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Abstract: Suppose that an order restriction is imposed among several means in time 

series. We are interested in testing the homogeneity of these unknown means under 

this restriction. In the present paper, a test based on the isotonic regression is done 

for monotonic ordered means in time series with stationary process and short range 

dependent sequences errors. A test statistic is proposed using the penalized 

likelihood ratio (PLR) approach. Since the asymptotic null distribution of test 

statistic is complicated, its critical values are computed by using Monte Carlo 

simulation method for some values of sample sizes at different significance levels. 

The power study of our test statistic is provided which is more powerful than that 

of the test proposed by Brillinger (1989). Finally, to show the application of the 

proposed test, it is applied to real dataset contains monthly Iran rainfall records. 

 

 

Key words: Isotonic regression, Monte Carlo simulation, Penalized likelihood ratio, 

Test of trend 

 

1. Introduction 

In the application fields of statistical inference it is important to test stationary of the given 

time series. The interest centre on the stationary of mean, and the process of interest is assumed 

to be of the following form 

              ,kkk ZX                                                                 (1) 

where the k , ,2,1,0k , are the means and kZ  is a stationary process with mean 0 and finite 

covariances )(),cov()( 0 kkii ZZEZZk   , for any value of i . For this plan, there has been 

both classical work on testing for the existence of a trend and more recent work on tests for an 

abrupt change. The present work falls between these two approaches in developing a test for a 

change, or trend that is monotonic but otherwise arbitrary. It is assumed that the homogeneity of 

means hypothesis as the null hypothesis of interest is 

 ,: 210 nH                                          (2) 

against the alternative order hypothesis 

,: 211 nH   
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with at least one strict inequality in 1H . Darkhovsky (1994), shown that general change point 

problems can be reduced to the problem of testing the mean stability of some new sequences. 

The type of testing we consider is off-line, in that the data ),,,( 21 nn XXX   have 

already been obtained before the analysis. The trend ,,2,1,0},{ kk is sometimes called the 

signal and the process }{ kZ  is the errors. The formulation is motivated in part by Iran rainfall 

data provided by a meteorologist from the Agricultural Experimental Station in Tehran. This 

dataset contains monthly rainfall records collected from 1898 to 2010. The meteorologist believes 

that there was a change in the mean, caused by the construction of a dam in Karaj from 1966 to 

1976. Early work on the problem of testing mainly concerned the simple model in which the 

}{ kZ , ,2,1,0k , are independent and the }{ k  only take two possible values. Then the 

alternative hypothesis has the following form 

,: 1211 nvvH  
   

for some unknown change point v  such that nv 1 . A statistical change point problem was 

first studied in the mid-1950s in the context of quality control in industrial processes. A change 

point is defined as a point in the time order when the probability distribution of a sequence of 

observations differs before and after that point. The literature of statistical change point has 

evolved over time and now includes a significant amount of scholarly work on change point 

analysis, and genetics, to name a few. The classical change point problem is to test for the 

existence of a change point and estimate its location if it exits. Picard (1985), presented a few 

techniques which may be useful in the analysis of time series when a failure is suspected. He 

presented two categories of tests and investigate their asymptotic properties: one, of 

nonparametric type, is intended to detect a general failure in spectrum; the other investigates the 

properties of likelihood ratio tests in parametric models which have a non-standard behaviour in 

this situation. Siegmund (1986) and Bhattacharya (1994), have written review articles, and 

Shaban (1980) has complied an annotated bibliography. In many literatures, the change-point 

problem for linear models has been discussed extensively. While most of the contributions are 

made from a posteriori point of view (we refer to, e.g., Bai, 1997, Csörgo and Horváth, 1997, and 

Perron, 2006), recently the sequential or on-line change-point detection has received more and 

more attention. 

Chu et al. (1995) and Horváth et al. (2004), who suggested cumulative sum (CUSUM) procedures 

in different stochastic models. CUSUM procedures work best for relatively early changes but 

show a slower reaction the later the change occurs. Chu et al. (1995) investigated tests for 

structural change based on moving sums (MOSUMS) of recursive and least-squares residuals. 

They obtained the asymptotic critical values of the MOSUM test with recursive residuals and 
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showed that the asymptotic critical values of the MOSUM test with least-squares residuals can 

easily be obtained from already existing tables for the moving-estimates test. Aue et al. (2009), 

provided the asymptotic normality of the suitably normalized stopping time of the CUSUM 

procedure in a similar setting. Their drawback is a strong dependence on the choice of the 

parameters, in particular the right choice of the window size by the statistician. Kwiatkowski et 

al. (1992), proposed a test of the null hypothesis that an observable series is stationary around a 

deterministic trend. The series is expressed as the sum of deterministic trend, random walk. The 

asymptotic distribution of the statistic is derived under the null and under the alternative that the 

series is difference-stationary. Also, Finite sample size and power are considered in a Monte 

Carlo experiment. Tang and Macneill (1993), shown that serial correlation can produce striking 

effects in distributions of change-point statistics. Failure to account for these effects is shown to 

invalidate change-point tests, either through increases in the type 1 error rates if low frequency 

spectral mass predominates in the spectrum of the noise process, or through diminution of the 

power of the tests when high frequency mass predominates. Lombard and Hart (1994), 

considered abrupt mean-change models for data with dependent, stationary, errors. No specific 

distributional assumptions, other than the existence and sum ability of cumulates, are made. Also, 

a consistency property of the least squares estimator of the change-point is derived. See also 

Brodsky and Darkhovsky (1993, Chapter 3), where strong mixing conditions are imposed. 

