to account for the dependence of features, Friedman et al. (1997) developed a tree-like augmented 
naive Bayes (TAN) in which the class node directly points to all features nodes and a feature can 
have only one parent from another feature in addition to the class node. By relaxing the limitation 
on links among features, a more general augmented naive Bayes (ANB) is obtained as a special 
case of Bayesian networks in which no node is specified as a class node. Zhang and Ling (2001) 
then has proved that any Bayesian network, thus any joint probability distribution, can be 
represented by an ANB. In this paper, we propose a new tree-based classifier as an extension of 
the naive Bayes by evaluating the dependence of features through pair copulas constructed via a 
D-Vine tree structure. 

A copula is a multivariate probability distribution in which the marginal probability 
distribution of each variable can be “separate” from the dependence structure among random 
variables. In practical applications, however, the choice of adequate copula families is rather 
limited for high dimensional multivariate dependence. Standard multivariate copulas, such as the 
multivariate Gaussian, are lack of the ability of accurately modeling the dependencies among a 
large number of variables. To extend, a technique called pair-copula construction (Aas et al., 
2006) was developed to model multivariate dependence using a cascade of bivariate copulas, 
acting only on two variables at a time. However, the number of possible constructions increases 
dramatically fast as the number of variables grows. To effectively organize the construction 
procedure, vine copula, initially proposed by Joe (1996) and extended by Bedford and Cooke 
(2001, 2002) and Kurowicka and Cooke (2005, 2006), is developed as a flexible graphical model 
for constructing pair copulas in a nested way. Our proposed method builds a dependence 
classification model based on D-Vine copulas.  The margins in the proposed model could be 
considered acting the exactly same way as in the naive Bayes, while pair copulas are used for 
evaluating the dependence of features (variables). Furthermore, its bivariate construction makes 
possible in fitting for a large p and small n dataset since only two variables are considered at a 
time. For a big-data, the computational efficiency could be achieved at each D-Vine tree level by 
utilizing a parallel computing technique. Theoretically, our proposed method can be used in 
fitting for a data with high dimension and large sample size in an efficient way. To extend the 
proposed method for features with discrete-valued entries, we use an augmented method with 
latent variables added for evaluating the feature dependence. Accordingly, we modify the regular 
D-Vine algorithm for discrete cases. 

The paper is organized as follows. In Section 2, we introduce the concepts of copula and pair-
copula construction as well as D-Vine tree structure used for helping organize the decomposition 
on a multivariate joint density. In Section 3, our D-Vine copula-based dependence classifier is 
derived, and the learning process is illustrated in details in Section 4. In Section 5, we extend the 
proposed method for discrete features, and in Section 6 and 7, experimental studies are conducted 
for continuous and discrete cases, respectively. The conclusions come up in Section 8. 
 
2. Background 
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2.1.Copulas 

Sklar’s theorem (1959) states: Given p random variables X = (𝑋"	, … , 𝑋& ), for any p-
dimensional multivariate joint distribution F with continuous marginal distribution functions  
𝐹"	, … , 𝐹&, there exists a unique copula C such that for all x = (𝑥"	, … , 𝑥&) ∈	𝑅&, where x is a 
realization of X, 

 
In words, it states that any p-dimensional multivariate distribution function F can be written 

in terms of univariate margins and a copula C which describes the dependence structure for 
variables. Another common used expression for Eq. (1) is. 

 
where 𝐹+,"  is the inverse distribution function associated with 𝐹-  and 𝑢- = 𝐹-(𝑥-) ∈ 

(0,1), for k= 1,2,…,p. The joint density associated with F thus can be written as 

 
where 𝑓-  is the marginal density corresponding to 𝐹-  and c is the copula density 

associated with C. 
Addition, a p-dimensional joint density can be factored by claims. 

(4) 
Following the notation from Aas et al. (2006), each right-hand side term in Eq. (4) can be 

further decomposed into the associated pair copula times a conditional  density,  written as. 

 
here v is a vector, 𝑣- is an arbitrarily chosen component of v, and 𝑣,- denotes the v-vector 

excluding 𝑣- . Iteratively decomposing 𝑓(𝑥|𝑣,-)  till 𝑣,- = ∅ , we finally obtain a general 
decomposition for a p-dimensional density which only involves margins and pair copulas. As 
shown in Joe(1996), the involved conditional distributions in the form of F(x|v) can be obtained 
by 

 
And when 𝑣,- = ∅, Eq.(6) reduces to 

 
When x and v are uniformly distributed, Eq.(7) can be further simplified as  
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Where h(·), called h-function, is the function used for generating pseudo observations which 

we will use later for fitting a model with D-Vine tree structure. For the details of bivariate copulas, 
such as the Gaussian and Student-t, see the reference (Aas et al.,2006). 

