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Abstract. Unemployment is one of the most important issues in macro economics. 

Unemployment creates many economic and social problems in the economy. The 

condition and qualification of labor force in a country show economical 

developments. In the light of these facts, a developing country should overcome the 

problem of unemployment. In this study, the performance of robust biased Robust 

Ridge Regression (RRR), Robust Principal Component Regression (RPCR) and 

RSIMPLS methods are compared with each other and their classical versions 

known as Ridge Regression (RR), Principal Component Regression (PCR) and 

Partial Least Squares Regression (PLSR) in terms of predictive ability by using 

trimmed Root Mean Squared Error (TRMSE) statistic in case of both of 

multicollinearity and outliers existence in an unemployment data set of Turkey. 

Analysis results show that RRR model is chosen as the best model for determining 

unemployment rate in Turkey for the period of 1985-2012. Robust biased RRR 

method showed that the most important independent variable effecting the 

unemployment rate is Purchasing Power Parities (PPP). The least important 

variables effecting the unemployment rate are Import Growth Rate (IMP) and 

Export Growth Rate (EXP). Hence, any increment in PPP cause an important 

increment in unemployment rate, however, any increment in IMP causes an 

unimportant increase in unemployment rate. Any increment in EXP causes an 

unimportant decrease in unemployment rate.  

 

Keywords: biased estimation, multicollinearity, outliers, partial least squares 

regression, principal component regression, ridge regression, robust biased 

estimation. 

 

1. Introduction 

In today’s world, a country with unemployment that is resulted by the effects of 

economical and social effects comes across multidimensional problems. The condition 

and qualification of labor force in a country show economical developments. In the light 

of these facts, a developing country should overcome the problem of unemployment. 

According to Turkish Statistical Institute, active people in ages of between 15 and 60 that 

are labor force consist of non-institutionalization population. Unemployment is defined 
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as jobless who are looking for a job that offers the current fee level (Goktas and Isci, 

2010). 

 

In the literature, there are various factors that have effect on unemployment. 

Cascio (2001) investigates monetary policy and unemployment relationship for 11 

OECD countries over 1979:Q1-1998:Q4 by using Vector Autoregressive (VAR) model. 

According to Cascio (2001), monetary shocks influence unemployment but they differ 

from country to country. Namely, local factor(s) is/are important how a labor market is 

influenced. Djivre and Ribon (2003) study monetary policy influence on unemployment, 

inflation and exchange over 1990-1999 for Israel and they found that tight monetary 

policy shocks increase unemployment. Ravn and Simonelli (2007) find that monetary 

policy shocks extracted influence on unemployment for the United States over 1953:Q3-

2003:Q1. Karanasou and Sala (2010) investigate driving forces behind unemployment 

for Australia over time and find that reasons behind unemployment differ according to 

period investigated. For example, 1970’s driving force behind unemployment is oil shock 

while in 1990s and 2000s; interest rate is important driving force. Yet, currently, the most 

influential factor is the tight foreign demand due to global crisis. Further, another study 

on unemployment by Valletta and Kuang (2010) shows that the recent increase in 

unemployment is conjectural rather than structural for the United States. In general, 

conjectural fluctuations, like fluctuation in exchange rate, international interest rate, and 

decline in foreign demand are the shocks that extract influence on unemployment (Dogan, 

2012). 

 

There are no many macro empirical studies on unemployment in Turkey. Further, 

in studies regarding Turkey’s unemployment, structural breaks have not been considered 

so as they have not been introduced in VAR specification. For Turkey, Berument et al. 

(2006, 2009) and Berument (2008) investigates macroeconomic policy shocks on 

unemployment by using VAR models. The general conclusion derived from those studies 

is that positive income shocks reduce unemployment. Aktar and Ozturk (2009) study 

interaction among macroeconomic variables for Turkey and find that positive income 

shocks create statistically significant negative effect on unemployment. They, also, find 

that export is not statistically significant influence on unemployment. Dogrul and Soytas 

(2010) investigate relationships among unemployment, oil price and interest rate and find 

that interest rate shocks left long-term impact on unemployment even though initial 

impact on unemployment is negative and insignificant. The aim of this study is to 

examine the factors affecting the unemployment with Partial Least Squares (PLS) 

analysis in Turkey after the 2008 Global Financial Crisis. In their study macroeconomic 
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variables; industrial productivity index, real wage index, growth rate, consumer price 

index, the ratio of import to Gross National Product and the ratio of export to the Gross 

National Product are used in modelling the response variable; the rate of unemployment. 

Explanatory variables are taken for t time and eight term lags for 2005:Q1-2010:Q3. The 

results of the analysis show that same results are obtained for industrial productivity 

index and real wage index. The ratio of import to Gross National Product variable has a 

great contribution in modelling unemployment rate for all terms except first and second 

lags. Analysis results show that macroeconomic indicator: consumer price index has a 

significant contribution in all terms (Dogan, 2012). Goktas and Isci (2010) aimed to 

remove the collinearity on factors that affect the rate of unemployment and obtained the 

new variables from the factors via using the principal components. The new variables 

that are regressors are used in constructing of unemployment regression model. After 

they have checked the assumptions of statistical inference, they forecasted the 

unemployment in Turkey. Dogan (2012) investigates the response of unemployment to 

selective macroeconomics shocks for the period of 2000:Q1-2010:Q1. It finds that 

positive shocks to growth, growth in export and inflation reduce unemployment. On the 

other hand, shocks to exchange rate, interbank interest rate and money supply increase 

unemployment. The results are consistent with Phillips curve and Okun’s Law suggestion. 

Namely, negative relationship between output and unemployment and positive 

relationship between unemployment and inflation are found. Umit and Bulut (2013) 

examine the factors affecting the unemployment with Partial Least Squares (PLS) 

analysis in Turkey after the 2008 Global Financial Crisis. In their study macroeconomic 

variables; industrial productivity index, real wage index, growth rate, consumer price 

index, the ratio of import to Gross National Product and the ratio of export to the Gross 

National Product are used in modelling the response variable; the rate of unemployment. 

