
Journal of Data Science 14(2016), 701-712 

 A brief note on the simulation of survival data with a desired percentage of 

right-censored datas 

  

Edson Zangiacomi Martinez1*, Jorge Alberto Achcar1, 

Marcos Vinicius de Oliveira Peres2  and Jose Andre Mota de Queiroz2 

1Ribeir~ao Preto Medical School, University of S~ao Paulo, Brazil 

2Department of Statistics, State University of Maringa, Brazil 

 

Abstract: Simulation studies are important statistical tools used to inves-tigate the 

performance, properties and adequacy of statistical models. The simulation of right-

censored time-to-event data involves the generation of two independent survival 

distributions, where the rst distribution repre-sents the uncensored survival times 

and the second distribution represents the censoring mechanism. In this brief report 

we discuss how we can make it so that the percentage of censored data is previously 

de ned. The described method was used to generate data from a Weibull distribution, 

but it can be adapted to any other lifetime distribution. We further presented an R 

code function for generating random samples, considering the proposed approach.  
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1. Introduction 

Simulation studies use computer intensive procedures to assess the perfor-mance of a variety 

of statistical methods in relation to a known truth (Burton et al., 2006). In the context of time-to-

event data, Bender et al. (2005) presented techniques to generate survival times for simulation 

studies regarding Cox pro-portional hazards models. Austin (2012) introduced data-generating 

processes for the Cox proportional hazards model with time-varying covariates when event times 

follow an exponential, Weibull or Gompertz distribution. A method for the simulation of survival 

times that follow a Cox proportional hazards model with time-dependent covariates was also 

developed by Hendry (2014). Royston (2012) described an approach for simulation based on 

creating pseudo-random sample from Royston-Parmar distributions, or to say, a distribution with 

baseline distri-bution function modelled as a restricted cubic spline function of the logarithms of 

the survival times. Mori~na and Navarro (2014) presented an R code package for the simulation 

of survival data including recurrent and multiple events.  

The simulation of censored survival data in a general way requires the genera-tion of two 

survival distributions. The rst distribution represents the uncensored survival times and the 

second distribution represents the censoring mechanism. The two simulated distributions are thus 

combined so that the event of interest is considered to be observed when the uncensored survival 
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time is less than or equal to the censored time. Otherwise, the event is censored and the survival 

time corresponds to the censored time (Burton et al., 2006). In this procedure, the proportion of 

censored data depends on the censoring distribution. In this brief note, we show how to simulate 

right-censored survival data considering a desired percentage of censorship (0 < < 1). We 

considered the Weibull dis-tribution as a special case, but the algorithm described here can be 

adapted to other distributions. In an Appendix we present an R code function (Crawley, 2012) in 

order to facilitate this task. 

 

2. Method 

Let T be a nonnegative-valued random variable representing the time until an event occurs, 

with cumulative distribution function given by FT (t) = P (T≦ t) = ∫ 𝑓𝑇 (x)dx
𝑡

0
, where fT (t) is its 

respective probability density function. The survival function describing the probability of 

surviving after time point t is given by ST (t) = 1 -FT (t) = P (T > t). In addition, suppose that C is 

the censoring variable, with distribution function FC (t), and let us assume that T and C are 

independent. In this way, we de ne the random variable Y as follows: 

 

Y =  {
𝑇 𝑖𝑓 𝐶 ≥ 𝑇
𝐶 𝑖𝑓 𝐶 < 𝑇

 

 

Let us de ne a censoring indicator variable d where d = 1 for a observed lifetime (C ≥T) and 

d = 0 for a censored observation (C < T ). Given the assumption of independence between C and 

T , the probability P (C < T ) is given by  

𝑃(𝐶 < 𝑇) =  ∫ ∫ 𝑓𝑇,𝐶(𝑡, 𝑐)𝑑𝑒𝑑𝑡
𝑡

0

∞

0
=  ∫ 𝐹𝐶(𝑡)

∞

0
𝑓𝑇(𝑡)𝑑𝑡 =  𝜃,                      (1) 

Where is the desired percentage of censored data (0 < < 1) and fT;C (t; c) = fT (t)fC (c) is the 

joint probability density function of the random variables T and C. In a simulation study, the 

exponential distribution is a convenient choice for C, given that it is a continuous probability 

distribution that has a constant failure rate. However, other choices are also possible, according 

to the interest of the researcher. 