 
2.2.D-Vine Tree Structure 

Decomposing a p-dimensional joint density via Eq. (4) is not unique since it depends on how 
to factorize the component 𝑣- in v given in Eq. (5), and the number of possible decompositions 
increases extremely fast as the dimension p grows. To help manipulate decomposition for data 
with high dimension, a technique called regular vine was introduced in Bedford and Cooke (2001; 
2002). Two special cases, canonical vine and D-Vine (Kurowicka and Cooke, 2004; Kurowicka 
and Joe, 2011), received even more attention due to their simplicity in organizing decomposition. 
In this paper, we focus on the D-Vine structure. However, our method straightforwardly extends 
to other types of vines. Figure 1 shows a decomposition example based on a 5-dimensional D-
Vine. The total number of the nested trees in a p-dimensional D-Vine is p − 1, and each tree 𝑇7, 
for j = 1, 2, . . . , p − 1, has p + 1 − j nodes and p − j edges. Each edge corresponds to a pair copula, 
and an edge in the tree 𝑇7 becomes to a node in 𝑇7+1. The whole decomposition is obtained by 
the product of p margins and p(p−1)/2 copulas involving only two random variables in each 
copula. We should notice that the total number of ways to decompose a p-dimensional joint 
density via a p-dimensional D-Vine is p!/2. However, once the order of the nodes in T1 is 
determined, the decomposition is unique. Following the notation in Aas et al. (2006), a p-variate 
density f (𝑥"	, … , 𝑥&) corresponding to a p-dimensional D-Vine is given by 

 
 
where index j identifies the nested trees and i is for the edges in the tree 𝑇7. F (·|·) can be obtained 
by Eq. (8) cascaded down from 𝑇"  to 𝑇&," , and 𝑐9,9:7|9:",…,9:7  is a bivariate copula density 
corresponding to the pair nodes connected via the edge i in 𝑇7. 
 
3. D-Vine Copula Bayes Classifier 

A D-Vine copula Bayes classifier (DVCBC) is a function to assign an observation to a class. 
According to the Bayes rule, the probability of a feature vector X = (𝑋"	, … , 𝑋&) with a realization 
x = (𝑥"	, … , 𝑥&) 
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Figure 1: A 5-dimensional D-vine Example. 

 
being in class e ∈ E, where E is a class vector with E =	(e"	, e<, … , e=)	>and l is the total number 
of classes, is written as  

 
For continuous features, via Eq. (9), an augmented copula dependent Bayes probability model 
derived upon Eq. (10) is then given by  

 
Combing the model (11) with the maximum a posterior (MAP) decision rule, the corresponding 
classifier to assign x to a class e ∈ E is then given as follows 

 
where f (x|e) is given in (11). With the assumption that each continuous feature X9 is conditionally 
independent of every other feature X7 for i ≠j and given a class e, Eq. (10) reduces to 
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which is the naive Bayes model. Consequently, we can consider Eq. (13) as a special case of our 
proposed method in Eq. (11).  
4. Learning Process 

4.1.Learning Optimization Structure of D-Vine 
A D-Vine consists of a sequence of trees so that optimization over a D-Vine can involve 