Explanatory variables are taken for t time and eight term lags for 2005:Q1-2010:Q3. The 

results of the analysis show that same results are obtained for industrial productivity 

index and real wage index. The ratio of import to Gross National Product variable has a 

great contribution in modelling unemployment rate for all terms except first and second 

lags. Analysis results show that macroeconomic indicator: consumer price index has a 

significant contribution in all terms. 

 

In several linear regression and prediction problems, the independent variables 

may be many and highly collinear. This phenomenon is called multicollinearity and it is 

known that in the case of multicollinearity the Ordinary Least Squares (OLS) estimator 

for the regression coefficients or predictor based on these estimates may give very poor 

results. Therefore, several biased estimation methods have been developed to overcome 

multicollinearity problem such as Ridge Regression (RR), Principal Component 
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Regression (PCR) and Partial Least Squares Regression (PLSR). The main goal of biased 

methods is to decrease the mean squared error of prediction by introducing a reasonable 

amount of bias into the model. In most real systems, exact collinearity of variables in X 

is rather unusual, because of the presence of random experimental noise. Nevertheless, 

in systems producing nearly collinear data, the solution for regression coefficient is 

highly unstable, such that very small interferences in the original data (for example, 

because of noise or experimental error) cause the method to produce madly different 

results. In addition, the use of highly collinear variables in Multiple Linear Regression 

(MLR) also increases the possibility of overfitting the model. Overfitting means that the 

model may fit the data very well, but fails when used to predict the properties of new 

samples (Martens and Naes, 1989; Naes et al., 2002, Polat and Gunay, 2015). In addition 

to multicollinearity, outliers are also the other problem encountered in regression models. 

If an observation does not follow the model that fits the majority of the data points, it is 

an outlier. Its occurrence can, e.g. be due to a measurement error, to a change in the 

experimental conditions or to the fact that the sample belongs to a population other than 

the one under study etc. It is also well known that the MLR method is highly sensitive to 

outliers. Both outliers in the space of the response variables and those in the space of the 

explanatory variables can unduly influence the parameter estimates (Hubert and 

Verboven, 2003). To solve this problem, the robust versions of regression models were 

proposed. In the case of the presence of both multicollinearity and outliers, the robust 

versions of the biased RR, PCR and PLSR methods called as Robust Ridge Regression 

(RRR), Robust Principal Component Regression (RPCR) and RSIMPLS are used. 

 

In this study, for determining unemployment rate in Turkey, as the presence of 

simultaneously multicollinearity and outliers in the data set, performance of classical 

biased RR, PCR and PLSR methods and their robust versions RRR, RPCR and RSIMPLS 

are compared. Consequently, the method giving the best model is selected from among 

these six methods. The rest of the paper is organized as follows. The classical biased RR, 

PCR and PLSR methods are reviewed in Section 2. In Section 3, the robust versions of 

these three methods RRR, RPCR and RSIMPLS are described. In Section 4, a real 

unemployment data set of Turkey for the period of 1985-2012, in which both 

multicollinearity and outliers exist, analyzed by using these six methods and the 

performance of these methods are compared to each other by using trimmed Root Mean 

Squared Error (TRMSE) statistic. 

 

2. Classical biased estimation methods 
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There are several classical biased estimation methods in the literature. In this 

study, the most commonly used three of them are used for analysis. These are RR, PCR 

and PLSR. In this section, first of all, MLR is briefly outlined in order to clarify the cause 

of using biased estimation methods in case of multicollinearity. Then, the most popular 

biased estimation methods RR, PCR and PLSR are presented. The emphasis here is on 

the algebraic derivation of the vector (or matrix) of coefficients in the linear regression 

models for these four methods. Throughout this paper, matrices are denoted by bold 

capital letters and vectors are denoted by bold lowercase letters. 

 

2.1. Multiple Linear Regression  

Firstly, the regression model used for this method is defined by Equation (1). 

Traditionally, the most frequently used method for finding β  is the OLS. If X has a full 

rank of p (number of independent variables) then the OLS estimate of β  given by 

Equation (2). OLSβ̂  gives unbiased estimates for the elements of β . The corresponding 

vector of fitted values obtained as in Equation (3) (Phatak and De Jong, 1997). 

 

εXβy                                                                                                                         (1) 

 

  yXXXβ 
1

OLS
ˆ                                                                                                            (2) 

 

  yΗyXXXXβXy x

1

OLSOLS
ˆˆ 


                                                                               (3) 

 

In order to estimate β , by using the OLS method, requires that the X variables 

must be linearly independent and the number of independent variables, p, must be equal 

or smaller than the number of observations, n  np   (Trygg, 2002).  

 

If there is a multicollinearity problem, the variance of the least squares (LS) 

estimator may be very large and subsequent predictions rather inaccurate. However, if 

insisting on unbiased estimators given up, biased methods can be used to overcome the 

problem of inaccurate predictions. For this reason, biased methods such as RR, PCR and 

PLSR are used with the consequent trade-off between increased bias and decreased 

variance. The idea behind PCR and PLSR methods is to discard the irrelevant and 

unstable information and to use only the most relevant part of the x-variation for 

regression. Hence, the collinearity problem could be solved that more stable regression 

equations and predictions obtained (Naes et al., 2002; Polat and Gunay, 2015). 
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2.2. Ridge Regression 

The OLSβ̂  estimator is an unbiased and has a minimum variance. However, when 

multicollinearity exists, the matrix XX  becomes ill-conditioned (singular). Since 

    12

OLS σˆVar


 XXβ  and the diagonal elements of   1
XX  become quite large, this 

makes the variance of 
OLS

̂  to be large. This leads to an unstable estimate of β  and some 

of coefficients have wrong sign. In order to prevent these difficulties of OLS, Hoerl and 

Kennard (1970) suggested RR as an alternative procedure to the OLS method in 

regression analysis, especially, multicollinearity exists. RR is an estimation method when 

there is multicollinearity in the data. In practical terms, it consists of adding a biasing 

constant k to the diagonal elements of XX  matrix, where )...,,( p1 xxX   is a centered 

and standardized matrix. The resulting estimators are more stable than the least square 

(LS) estimators. RR estimator of β  can be expressed as in Equation (4) (Hoerl and 

Kennard, 1970; Myers, 1990; Salh, 2014; Walker and Birch, 1988). 