Let us suppose, for example, C Exponential( ) and T W eibull( ; ), where > 0 and > 0 are 

parameters with values that are chosen by the researcher and is a parameter that should be 

determined so that the equality 

𝑃(𝐶 < 𝑇) = 𝜆𝛼 ∫ (1 − 𝑒−𝛽𝑡)
∞

0
(𝑡𝜆)𝛼−1 𝑒𝑥𝑝[−(𝑡𝜆)𝛼] 𝑑𝑡 = 𝜃                                      (2) 

holds. In general, this integral cannot be solved in closed form and numerical solutions have to 

be obtained. In the present study, we use the R code function \integrate" to numerically evaluate 

the integral in the equation (2) and the R function \uniroot" to nd the value of that satis es (2) for 

xed values of λ,α and θ. 
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The algorithm used to simulate a sample of size n from the lifetime distribu-tion of interest follows 

the steps: 

Step 1. Fix values of  λ,α and θ and replace them in the expression (2). 

Step 2. From (2), find the value of β such as P (C < T ) = θ . 

Step 3. Generate n random samples from U ～Uniform(0,1). The motivation for this is that 

if T has a distribution function FT (t), then U = FT (T ) follows a uniform distribution on (0,1). 

Conversely, if U ～Uniform(0,1) then T = FT
 -1(U) has distribution function FT . 

Step 4. Using the parameters λ and a fixed in the first step, random samples for T are obtained 

from FT -1(U) = 
1

λ
 [− log (1 − U)]

1
𝛼⁄ . In this case, FT (t) = 1-exp[-(tλ)α ] is the cumulative 

distribution function of the Weibull distribution with parameters and . 

Step 5. Generate n random samples from W ～Uniform(0,1). 

Step 6. Random samples for C are obtained from FC
-1(W ) = 

1

𝛽
[- log (1 -W )], where is given 

in the Step 2. Here, FC (t) = 1 - exp ( tβ ) is the cumulative distribution function of the exponential 

distribution with parameter . 

Step 7. Random samples for Y are given by Y = min(T, C): 

Step 8. Pairs of values (y1,d1), (y2,d2),…, (yn,dn) are thus obtained, where di = 1 if ci   ≧ ti 

and di = 0 if ci < ti, i = 1,…,n. 

This algorithm can be adapted to accommodate other continuous distribu-tions for survival 

time that have explicit cumulative distribution function. 

 

3. Results 

Considering the proposed algorithm, let us simulate B random samples of size n from a 

Weibull distribution with a percentage of censored data given by θ. Let θ*
(b) be the percentage of 

censored data observed in the b-th simulated sample (b = 1,…,B). The mean and the standard 

deviation of the values for θ*
(b) are given respectively by 

 

m(θ∗) =  ∑
θ(𝑏)

∗

𝐵

𝐵

𝑏=1

  𝑎𝑛𝑑  𝑠𝑑(θ∗) =  √∑
[θ(𝑏)

∗ − 𝑚(θ∗)]2

𝐵

𝐵

𝑏=1

 . 

In addition, the percentiles 2.5% and 97.5% (denoted by p2.5% and p97.5%, respectively) 

are used to describe a range in which 95% of the values for (b) are contained. 