algorithms for graphs. We know that an order of the nodes in the tree 𝑇" uniquely determines a 
decomposition of a joint density f(𝑥"	, … , 𝑥&) defined in Eq. (9). Thus, optimizing a D-Vine 
structure can be simply thought as optimizing the tree 𝑇". Here, optimizing 𝑇" means to capture 
as much dependence as possible for the pairs of features in 𝑇". However, the number of the 
possible orders of the nodes in 𝑇" in a p-dimensional D-Vine structure is p!/2, which implies that 
optimization via enumeration becomes impossible when p is large. One possible way of 
optimizing 𝑇" is to maximize a sum of transforms of the dependence, such as absolute Kendall 
tau (|τ|), absolute Pearson correlation (|𝜌&|), and absolute Spearman correlation (|𝜌A |), from all 
pair nodes in 𝑇" using the greedy search algorithm. We note, for a D-Vine structure, the greedy 
search is equivalent to solve the traveling salesman problem (TSP), see (Brechmann, 2010) for 
details. However, TSP is a well known NP-hard problem. For computational efficiency, we use 
an insertion algorithm provided in an R package TSP (Hahsler and Hornik, 2015) with the 
weights obtained from |τ|, or |𝜌&|, or |𝜌A |. Although the optimization through this algorithm might 
be suboptimal, it runs much faster for a large p with the running time O(𝑝<log(p)). Throughout 
this paper, we optimize 𝑇" for a D-Vine structure via the TSP with insertion algorithm. 

 
4.2.Learning Univariate Margin 

Given a class e ∈ E, denote the corresponding data structure as De = (𝐱𝟏	, 𝐱𝟐, … , 𝐱𝐧𝐞), where 
𝐱𝐬 = (𝐱𝐬𝟏	, 𝐱𝐬𝟐, … , 𝐱𝒔𝒑) with s = 1, 2, . . . , nL and nL is the total number of data points in the class 
e. For continuous mar- gins, they can be estimated by using either parametric or nonparametric 
approaches. For parametric approaches, the parameter(s) 𝜓- in an chosen parametric marginal 
density 𝑓NO for the feature 𝑋- can be estimated by maximizing the log-likelihood function given 
by 

 
For example, if 𝑓NO is chosen to be a Gaussian density, i.e., 𝑓NO = ∅NO , then 𝜓- = (𝜇-,𝜎-<). 

Maximizing the likelihood given in Eq. (14), we could obtain the estimated parameters 𝜇- and 
𝜎-. For nonparametric approaches, the marginal density 𝑓- for 𝑋- can be estimated by using a 
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kernel-based approach (Parzen, 1962). Briefly,𝑓- 𝑥 𝑒 = "
STU(V)

𝐾(X,XY
U(V)

)ST
AZ" , where K is a 

kernel function and h is the bandwidth smooth parameter corresponding to the class e. 
Recently, Chen, Hanson, and Zhang (2014) proposed a new parametric based density 

estimation approach, named transformed Bernstein polynomial prior (TBPP). Briefly, the density 
𝑓-(x|e) can be estimated through 𝑓- 𝑥 𝑒 = 𝒲\,]𝑏\,] 𝐹NO 𝑥 𝑒 𝑓NO(𝑥|𝑒)

\
]Z" , where T decides 

the order of Bernstein polynomial, 𝒲\,] is the Bernstein coefficient, 𝑏\,](·) is a beta density with 
two parameters t and T-t+1, and 𝐹NO is a parametric distribution with the corresponding density 
𝑓NO . By centering 𝐹-, associated with 𝑓-, at a parametric distribution 𝐹NO , the estimated density 
through TBPP can behavior like its centering when data actually follows 𝐹NO and can be adjusted 
like a nonparametric approach when data departs from the centering 𝐹NO. For details, see the 
reference (Chen, Hanson, and Zhang; 2014). Throughout this paper, we use the Gaussian 
parametric, Kernel, and TBPP methods for continuous marginal density estimation, and we 
always report the best result in our experimental studies. 

 
4.3.Learning Dependence Structure 

Given a class e and the pair nodes, 𝐴V
9,7, connected by the edge i in the tree 𝑇7 with j = 1,…,p-

1 and i = 1,…,p-j ,denote the corresponding data for the pair 𝐴V
9,7 as 𝐷V

9,7= 𝒖A
9,7,V: 𝑠 = 1, … , 𝑛V , 

where 𝑛V is the total number of data points in the class e and 

 
 
With i|i+1,…, 𝑖7-1 and i+j|i+1,…, 𝑖7-1 indicating the indexes of two nodes connected by the 

i-th edge in 𝑇7, see Section2.2. For notation convenience, we define 𝑢A
9,7,V ≝ (𝑢A,9

7,V, 𝑢A,9:7
7,V ).We 

should note that at 𝑇", the 𝑢A
9,7,V is directly estimated via true observations by 𝑢A,-

7,V = 𝐹-(𝑥A,-|𝑒), 
for k= {i,i+1}, here 𝐹- is the estimated univariate marginal distribution for feature 𝑋-, see Section 
4.2. Starting from 𝑇< to 𝑇&,", 𝑢A,-

9,7,V  (a pseudo observation) is obtained via the h-function defined 

in Eq. (8), which thus corresponds to the chosen bivariate copula 𝐶jTk,l for 𝐴V
9,7. To estimate the 

parameter(s) 𝜃V
9,7 in 𝐶jTk,l, we need to use the lemma given the below. 