 

yXIXXβ  1

RR )k(ˆ                                                                                                      (4) 

 

Here, k is ridge parameter, I is pp   identity matrix and XX  is the correlation 

matrix of independent variables. Values of k lie in the range 0-1. Note that if k=0, the 

ridge estimator ( RRβ̂ ) becomes as the OLS estimator ( OLSβ̂ ) (Myers, 1990; Salh, 2014). 

 

The trick in RR is to determine the optimum value of k for developing a predictive 

model. There are many procedures in the literature for determining the best value. Hoerl, 

Kennard and Baldwin (1975) suggested using the criterion given in Equation (5) in order 

to choose the optimum k value (Rawlings, 1988). 

 

   




 

 0ˆ0ˆ/psk OLSOLS

2 ββ                                                                                                   (5) 

 

Here, p is the number of regression vectors except the constant term ( 0 ), 2s  is 

the estimated residual mean of squares in OLS method. The denominator of Equation (5) 

shows the sum of squares of classic OLS regression parameters  0ˆ
OLSβ , which are 

calculated from centered and scaled independent variables and the constant term is 
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excluded in the calculation. The simplest way to determine the optimum value of k is to 

plot the values of each RRβ̂  versus k (in the range 0-1), which is called as ridge trace 

(Myers, 1990). In ridge trace graph, a trace or a curve is formed for each of the 

coefficients. From the ridge trace the minimum k value that makes the RRβ̂ stable is could 

be chosen and in this chosen k value the residual sum of squares could converge its 

minimum value (Hoerl and Kennard, 1970). However, Van Nostrand (1980) stated that 

since the determination of what is the stability in ridge trace is subjective and hence the 

selection of k is arbitrary, there is a tendency to choose a very big value of k while 

choosing k based on the ridge trace. Hence, the selection of k based on Equation (5) could 

be better (Rawlings, 1988).  

 

2.3. Principle Component Regression 

PCR and PLSR methods assume that the p-dimensional independent x-variables 

and a set of q-dimensional dependent y-variables are related through a bilinear model. n 

is the number of observations and for i=1,…,n this bilinear model is shown as in Equation 

(6) and Equation (7). Here x  is the mean of x variables, y  the mean of the y variables, 

it
~

 are k dimensional scores with k<<p, Pp,k the matrix of x-loadings and q,kA  represents 

the slope matrix in the regression of yi on it
~

. The error terms are denoted by fi and gi. In 

terms of the original independent variables, this bilinear model can be written as in 

Equation (8). The main difference between PCR and PLSR lies in the construction of the 

scores it
~

. In PCR the scores are obtained by extracting the most relevant information 

present in the x-variables by performing a PCA on the independent variables, thus, using 

a variance criterion. In contrast, the PLSR scores are calculated by maximizing a 

covariance criterion between the x- and y-variables (Hubert and Verboven, 2003; Hubert 

and Vanden Branden, 2003). 

 

iik,pi gt
~

Pxx                                                                                                              (6) 

 

iik,qi ft
~

Ayy                                                                                                              (7) 

 

iip,q0i exBy                                                                                                           (8) 
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PCR starts by centering the data through the mean x  of the x-variables and the 

mean y  of the y-variables. Let the centered observations be denoted by (Hubert and 

Verboren, 2003) 

 

xxx  ii
~                                                                                                                      (9) 

 

yyy  ii
~                                                                                                                   (10) 

 

Firstly, the first k principle components of pnX   are computed to handle 

multicollinearity. Loading vectors ),...,(
~

k1k,p
 ppP  are the k eigenvectors that 

correspond to the k largest eigenvalues of the emprical covariance matrix, 

XXS
~~

1n

1
x




  (Hubert and Verboren, 2003). 

 

Next the k-dimesional scores of each data point, i

~
t , are computed as the co-

ordinates of the projections of i
~x  onto this subspace, or equivalently as in Equation (11).  

 

ii
~~~
xPt                                                                                                                           (11) 

 

In the final step, iy~  is regressed onto i

~
t  via multiple linear regression. Fitted 

linear model can be obtained as in below. 

 

iii
~~~ εtAy                                                                                                                   (12) 

 

The parameter estimates and fitted values can be expressed as in Equation (13) 

and Equation (14), respectively. 

 

yTTTA ~)(ˆ -1

qk,
                                                                                                            (13) 

 

ytAy  ii

~ˆˆ                                                                                                                   (14) 

 

The unknown regression parameter in Equation (1) without a constant term is 

estimated as in Equation (15) (Hubert and Verboren, 2003). 
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APβ ˆ~ˆ
PCR                                                                                                                         (15) 

 

2.4. Partial Least Square Regression  

PLSR is a linear regression technique proposed to cope with high dimensional 

regressors and one or several response variables. There are several ways to calculate 

PLSR model parameters. One of the significant algorithms for PLSR, Straightforward 

Implementation of a Statistically Inspired Modification of the Partial Least Squares 

Method (SIMPLS), was proposed by Sijmen De Jong (1993). SIMPLS algorithm is the 

leading PLSR algorithm because of its speed and efficiency. Therefore, in this study, the 

PLSR with SIMPLS algorithm is introduced due to its speed and efficiency (Sijmen De 

Jong, 1993; Hubert and Vanden Branden, 2003). The SIMPLS algorithm assumes that 

the x and y variables are related with: 

 

iii

~
gtPxx                                                                                                               (16) 

iii

~
ftAyy                                                                                                              (17) 

 

where i

~
t  are called scores, P  is matrix of x loadings, A  is the slope matrix in the 

regression of iy  on i

~
t , ig  and if  are residuals (Hubert and Vanden Branden, 2003). 