Table 1 shows the results for B = 100,000 random samples of sizes n = 15,20,30,50, 

100 and 500, percentages of censored data given by = 0.05, 0.15, 0.25, 0.30, 0.50, 0.75 

and 0.90, and the parameters and were arbitrarily set at 0.2 and 2.4, respectively. 
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Supposing C～ Exponential(β ) and T～Weibull( λ,α), the appropriate values for  β were 

determined according to the values of θ,λ and α (step 2 of the algorithm). For example, 

considering a percentage of censored data equal to θ = 0.05 and the parameters with xed 

values λ= 0.2 and α = 2.4, the value for that satisfies the expression 

∫ (1 − 𝑒−𝛽𝑡)(0.2𝑡)1.4 exp[−(0.2𝑡)2.4] 𝑑𝑡 =  
0.05

0.2 × 2.4

∞

0

 

is approximately β ≈0.01163 (see expression (2)). In the Appendix, we provide an R 

code function to get values for β. In Table 1, we observe in all simulations that the values 

obtained for m ( θ*) are close to the respective nominal values of . In addition, the values 

for the standard deviation sd (θ* ) decrease as the sample size n increases. In turn, values 

for sd (θ* ) increase as the percentage of censored data approaches 0.5 for any sample 

size. 

Let λ̂𝑀𝐿
(𝑏)

  and  α̂𝑀𝐿
(𝑏)

 be the maximum likelihood (M L) estimates for and , respectively, 

considering the b-th simulated sample (b = 1,…,B). Let us define  m(λ̂𝑀𝐿
∗ )  and  𝑠𝑑(λ̂𝑀𝐿

∗ ) 

as respectively the mean and the standard deviation 
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Table 1: Computational results for the simulation study, considering λ= 0.2, α= 2.4, B = 

100,000 random samples of sizes n = 15,20,30,50,100 and 500, and percentages of 

censored data given by = 0.05, 0.15, 0.25, 0.30, 0.50, 0.75 and 0.90. 
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of the B estimated values for λ̂𝑀𝐿
(𝑏)

 and, similarly, m (α̂𝑀𝐿
∗ ) and sd (α̂𝑀𝐿

∗ ) are respectively 

the mean and the standard deviation of the B values estimated for α̂𝑀𝐿
(𝑏)

.Table 2 shows the 

obtained values for m(λ̂𝑀𝐿
∗ ) , 𝑠𝑑(λ̂𝑀𝐿

∗ ) , m(α̂𝑀𝐿
∗ )  and  𝑠𝑑(α̂𝑀𝐿

∗ ) considering B = 100,000,  

λ= 0.2,  α= 2.4  and several choices for n and θ. In this simulation study, the maximum 

likelihood estimations were performed using the maxLik library in R software 

(Henningsen and Toomet, 2011), where the likelihood equations were solved by a method 

based on the Newton-Raphson algorithm. 

In Table 2 we observe that the means m(λ̂𝑀𝐿
∗ ) are satisfactorily close to the nominal value   

λ= 0.2 in all performed simulations. The standard deviations 𝑠𝑑(λ̂𝑀𝐿
∗ ) decrease as the 

sample size n increases. However, we can observe that means m(α̂𝑀𝐿
∗ ) are far from the 

nominal value and the respective values for sd (α̂𝑀𝐿
∗ ) are quite large, in the cases where 

the percentage  of censored data is higher than 0.50 and the sample size is relatively small 

(say less than 100). This is due to the presence of simulated samples resulting on 

monotone likelihood and, in the present study, this was observed when all simulated 

observations are censored. Heinze and Schemper (2001) observed that monotone 

likelihood is primarily a problem of small sample bias which implies in the nonexistence 

of the maximum likelihood estimates. This situation can lead to spurious results, 

according to the computational algorithm used. Table 2 describes the incidence of 

monotone likelihood (abbreviated IM L) found in each simulation. We observe, for 

example, that in the case where θ= 0.90, the incidence of monotone likelihood was 

20.39%, 11.96% and 4.69% when n = 15, 20 and 30, respectively. 

4. Discusion  

The proposed algorithm provides a practical method to simulate survival data with a desired 

percentage of right-censored data. This method is not intended to be regarded as unprecedented 

in the literature, given that a number of authors have used similar mechanisms to generate 

samples with censored data (see, as examples, Mantovani and Franco (2004) and Eudes et al. 