Let we first define a loss function via Kullback-Leibler divergence,written as 

 
where 𝑓n is the unknown true joint density with the distribution 𝐹n, written as(by Eq. (3)) 
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where 𝑓-n and 𝐹-n are the unknown univariate true marginal density and distribution functions for 
the feature 𝑋-, respectively, and 𝑐n is the unknown true copula density with the copula function 
𝐶n. Similarly, 

 
where 𝑐j is a chosen parametric copula density with the parameter(s) 𝛉. We then give the lemma 
as follows 
Lemma. Let p random variables X = (𝑋"	, … , 𝑋&) with a realization x = (𝑥"	, … , 𝑥&) and 𝐹-n be 
the true marginal distribution for variable 𝑋- with density 𝑓-n for k = 1,…,p. Let U = (𝑈"	, … , 𝑈&) 
are p random variables with 𝑈- = 𝐹-n(𝑋-), where 𝑈- is uniformly distributed with 𝑈- ∈(0,1),and 
u = (𝑢"	, … , 𝑢&) is a realization of U. Let data structure be D = {𝑢A: s = 1,…,n}, where 𝑢A = 
(𝑢A"	, … , 𝑢A&) is one realization of U. Denote the unknown true joint density as 𝑓n given in (16) 
with the unknown true copula density 𝑐n, and 𝑓j is a joint density given in (17) with an arbitrarily 
chosen parametric copula density 𝑐j. By defining a loss function depend on 𝜃, LOSS(𝜃),through 
Kullback-Leibler divergence given in (15), we then have: minimizing LOSS(𝜃) for 𝜽 is equivalent 
to maximizing the copula log-likelihood(CLL) given by 

 
Proof.  
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We note that minimizing the loss function LOSS(θ) = KL(𝑓n, 𝑓j) with respect to (w.r.t.) θ is 
equivalent to minimizing the alternative loss function KL(𝑐n, 𝑐j ) given in Eq. (19). With the fact 
that 𝑐n is a copula density nothing about θ, then minimizing Eq. (19) w.r.t. θ is thus equivalent 
to maximizing the function given by 

 
4.4.Model Selection 

One of the advantages of using D-Vine for assessing dependence structure is that different 
bivariate copulas might be used to evaluate the dependences for different pairs in down cascaded 
trees starting from T1. It thus makes possible for the whole dependence structure constructed by 
different copulas, such as Gaussian, Student-t, and Clayton copulas. Typically, compared to 
Gaussian copulas, Student-t copulas can capture more dependence in- formation for tails and 
Clayton has more power in evaluating unsymmetric dependence. The best dependence for each 
pair does not rely on a priori specific dependent type, it is instead obtained by voting for the best 
one among all of the considered copulas using a BIC-based score criterion given by  

 
Where 𝒞(𝐴V

9,7) is a bivariate copula for 𝐴V
9,7 𝜃V

9,7, obtained by maximizing CLL(𝜃V
9,7, 𝐷V

9,7), is the 
corresponding estimated parameter(s) for 𝒞(𝐴V

9,7)	 , and Θ(𝐴V
9,7)  is the number of free 

parameters(s) corresponding to 𝐴V
9,7. The task of voting for the best dependence for the pair 𝐴V

9,7 
is then equivalent to finding a bivariate copula 𝒞(𝐴V

9,7) which maximizes score (𝒞(𝐴V
9,7):	𝐷V

9,7) . 
 