 

3. Robust versions of bias estimation methods 

Besides multicollinearity, OLSβ̂  are considerably affected by only or few 

observations. Namely, not all data points in a data set have the same significance in 

determining estimates, test and other statistics. It is important that the data analyst should 

be aware of such kind of points known as outliers. To overcome the effects of outliers, 

robust regression models are proposed. In the presence of both multicollineriaty and 

outliers, robust versions of bias estimation methods are proposed. The robust versions of 

RR, PCR and PLSR are given follow. 

 

3.1. Robust Ridge Regression 

RR is based on least squares and it is sensitive to atypical observations. Hence, 

the approach of MM estimation, which is repeated M estimation, is proposed by Maronna 

(2011) to ensure both robustness and efficiency under the normal model. The vector of 

residuals in RR is given by Equation (18). A scale M estimator of the data vector 
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  RR
n

RR
1 e,,e RRe  is defined as the solution )(ˆˆ RR

e  of Equation (19) (Maronna, 

2011): 

 

  RR
RR βXe ˆye,,e RR

n
RR
1 


                                                                                (18) 

 

δ
σ̂

e
ρ

n

1 RR
i

n

1i


















                                                                                                          (19) 

 

where   is a bounded  - function and )5.0,0(  determines the breakdown point of ̂ . 

Recall that the breakdown point (BDP) of an estimator is the maximum proportion of 

observations that can be arbitrarily altered with the estimator remaining bounded away 

from the border of the parameter set (which can be at infinity). When 2t)t(   and 1 , 

the classical mean square error: 
2

n

1i

RR
i

2 )e(
n

1
ˆ 



  is obtained. Maronna (2011) employed 

for  the bisquare -function given in Equation (20) (Maronna, 2011). 

 

   









32

bis t11,1mint                                                                                            (20) 

 

Let iniβ̂  be an initial estimator. Let ini̂  be an M-scale estimator of the 

)ˆ( iniβee
RRRR  , as the solution of Equation (21). Here, iniβ̂  and ini̂  are initial 

estimators, 0  is a bounded  -function and   is to be chosen. Then the MM estimator 

for RR (in this study named as Robust Ridge Regression (RRR)) is defined by Equation 

(22), where   is another bounded  -function such that 0 . The factor 2

iniσ̂  before 

the summation is employed to make the estimator coincide with the classical one when 
2tρ(t)   (Maronna, 2011). 

 



















 ini

RR
i

n

1i
0

ˆ

e

n

1
                                                                                                         (21) 

 

2
n

1i ini

RR
i2

ini k)
ˆ

)(e
(ˆ),,(L β

β
βyX 


 



                                                                         (22) 
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Therefore, Equation (23) shall be used where the constants cc0   are chosen to 

control both robustness and efficiency (Maronna, 2011). 

 













0

bis0
c

t
ρ(t)ρ ,     










c

t
ρ(t)ρ bis                                                                                  (23) 

 

It is known that the classical estimator RR satisfies the “normal equations”. A 

similar system of equations is satisfied by RRR. Define (Maronna, 2011). 

 

(t)ρψ(t)  ,     
t

ψ(t)
W(t)                                                                                             (24) 

 

Let 

 

ini

RR
i

i
σ̂

e
t  , ,

2

)W(t
w i

i   )w,....,w( n1 w , )diag(wW                                              (25) 

 

Setting the derivatives of Equation (22) with respect to β  to zero yields for RRR 

Equation (26) and Equation (27). Since for the chosen ,  tW  is a decreasing function 

of t  observations with larger residuals will receive lower weights iw (Maronna, 2011). 

 

0)ˆ-( RR βXyW                                                                                                          (26) 

 

WyXβIWXX
T

RR

T ˆ)k(                                                                                          (27) 

As is usual in robust statistics, these “weighted normal equations” suggest an 

iterative produce. Starting with an initial RRβ̂ : Compute the residual vector RRe  and the 

weights w. In order to choose k, Cross-Validation (K), K-fold cross validation process, 

which requires recomputing the estimate K times. iŷ  which is the fit of iy  computed 

without using the i-th observation is expressed as in Equation (28). It is the RRR estimate 

computed without observation i. Then a first-order Taylor approximation of the estimator 

yields the approximate prediction errors as shown in Equation (29), where 
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i
1T

ii

n

1i
i

T
ii )k2)t((h xIxxx





  . See the study of Maronna (2011) for details related 

to choose k and constants (c or c0) (Maronna, 2011). 

 
-i
RRRβx ˆŷ T

ii                                                                                                                (28) 

 

)
)t(h1

h)t(W
1(eŷye

ii

iiRRR
iii

RRR
i


                                                                       (29) 

 

3.2. Robust Principal Component Regression 

Outliers especially bad leverage points and vertical outliers are known to be very 

influential for the classical least squares (LS) regression fit, because they cause the slope 

to be tilted in order to accommodate the outliers. PCR combines PCA on the x-variables 

with LS regression. However, both stages yield very unreliable results when the data set 

contains outlying observations. Hence, Hubert and Verboven (2003) have been suggested 

a robust version of PCR method called as RPCR (Hubert and Verboven, 2003). 

 

PCR starts by centring the data as xxx i i
~  and yyy ii ~ , then, performing 

a PCA on the x-variables in order to cope with multicollinearity. The PCA loading matrix 

 Tk1p,k ,,
~

ppP   then contains the first k dominant eigenvectors of the empirical 

covariance matrix, p,nn,px

~~

1n

1
XXS

T


  and the scores satisfy ii

~~~
xPt

T

pk, . In the second 

step of PCR, the dependent variables i
~y  are regressed onto 

i

~
t  as iii

~~~ εtAy
T   using 

MLR. Then, the parameter estimates and fitted values are obtained as 

  q,n

1

k,kq,k

~ˆ YTTTA
T

nk,


  and ytAy

T

kq,  ii

~ˆˆ , respectively. The unknown regression 

parameters in Equation (1) are then estimated as APβ ˆ~ˆ
PCR   (Hubert and Verboven, 

2003). 