(2013)). However, the present report is intended to be useful to students and researchers, given 

that it describes in detail the algorithm used to simulate data samples and also provides a R code 

program that can be used for this purpose. 

Based on the obtained results of Table 2, we recommend caution in using this simulation 

method when the desired percentage of censored data is relatively large and the sample size is 

relatively small. This can lead to problems due the possibility of all simulated observations be 
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censored and, in this case, the maximum likelihood estimates do not exist since the likelihood 

function has no local maximum. 

Table 2: Summaries for the maximum likelihood estimates, considering λ= 0.2, α= 2.4, B = 100, 

000 random samples of sizes n = 15, 20, 30, 50, 100 and 500, and percentages of censored data 

given by θ= 0.05, 0.15, 0.25, 0.30, 0.50, 0.75 and 0.90. IM L denotes the incidence of monotone 

likelihood. 
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In the cases where IM L > 0, the results showed in Table 2 can be di erent when obtained from 

another statistical package, given that each software can consider a di erent stopping criteria for the 

iterative procedure of the Newton-Raphson method. When using the maxLik library in R software, 

the algorithm stops if the absolute di erence between successive iterations is less than 1 × 10-8, 

However, the results in Table 2 are useful to illustrate the potential e ects of the incidence of 

monotone likelihood in a simulation study. 

We also simulated random samples considering other values for the parameters and , but the results 

were analogous to those described in Tables 1 and 2. 

Appendix - The R code 

Assuming that T follows a Weibull distribution with probability density func-tion (pdf) fT (t) = (t ) 

1 exp [ (t ) ], t > 0; and C follows a exponential distribution with pdf fC (t) = exp ( t), the following 

function sol.beta pro-vides the value for that satis es P (C < T ) = (equation (1)). 

fint <- function(y,beta,lambda,alpha) { 

fint <- (1-exp(-beta*y))*(y*lambda)^(alpha-1)  

*exp(-(y*lambda)^alpha) } 

fun <- function(x,lambda,alpha,theta) { 

r <- integrate(fint,beta=x,lambda=lambda,alpha=alpha,lower = 0, upper = Inf) 

fun <- lambda * alpha * r$value - theta } 

sol.beta <- function(lambda=lambda,alpha=alpha,theta=theta) f sol <- 
uniroot(fun,lambda=lambda,alpha=alpha,theta=theta, interval= c(0.01, 10)) 

return(as.numeric(sol$root)) } 

For example, assuming = 0:2, = 2:4 and = 0:4, we have 

> sol.beta(0.2,2.4,0.4)  

[1] 0.1214826 

The following function rcensWeib is used to generate random samples of size n from a 

Weibull distribution with parameters and and a desired percentage of right-censored data given 

by θ. 
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rcensWeib <- function(n,lambda,alpha,theta) { 

beta <- sol.beta(lambda,alpha,theta) 

w <- runif(n,0,1) 

c0 <- (-log(1-w)/beta)  

u <- runif(n,0,1) 

t0 <- (1/lambda)*(-log(1-u))^(1/alpha)  

t <- pmin(t0,c0) 

d <- as.numeric(c0>=t0)  

dados <- data.frame(t,d) return (dados) } 

 

For example, assuming n = 20; = 0:2, = 2:4 and = 0:1, we have 

> rcensWeib(20,0.2,2.4,0.1) t d 

1 4.1775609 1 

2 8.0388403 1 

3 4.5675561 1 

4 4.2659948 1 

5 4.9293638 1 

6 3.2307409 1 

7 1.9213973 1 

8 6.4329806 1 

9 6.0117327 1 

10 0.4023496 0 
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11 3.8465585 1 

12 3.6301429 1 

13 2.6819304 1 

14 8.0879792 0 

15 5.7055924 1 

16 3.3186272 0 

17 4.4106509 1 

18 2.5296499 1 

19 2.6484461 1 

20 2.2352938 1 

> 
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