4.5.Computational Issues 

For a big-data, the computational efficiency could be achieved at each 𝑇7, for j = 1, . . . , p−1, 
by utilizing a parallel computing technique. Specifically, the tasks of evaluating dependences for 
the pairs in 𝑇7 can be distributed out to different computing nodes along with the data points 
(observations for T1 or pseudo-observations for 𝑇< , . . . , 𝑇&,") only involved for the pairs 
evaluated at each computing node. The results from all computing nodes are then collected for 
the next tree 𝑇7:" when j < p − 1. Theoretically, our proposed method can be used in fitting for a 
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data with extremely high dimension and large sample size. We are currently coding for our high 
performance computing (HPC) algorithm by using R packages snow (Tierney et al., 2015) and 
Rmpi (Yu, 2015), and we will release our codes as an R package later on. Throughout this paper, 
we do not use the HPC technique for our experimental studies.  

By considering k different bivariate copulas for each pair, the total system running time 
needed for evaluating D-Vine dependence structure for an n × p dataset is then given by 

 
One where 𝒪(𝑝<log	(p))  is the time for solving the TSP problem for 𝑇"  optimization; 

𝑝𝒪(𝑇Sz) is the time used for p margins estimation, here we use m to denote that this time also 
depends on the marginal method we used; 𝒪(𝑇S{-) is the time needed for a bivariate copula 
estimation, and k&(&,")

<
 is the total copulas to be evaluated. We should note, for each pair, the 

selection of the bivariate dependence has no extra cost since the score in Eq. (21) is obtained 
directly after evaluating Eq. (18) for copula estimation. For a p > n problem, the running time for 
evaluating pair copulas can be expected to be quadratically related to the dimension p, i.e. 𝒪(𝑝<).  
 
5. Extension to Discrete Cases 

Now, let us consider p-random variables X with discrete-valued entries. Let 𝑎-= 𝐹-(𝑥-,) be 
the left hand limit of the margin 𝐹- at 𝑥- and 𝑏- = 𝐹-(𝑥-). Then the probability mass function of 
features X can be written as(Smith and Khaled, 2012) 

 
Following the Chen and Hanson’s (2016+) approach, let consider an augmented joint 

distribution of (𝑋-}, 𝑋-~, 𝑈-}, 𝑈-~) with a bivariate latent variable (𝑈-}, 𝑈-~) and each 𝑈-� is 
uniformly distributed on [0, 1], for t = 1, 2, and 𝑘] ∈ {1, . . . , p}. Then the mixed probability 
density for (𝑋-}, 𝑋-~, 𝑈-}, 𝑈-~ ) written as  

 
where 𝒸(𝑢-} , 𝑢-~  |θ) is the copula density corresponding to a parametric copula function 

C(𝑢-} , 𝑢-~  |θ) with parameter(s) θ, 𝑎-�   = 𝐹-�(𝑥-�
, ; 	𝜃-�), and 𝑏-�  = 𝐹-�(𝑥-�; 	𝜃-�), for t = 1, 2, 
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where 𝜃-� is the parameter(s) of the margin 𝐹-� . The joint probability of (𝑋-}, 𝑋-~) is thus given 
by 

 
Particularly, if we consider a bivariate Gaussian copula density for 𝒸(·) in Eq. (23), we get 

 
here, 

 
With 𝑧-� = Φ,"(𝑢-�), for t = 1,2. Since we note that 𝜙 (�O},�O~)

 in Eq. (25) is a bivariate 

Gaussion density with the µ = 0
0  and covariance matrix = 1 𝜌

𝜌 1  and Eq. (24) can be 

written as 

 
thus each term in the right hand side of Eq. (26) can be computed by the function pmvnorm() in 
an R package mvtnorm (Genz et al., 2012). Similary, when considering 𝒸(·) in Eq. (23) as a 
bivariate Student-t copula, then 𝜙 (�O},�O~)

 in Eq. (24) is then written as 
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with 𝑧-� = 𝑇�,"(𝑢-�), for t = 1, 2, where 𝑇�," is the quantile function of a univariate Student-t with 
the degree of freedom ν. 𝜙 (�O},�O~)

 in Eq. (27) is a bivariate Student-t density with the scale 
matrix Σ defined exactly the same as the covariance matrix Σ defined for a bivariate Gaussian in 
Eq. (25) and the degree of freedom ν. Each term in the right hand side of Eq. (26) thus can be 
computed by the function pmvt()  in the mvtnorm package. Accordingly, the limits of integration 
in Eq. (26) are changed to 𝑇�,"(𝑎-�) and 𝑇�,"(𝑏-�). 