 

In Hubert and Verboven (2003) a robust PCR method is proposed by robustifying 

both steps of PCR. Firstly, a robust PCA method is applied on the x-variables. Secondly, 

a robust regression method is applied. In first step, for low-dimensional data (p<n/2), the 

the highly robust MCD estimator is used as a robust estimator of the covariance matrix 

of the xi and for high-dimensional data the ROBPCA method. To define the MCD 

estimator, we consider subsets of size h out of the whole data set (of size n). The MCD 
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estimator then seeks that h subset whose classical covariance matrix has minimal 

determinant. The number h determines the robustness of the estimator and should be at 

least (n+p+1)/2. The MCD location estimate is given by the mean hx  and the MCD 

scatter estimator by its covarince matrix hΣ̂ , multiplied by a consistency factor. A robust 

PCA method yields a tolerance ellipse which captures the covariance structure of the 

majority of the data points. The robust tolerance ellipse is obtained by applying the highly 

robust MCD estimator of location and scatter to the data, yielding MCDμ̂  and MCDΣ̂  and 

by plotting the points x whose robust distance 

       MCD

1

MCD

T

MCDMCDMCD
ˆˆˆˆ,ˆ,DD μxΣμxΣμxx  

 is equal to 
2

975.0,2 . Based on 

the raw MCD estimate, a reweighting step can be added which increases the finite sample 

efficiency considerably. In that case, each data point receives a weight one if it belongs 

to the robust tolerance ellipse and a weight zero otherwise. The reweighted MCD 

estimator then equals the classical mean and covariance matrix of the data points with 

weight one. Furthermore, there is no distinction any more between the raw and the 

reweighted MCD estimator, as it is assumed that always the reweighted one is used. The 

first k eigenvectors of the MCD estimator, sorted in descending order of the eigenvalues, 

then yield robust loadings (Engelen et al., 2004; Hubert and Verboven, 2003). 

 

ROBPCA is a robust PCA method which combines projection pursuit ideas with 

MCD covariance estimation in lower dimensions. Firstly, x data are preprocessed by 

reducing their data space to the affine subspace spanned by the n observations. This can 

be easily performed using a singular value decomposition of Xn,p. In the second step of 

the ROBPCA algorithm, a measure of outlyingness is computed for each data point. This 

is obtained by projecting the high-dimensional data points on many univariate directions. 

On every direction a robust centre and scale of the projected data points is computed, and 

for every data point its standardized distance to that centre is measured. Finally, for each 

data point its largest distance over all the directions is considered. The h data points with 

smallest outlyingness are then retained and from the covariance matrix of this the final h 

subset, the number of principal components (PCs) to retain, k, is selected. ROBPCA 

yields more accurate estimates at uncontaminated data sets and more robust estimates at 

contaminated data sets. Briefly, ROBPCA method applied to p,nX  yields robust scores 

can be derived as  xii μ̂xPt
T

pk,  . Here, k,pP  is the loading matrix with orthogonal 

columns and xμ̂  is a robust centre (Engelen et al., 2004; Hubert and Verboven, 2003). 
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MCD scatter matrix defines a metric in the PCA subspace. Let L denote the 

diagonal matrix which contains the eigenvalues jl  of the MCD scatter matrix, sorted 

from largest to smallest. Then, the score distance of a p-dimensional point x with respect 

to xμ̂ , P and L is defined as in Equation (30) (Hubert and Verboven, 2003). 

 

      
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k,kk,px
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l

t

ˆˆ

,,ˆD,,ˆ,SDSD

tLt

μxPLPμx

L0μxPtLPμxx

T

T

pk,

T

T

                                                                (30) 

 

In the second stage of RPCR method iy  is regressed on it  that if there is only one 

y-variable the reweighted LTS regression is preferred, else the MCD regression is 

performed. Here, the regression model with with intercept written as in Equation (31) 

with    


ΣCov . In case of one dependent variable (q=1), this model simplifies as in 

Equation (32) with   scale of the errors. The parameters in (6) could be estimated by 

using the LTS estimator. The raw LTS estimator minimizes the sum of the h smallest 

squared residuals as shown in Equation (33). Here, 
2

n:n

2

n:2

2

n:1 rrr    denote the 

ordered squared residuals. An initial estimate of the error dispersion is given by Equation 

(34). Here hc  is a consistency factor for normally distributed errors. The reweighted LTS 

estimator then corresponds to the LS estimator applied to the observations whose 

absolute standardized residual is not too large. That means, if   5.2ˆ/ˆ,ˆr 0LTS0i α  it is 

set 0w i   and otherwise, 1w i  . Then,  0
ˆ,ˆ α  final estimates are obtained as the 

vector which minimizes   


n

1i

2

0iii yw tα
T

 (Hubert and Verboven, 2003). 

 

ii0i 


tAy
T

                                                                                                         (31) 

 




i0iy tα
T

                                                                                                          (32) 
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1i
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,
LTS0 ,rminargˆ,ˆ

0
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   


h

1i
n:iLTS0

2

h0
ˆ,ˆr

h

1
cˆ α                                                                                      (34) 

 

In case of q>1, the MCD regression estimator is used. It starts by computing the 

reweighted MCD estimator on the  ii , yt  jointly, leading to a (k+q)-dimensional 

location estimate  yt
ˆ,ˆˆ μμμ   and a scatter estimate qk,qk

ˆ
Σ , which can be split as 

shown in Equation (32). Similarly with the MLR estimates which are based on the 

emprical covariance matrix of the joint  ii , yt  variables, robust parameter estimates are 

then estimated as shown in Equation (33). This robust regression estimator’s efficiency 

can also be increased by performing a reweighting step. To apply this reweighting 

scheme, each data point receives a zero weight if it is initial residual distance is unsually 

large as shown in Equation (34), with Equation (35) and Equation (36). All other 

observations have a weight 1w i   (Hubert and Verboven, 2003). The reweighted MCD 

regression parameters then correspond to the MLR estimates based on those observations 

with weight one. The final residual distances are obtained by filling in the reweighted 

estimates for A and 0̂  in Equation (33), Equation (35) and Equation (36). A different 

notation for the final estimates and residual distances is not introduced, but it is assumed 

that the reweighting step is indeed applied. The fitted values are obtained as in Equation 

(37) and regression parameters derived as in Equation (38). Finally,   ΣΣ ˆˆ  is set 

(Hubert and Verboven, 2003). 
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q,kk,pq,p
ˆˆ APB               xq,p00

ˆˆˆˆ μB                                                                     (41) 

 

As for the MCD estimator, the robustness of the RPCR algorithm depends on the 

value of h, which is chosen in the ROBPCA algorithm, LTS regression and MCD 

regression. In MATLAB implementation the user can either choose h from the start or 

choose a value of α with 15.0  , such that 1  corresponds with the percentage of 

outliers that the algorithm should be able to resist. Then, h is set as the maximum of 

 nh1   and 






 


2

1qkn
h 2  where 2h  is the required minimal value for the MCD 

regression estimator to have a positive breakdown value. When a large proportion of 

contamination is presumed, α should be chosen close to 0.5. Otherwise an intermediate 

value for α, such as 0.75, is recommended because it increases the finite sample 

efficiency. Therefore, the default choice is 75.0  (Engelen et al., 2004; Hubert and 

Verboven, 2003). 

 

 

3.3. Robust Partial Least Squares Regression 

SIMPLS algorithm is the leading PLSR method because of its speed and 

efficiency. It assumes that the x and y variables are related through a bilinear model as 

given in (1) and (2). This bilinear structure implies a two-step algorithm.   n

1ii

~


 xxX  

and   n

1ii

~


 yyY  be the centered data matrices. After mean centering the data, 

SIMPLS will first construct k latent variables (LVs)   n1

T ~
,,

~~
ttT kn,   and then the 

dependent variables will be regressed on these k variables. k components, the columns 

of k,n

~
T , are obtained as a linear combination of the x-variables which has maximum 

covariance with a certain linear combination of the y-variables. In order to obtain k 

components, firstly, it is required to calculate weight vectors. Hence, the first normalized 

PLSR weight vectors r1 and q1 are obtained as linear combinations of X
~

 and Y
~

 that 

maximizes  1p,n1q,n

~
,

~
cov rXqY . The solution of this maximization problem is found by 

taking r1 and q1 are obtained as the first left and right singular eigenvectors of 
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 1n/
~~

q,nxy  YXSS
T

np,

T

yx , the cross-covariance matrix of the x- and y-variables. For 

each observation the first coordinate of the score 
it

~
 is computed as 

11i
~~

rxt
T

i . To obtain 

the other PLSR weight vectors ra and qa for k,,2a  , the components j

~
rX  are 

required to be orthogonal. Hence, if we require that 0
n

1i




ibiatt  and ab, a deflation of 

the cross-covariance matrix Sxy provides the solutions for the other PLSR weight vectors. 

This deflation is carried out by first calculating the x-loading  jx

T

j rSrrSp /jxj   with Sx 

empirical covariance matrix of the x-variables. Next an orthonormal base 1,…,a of 

p1,…,pa is constructed and Sxy is deflated as  1a

xya

1a

xy

a

xy

  SννSS
T

a  with xy

1

xy SS  . In 

general, PLSR weight vectors ra and qa are obtained as the left and right singular vectors 

of 
a

xyS . The elements of the scores i

~
t  are then defined as linear combinations of the 

mean-centered data, a

T

i rxt ~~
ia   or equivalently k,pp,nk,n

~~
RXT   with  kk,p ,, rrR 1  . 

Finally, where the scores are k-dimensional, MLR is performed of the dependent 

variables yi on these scores i

~
t . Thus, the formal regression model under consideration in 

Equation (42), where   0fE i   and   fifCov Σ . MLR provides estimates as in 

Equation (43), Equation (44) and Equation (45). By inserting  xxRt
T

pk,  ii

~
 in 

Equation (42), estimates for the parameters in the original model in Equation (46) are 

obtained as in Equation (47). Finally, also an estimate of eΣ  is provided by rewriting fS  

in terms of the original parameters: BSBSS x

T ˆˆ
ye   (Engelen et al., 2004; Hubert and 

Vanden Branden, 2003). 
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q,kk,pq,p
ˆˆ ARB   and xByβ

T

pq,
ˆˆ

0                                                                               (47) 

 

Since SIMPLS is based on the empirical cross-covariance matrix between the y-

variables and the x-variables and on linear LS regression, the results are also affected by 

outliers in the data set. Hence, Hubert and Vanden Branden (2003) have been suggested 

a robust version of SIMPLS method called as RSIMPLS (Hubert and Vanden Branden, 

2003). A robust method RSIMPLS starts by applying ROBPCA on the x- and  y-variables 

in order to replace Sxy and Sx, which are used to calculate 
i

~
t , by robust estimates and 

then proceeds analogously to the SIMPLS algorithm. Similar to RPCR instead of MLR 

a robust regression method (ROBPCA regression) is performed in the second stage 

(Engelen et al., 2004; Hubert and Vanden Branden, 2003). To obtain robust scores, firstly, 

ROBPCA is applied on  q,np,nm,n ,YXZ  . ROBPCA is robust covariance estimator for 

high-dimensional data sets (m>n). ROBPCA combines the two approaches. Using 

projection pursuit ideas, it computes the outlyingness of every data point and then 

considers the empirical covariance matrix of the h data points with smallest outlyingness. 