Given n data points, the log-likelihood function is then written as 

 
where 𝑓(𝑥A-}, 𝑥A-~	|𝜽, 𝜽𝒌𝟏𝜽𝒌𝟐)  is given in Eq. (23) with the estimated 𝜃-}  and 𝜃-~  for the 
margins 𝐹-} and𝐹-~ , respectively. The estimated 𝜃 for 𝒸(·) then can be obtained by maximizing 
Eq.  (28). The whole dependence structure of a D-Vine tree with discrete-valued entries then can 
be evaluated via the following algorithm: 
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Algorithm 0.0.1. 
 

 

 
 
6. Experimental Studies 

To assess the merits of our model (DVCBC), we compare it to the existing popular supervised 
learning classification methods including the naive Bayes classifier (NBC), a network-based 
classifier (TAN), the support vector machine (SVM), and an ensemble classifier random forests 
(RF). The naive Bayes model assumes independence of the features and is fitted by using the 
function naiveBayes() provided in an R package e1071 (Meyer et al., 2014). Also in the same R 
package, the function svm() is used for fitting for the SVM model.  Without a priori knowledge 
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on data, we found that it is better to consider a relative large parameter space for the SVM model. 
Specifically, we consider the cost parameter ϑ ∈ {10,�, 10,<, 10,"} and kernel parameter γ ∈ 
{10<, 10",	10n,	10,",	10,<} for radial basis kernel. The TAN model is considered with a linear 
Gaussian conditional distribution given by 𝑋- |e ∼ N (𝛽n + 𝛽"𝑥�, 𝜎<), where the feature 𝑥� is the 
parent of 𝑥- in the network structure with the realization 𝑥�. The RF model is fitted by using the 
Breiman approach (Breiman, 2001), and the according R package randomForest (Breiman et 
al., 2015) can be installed from the official R website. 

Given a class e, we use the transformed Bernstein polynomial centering at a univariate 
Gaussian to estimate all margins, given by 

 𝑓- 𝑥 𝑒 = 𝑤\,]\
]Z" 𝑏\,]{(Φ�O,�O~)(𝑥|𝑒)}∅ �O,�O

~ (𝑥|𝑒)  associated with the distribution 

𝐹- 𝑥 𝑒 = 𝑤\,]\
]Z" 𝐵\,]{(Φ�O,�O~)(𝑥|𝑒)} ), where 𝐵\,]  is the beta cumulative distribution 

function with the beta density 𝑏\,], for k = 1, . . . , p. We found that this marginal estimation 
method works well either for Gaussian or non-Gaussian margins. The D-Vine structure is 
optimized by the TSP algorithm introduced in Section 4.1. We consider three different types of 
bivariate copulas, i.e, Gaussian, Student-t, and Clayton copulas (Aas et al., 2006). The best 
dependence among those three is picked up with the highest score obtained by Eq. (21). We 
evaluate all methods for five datasets from the UCI ma- chine learning repository, see Table 1 
for the details of the datasets. 

 
Table 1: 5 datasets from UCI machine learning repository. 

 
 
In Table 2, we summarize the average classification accuracy upon 2-fold cross validation 

repeated 50 times for all methods. Also, in Figure 2 and Figure 3, we plot the ROC curves for 
binary classifications – Parkinsons and Hill Valley. It is not surprised that our model is always 
superior to the NBC since our method allows the feature dependence and thus makes it possible 
to get better predictions by adding more dependence information in the structure through copulas. 
The same phenomenon can be observed for the TAN compared to the NBC since the TAN model 
also relaxes the independence assumption for features by adding directional edges between them 
for the dependencies. We also note that our method performs better than the TAN model for all 
five experimental studies. It might imply that, compared to the TAN, our method can more 
effectively integrate dependence information into the structure, even if the both are the tree-based 
models and  free of the feature independence assumption.  The SVM model has a better 
classification for “Glass Ident” dataset, but our method performs better than the SVM for the 
other 4 datasets. The RF model performs the best. 
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Figure 2: ROC: Parkinsos. 