The data are then projected onto the subspace 0K  spanned by the mk0   dominant 

eigenvectors of this covariance matrix. Next the MCD method is applied to estimate the 

center and scatter of the data in this low dimensional subspace. Finally these estimates 

are back transformed to the original space and a robust estimate of the center zμ̂  of m,nZ  

and of its scatter zΣ̂  are obtained. This scatter matrix can be decomposed as 

 Tzz

z
ˆ PLPΣ z  with robust Z-eigenvectors 

z

k,m 0
P  and Z-eigenvalues  

00 k,kdiag L . Note 

that the diagonal matrix z
L  contains the 0k  largest eigenvalues of zΣ̂  in decreasing 

order. Then Z-scores 
z

T  can be obtained from   zT

Zn

z ˆ Pμ1ZT  . After application of 

ROBPCA on m,nZ , this yields robust estimates  TT

y

T

xz
ˆ,ˆˆ μμμ   and zΣ̂ . zΣ̂  can be split 

as in Equation (48). The cross-covariance matrix xyΣ  is estimated by xyΣ̂ and the PLS 

weight vectors ar  are computed as in the SIMPLS algorithm, but now starting with xyΣ̂  

instead of xyS . The x-loadings are defined as   j

1

j

T

jj
ˆˆ rΣrΣrp xx



 . Then the deflation of 

the scatter matrix a

xyΣ̂  is performed as in SIMPLS. In each step the robust scores are 

calculated as in Equation (49), where the ix


 are the robustly centered observations 

(Engelen et al., 2004). 
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  a

T
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T
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

                                                                                                  (49) 

 

Once the robust scores are derived, a robust linear regression is performed. The 

regression model based on robust scores is written as in Equation (50). In order to 

estimate parameters in this model a robust regression method called ROBPCA regression 

is used. This method uses additional information from the previous ROBPCA step 

(Engelen et al., 2004). 
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T
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Firstly, to obtain the robust scores it  ROBPCA has been applied to the (x,y)-

variables and a 0k -dimensional subspace 0K , which represented these (x,y)-variables 

well, has been obtained. Because the scores were then constructed to summarize the most 

important information given in the x-variables, it is expected that outliers with respect to 

this 0k -dimensional subspace are often also outlying in the  y,t -space. Hence, the 

center  and scatter Σ of the (t,y)-variables is estimated as the weighted mean and 

covariance matrix of those  ii , yt  whose corresponding  ii ,yx  are not outlying to 0K  

as shown in Equation (51). If observation i is not identified as an outlier by applying 

ROBPCA on  y,x  then 1w i   and otherwise 0w i  . 
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Two types of outliers: those which are outlying within 0K  and those which are 

lying far from 0K  are could be identified by applying ROBPCA The first type of outliers 

can be easily identified as those observations whose robust distance 

      z

i

1zT

ki LD
0

tt
z

i


  exceeds 2

975.0,k0
 . To determine the second type of outliers, for 

each data point its orthogonal distance 975.0ododi zˆˆOD 22   to the subspace 0K  is 

considered. The distribution of these orthogonal distances is difficult to determine 

exactly, however, motivated by the central limit theorem, it appears that the squared 
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orthogonal distances are roughly normally distributed. Hence, their center and variance 

is estimated with the univariate MCD, yielding 2od
̂  and 

2

od2̂ . Then if 

975.0ododi zˆˆOD 22 σμ  , iw  is set to zero. Having identified the observations with 

weight one, thus, μ̂  and Σ̂  are computed from (51). Then these estimates are inserted in 

Equations (43)-(45) and a reweighted MLR is performed. It is recommended to reweight 

these initial regression estimates in order to improve the finite sample efficiency. Let )k(ir  

be the residual of the ith observation based on the initial estimates that were calculated 

with k components. If fΣ̂  is the initial estimate for the covariance matrix of the errors, 

then the robust distance of the residuals is defined as in Equation (52). The weights  kic  

are computed as in Equation (53) with I the indicator function. The final regression 

estimates are then calculated as in classical MLR, but only based on those observations 

with weight  kic  equal to one. This reweighting step has the advantage that it might again 

include observations with 0w i   which are not regression outliers. The robust residual 

distances  kiRD  are recomputed as in Equation (52) and also the weights  kic  are 

adapted. Robust parameters for the original model in Equation (46) are then given by 

Equation (54). 
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4. Application on a real unemployment data set of Turkey 

In this study, the annual data set of Turkey (1985-2012), including the eleven 

factors affecting the unemployment rate, is analyzed by using RR, PCR, PLSR, RRR, 

RPCR, RSIMPLS methods. The unemployment rate (UR) is considered as dependent 

variable. The variables that explain the unemployment are determined by following the 

previous studies on this issue. These independent variables are Gross Domestic Product 

Growth Rate with Expenditure Approach (GDP), Import Growth Rate (IMP), Export 

Growth Rate (EXP), Population Growth Rate (P), Exchange Rate (E), Consumer Price 

Index (CPI), Relative Consumer Price Indices (RCPI), Civilization of Employment 
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Agriculture (CEA), Unit Labor Cost (ULC), Purchasing Power Parities (PPP), Trend (T). 

The data set is taken from OECD data base.  

 

Firstly, MLR analysis applied on the data set and it is found that the model 

obtained by using OLS method is significant with a probability of 95% (F=4.95; p=0.002). 

Even though the MLR model fits the data well, multicollinearity may severely prohibit 

quality of the prediction. Table 1 shows that all independent variables are not significant 

as an indicator of multicollinearity problem. Since 1, , p   are the eigenvalues of 

correlation matrix of X X , the existence of collinearity problem also could be seen by 

examining the condition number that calculated as 
max min/  =9.112/0.0003=30373. The 

condition number greater than 30 means that there is multicollinearity. The other 

multicollinearity measure is Variance Inflation factor (VIF). The larger the VIF value, 

the more serious the collinearity problem. In practice, if any of the VIF values is equal 

or larger than 10, there is a near-collinearity. In this case, the regression coefficients are 

not reliable. The VIF values of GDP, IMP, EXP, P, E, CPI, RCPI, CEA, ULC, PPP and 

T are found as 3.32, 9.79, 6.05, 6.79, 39.25, 32.99, 22.25, 67.86, 2.98, 157.42 and 51.57, 

respectively. Since the VIF values of E, CPI, RCPI, CEA, PPP and T are found greater 

than 10, there is a near-collinearity problem for this data set.  

 

Table 1: The estimated regression coefficients for the MLR model 

Model Coefficients 
Standart Error 

of Coefficients 
T P 

Constant 24.866 9.464 2.63 0.018 

Trend -0.3588 0.1838 -1.95 0.069 

GDP -0.11589 0.08178 -1.42 0.176 

EXP -0.01865 0.01123 -1.66 0.116 

IMP 0.00542 0.01735 0.31 0.759 

P 1.120 1.787 0.63 0.540 

E -2.001 1.867 -1.07 0.300 

PPP 12.982 6.365 2.04 0.058 

CPI 0.02521 0.03897 0.65 0.527 

RCPI -0.11798 0.06699 -1.76 0.097 

CEA -0.2399 0.1841 -1.30 0.211 

ULC 0.03096 0.01681 1.84 0.084 

 

Secondly, whether outliers exist or not is examined using normal Q-Q plot of the 

MLR residuals given in Figure 1. As seen from Figure 1, there are two outliers in the 

data.  
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Figure 1: Q-Q plot for MLR residuals 

 

It is found that the data set simultaneously includes multicollinearity and outliers. 

Hence, RR, PCR, PLSR, RRR, RPCR and RSIMPLS methods are applied on the data set. 

Firstly, the Q-Q plots for residuals of methods are obtained in Figure 2. As seen from 

Figure 2, there are two outliers as to all methods. In addition, classical RR, PCR and 

PLSR methods are relatively much more dispersed than the ones corresponding to the 

RRR, RPCR and RSIMPLS. 
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Figure 2: Residuals Q-Q Plots of the Classical and Robust Biased Regression Methods 

 

The predictive performance of the methods are evaluated by using the Root Mean 

Square Error (RMSE), 
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considered to be safer in the presence of outliers. The exclusion of a certain percentage 

of unusually large residuals leads to an acceptable robust performance criterion. The 

regression coefficients and TRMSE values of methods are given in Table 2. 

Table 2: The estimated regression coefficients and TRMSE values of methods 

 Regression Coefficients 

Variables RR PCR PLSR RRR RPCR RSIMPLS 

Constant 17.9265 25.6056 28.2426 23.2473 27.1417 13.4399 

T -.0976 -.1611 -.2322 -.4540 -.3524 -.4302 

GDP -.0819 -.0929 -.0895 -.0430 -.1003 -.0937 
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IMP -.0007 .0004 .0003 .0048 .0162 .0246 

EXP -.0076 -.0094 -.0136 -.0073 -.0054 .0017 

P .1890 -.0903 1.2939 -1.1617 -.2164 -.1439 

E -.2168 .6063 1.0358 -1.0185 2.3267 3.2841 

PPP 3.1610 .1285 1.1919 11.9718 .5134 .9214 

CPI -.0153 -.0204 .0001 .0189 -.0167 -.0077 

RCPI -.0526 -.0644 -.0913 -.0829 -.0680 .0482 

CEA -.1119 -.2333 -.3283 -.1669 -.2870 -.1663 

RULC .0130 .0142 .0212 .0272 .0256 .0090 

Biasing Parameters 0.5k RR     11k RR     

TRMSE(0.9) 0.6935 0.6640 0.6575 0.3240 0.5059 0.5984 

 

Since there is both multicollinearity and outliers in the data set, it is expected that 

robust biased regression methods give more accurate results than their classical versions. 

As seen from Table 2, the smallest TRMSE values are obtained using robust RRR and 

RPCR methods, respectively. According to TRMSE values, robust methods RRR, RPCR 

and RSIMPLS are clearly better than their classical counterparts RR, PCR and PLSR. 

 

As mentioned in Maronna (2011) this version of robust ridge regression which we 

called here briefly RRR estimator is also robust when p/n is large, and is resistant to both 

bad leverage points and vertical outliers. In Maronna (2011) a simulation study for the 

case n>p in which the proposed estimator RRR is seen to outperform its competitors 

(other robust ridge estimators proposed before in literature). Moreover, in his study he 

described a simulation for p>n in which the RRR estimator is seen to outperform 

RSIMPLS method. In many applications in literature, as seen from this study too, PCR 

and PLSR methods (and their robust counterparts) give close results. This comparative 

study and their study show that RRR is a good alternative to the most popular robust 

biased methods, namely RPCR and RSIMPLS methods. All of the three robust methods 

RRR, PCR and PLSR could be used for both n>p or p>n situations and resist to different 

types of outliers (bad leverage points and vertical outliers). Hence, generally, we could 

mention that RRR is a good alternative but we could not declare that it always give better 

results than RPCR and RSIMPLS as in many real data applications the situation could be 

differ. However, in this study by applying on a real data set we showed that RPCR and 

RSIMPLS are not the only methods to be preferred in case of multicollinearity and outlier 

existence. Thus, especially for fields such as chemometrics, in which these kinds of data 

sets (including multicollinearity and outliers) are seen usually with the case of p>>n, 

RRR could be used as a good alternative to RPCR and RSIMPLS methods and the best 

model for the purpose (fitting to data set or prediction) could be selected.  
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5. Conclusion 

In this study, for determining unemployment rate in Turkey during 1985-2012 

period, it is aimed to choose the best  model by comparing classical biased RR, PCR and 

PLSR methods and robust biased RRR, RPCR and RSIMPLS methods in case of both 

multicollinearity and outliers existence. For the unemployment data set, RRR model is 

chosen as the best model according to TRMSE(0.9) criteria. In addition, robust methods 

RRR, RPCR and RSIMPLS outperform classical RR, PCR and PLSR methods in terms 

of predictive ability. The results obtained from RRR robust biased regression method 

showed that the most important independent variable effecting the unemployment rate is 

Purchasing Power Parities (PPP). The least important variables effecting the 

unemployment rate are Import Growth Rate (IMP) and Export Growth Rate (EXP), 

respectively. Hence, any increment in PPP cause an important increment in 

unemployment rate, however, any increment in IMP causes an unimportant increase in 

unemployment rate. Any increment in EXP causes an unimportant decrease in 

unemployment rate.  
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