 
Figure 2: ROC: Parkinsos. 

 
among all considered methods in terms of the average classification accuracy for “Glass Ident” 

and “Hill Valley” datasets. It is only slightly worse than the DVCBC for “Iris” and “Wine” 
datasets. Some literatures, e.g., Caruana and Niculescu-Mizil (2006), have commented on the 
reasons of the outperformance of the random forests for supervised learning classification 
compared to other classifiers prior to calibration. For example, the outputs of an SVM are 
normalized distances to the decision boundary and thus it is not originally desinged to predict 
probabilities, and the naive Bayes models are well known to predict poorly because of the 
unrealistic independence assumption. Although our proposed method relaxes the independence 
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assumption via copula techniques, it still has several restrictions such as the types of copulas 
specified for dependence structure. Misspecification on it will eventaully result in inaccurate 
predictions and thus wrong classifications. Following the discussion in Caruana and Niculescu-
Mizil (2006), although on average some classifiers including the NBC are not competitive with 
the best methods such as random forests, those conclusions do not always hold since they 
probably perform much better for some metrics on some particular problems. It also turns out 
that our proposed model has its own advantages when used on some datasets considered here, 
see Table 2 and Figure 2 for “Iris”, “Wine”, and “Parkinsons”. 

 
Table 2: 2-fold classification accuracy for the 5 datasets. 

 
 

7. Studies for Discrete Cases 

We consider two simulation scenarios for all features with binary entries, see the following 
simulation setup. This is quite common for data from survey with answers either “Yes” or “No”. 
We should note that with binary entry, if x = 0, then a = F (0,) = 0 and b = F (0) = 1−π; and if x 
= 1, then a = F (1,) = 1 − π and b = F (1) = 1, where π is the probability of success (x = 1) on 
each trial. In Scenario I, all three features are independent to each other, however, in Scenario II, 
the feature X2 depends on the feature X3. The number of the data points in each class 𝑒-, for k = 
1, 2, 3, is n = 100, so the total number is 𝑛\ = 3 ∗ 100 = 300. 
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We estimate Bernoulli margins for all three features. Similar to a continous case, the D-Vine 

structure is optimized by the TSP algorithm, and three types of copulas are considered with the 
best one having the highest score from Eq. (21). We report the classification accuracy from the 
DVCBC, the NBC, the SVM, and the TAN for Scenario I and II in Table 3. Apparently, our 
method is superior to others in the two simulated scenarios. The SVM model is always better 
than other tree based classifiers, the NBC and TAN, and the NBC model performs worst in all 
two scenarios. To compare their computational efficiencies, we also record the CPU time for all 
four methods. With Intel Core i5-4570R CPU @2.70GHz, the system running time in one run 
for the DVCBC, the NBC, the SVM, and the TAN are 0.52s, 0.01s, 0.03s, and 0.03s, respectively.  

 
Table 3: Features with Binary Entries.. 

 
 

We further use the four methods to fit for hartigan data from an R package homals (Mair 
and De Leeuw, 2015). The main task is to classify a number of bolts, nails, screws, and tacks 
according to three criteria, i.e., Thread (Yes or No), Bottom (Sharp and Flat), and Brass (Yes or 
No). The total number of data points is 𝑛\ = 24. Specifically, 9 from nail, 6 from screw, 6 from 
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bolt, and 3 from tack. We use 2-fold cross validation repeated 50 times for computing the 
classification accuracy and report the results in Table 4. Compared to the NBC, the SVM, and 
the TAN, our method is (0.912 − 0.870)/0.870 × 100% ≈ 4.8%, (0.912 − 0.894)/0.894 × 100% 
≈2.0%, and (0.912 − 0.879)/0.879 × 100% ≈ 3.8% better accuracy on average, respectively. 

 
Table 4: Hartigan Data 

 
 

8. Conclusion 

As In this paper, we propose a new supervised learning method which is free of the feature 
independence assumption. The dependences among features are evaluated by pair copulas 
constructed through a graphical model called D-Vine. This makes possible to fit for a data with 
high dimension and large sample size in an easy and efficient way since only two features 
(variables) are considered at a time. We note that the popular naive Bayes classifier actually is a 
special case of the proposed method. We further extend the model to evaluate the dependences 
among discrete-valued features using an augmented method. We should mention that in the 
whole paper we only considered three types of copulas, i.e., Gaussian, Student-t, and Clayton 
copulas, for multivariate dependence, however, in practice, we could use other types of copulas 
for measuring the dependence of features, such as Gumbel and Frank copulas. 
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