Extensions of the simple change point model either allow more general change patterns or relax 

the independence assumption of }{ kZ ; dependence is inevitable in the study of time series. This 

complicates the testing procedures. Woodward and Gray (1993), perform a test of the existence 

of a linear trend in autoregressive moving average models with applications to global warming. 

For example like the Iran rainfall data, linearity is not expected, so that a nonparametric test is 

desirable; Brodsky and Darkhovsky (1993), present a systematic account of nonparametric 

methods, and Brillinger (1989) develops a test for monotonic trends with dependent errors. The 

latter two papers contain many further references to test for trend. Davis, et al. (1995), considered 

the problem of testing whether or not a change has occurred in the parameter values and order of 

an autoregressive model. It is shown that if the white noise in the AR  model is weakly stationary 

with finite fourth moments, then under the null hypothesis of no change point, the normalized 

Gaussian likelihood ratio test statistic converges in distribution to the Gumbel extreme value 

distribution. Bagshaw and Richard (1997), proposed the procedures for monitoring forecast errors 

in order to detect changes in a time-series model. These procedures are based on likelihood ratio 

statistics which consist of cumulative sums. Lavielle and Moulines (1997), consider estimation 

and testing of multiple changes in the mean of strong mixing random processes. The assumed 

mean function is piecewise constant with an unknown number of pieces. Almasri (2000), used 

the wavelet filters for testing the trend in the presence of the fractional difference processes. The 

test method has been constructed using wavelet analyses which have the ability to decompose a 

time series into low frequencies (trend) and high frequencies (noise) components. Under the 
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normality assumption the test statistic computed and to investigate the properties of the test 

statistic, empirical critical values for the test have been generated using Monte Carlo simulations. 

Inference based on the monotonicity assumption is discussed in Robertson et al. (1988) and 

Silvapulle and Sen (2005). I show that my test statistic based on isotonic regression is 

asymptotically more powerful than the one proposed by Brillinger (1989). Gombay and Serban 

(2005), proposed sequential tests for detecting an abrupt change in any parameter, or in any 

collection of parameters of an autoregressive time series model. These tests accommodate 

nuisance parameters. They are based on large sample approximations to the efficient score vector 

under the null hypothesis of no change and under the alternative. Gombay (2008), considered the 

autoregressive time series models of order p  and tested for change in any one of the parameters 

separately. He obtained the test statistics based on the efficient score vector. Also the large sample 

properties of the change-point estimator explored. Almasri (2010), used the approach of wavelet 

analysis to construct a test statistic to test for the existence of a trend in the series. He proposed 

a new approach for testing the presence of trend based on the periodogram of the data. Also, he 

studied the properties of our test statistics under different degrees of dependency and compared 

the results with the wavelet test with results obtained by applying the ordinary least squares 

method under the same conditions. Aue et al. (2012), quantified the reaction time of on-line 

monitoring schemes for changes in the mean based on moving sums. For an excellent review on 

the order restriction on mean vectors of multivariate normal populations one may refer to 

Silvapulle and Sen (2005), Bazyari (2012), Bazyari and Chinipardaz (2013) and Bazyari and 

Pesarin (2013). 

In this paper, a test based on the isotonic regression is done for monotonic ordered means in time 

series with stationary process and short range dependent sequences errors. A test statistic is 

proposed using PLR approach. The test is compared this with Brillinger’s (1989) method. 

However, there are more methods to be compared with, but it is shown that my test statistic based 

on isotonic regression is asymptotic more powerful than the one proposed by Brillinger (1989). 

To the author's knowledge, the penalized likelihood ratio test for this problem of testing with an 

order restriction on the unknown means in time series has not been obtained yet. 

The rest of this paper is organized as follows. The test statistic is presented using PLR approach 

in Section 2. In Section 3, the critical values of the proposed PLR test statistic are computed by 

using Monte Carlo simulation for some values of sample sizes at different significance levels and 

the test is illustrated by real example associated with Iran rainfall data. Section 4, contains a 

power study and a comparison with Brillinger’s (1989) test. The conclusions are summarized in 

Section 5. Finally, the proofs are presented in Appendix. 

 

 

http://dl.acm.org/author_page.cfm?id=81416603175&coll=DL&dl=ACM&trk=0&cfid=439538137&cftoken=15692131
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2. The test statistic 

2.1. Preamble: Independent identically distributed normal errors 

In this subsection, we assume that }{ kZ , ,2,1,0k , given in (1) are independent normal 

random variables with mean 0 and known variance 
2 . Then the log likelihood function is 

 ,)(
2

1
),(

1

2

2
CXL

n

i

ii  





                                                    (3) 

where C  denotes a generic constant that does not depend on parameter  . The unknown 

parameter   takes values in the space 

 
}.:),,({ 211 n

n

n R   
                                       (4) 

Robertson et al. (1988), showed that the restricted maximum likelihood estimator of 
i , 

ni ,,2,1  ,  is 
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Under the null hypothesis 0H , the maximum likelihood estimator is obviously 
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X The exact distribution of the likelihood ratio test statistic 

)},(),ˆ({2   LL  is given in Robertson et al. (1988). As shown below, this test statistic is 

affected by the so-called spiking problem in large samples, in that 1̂  is too small while n̂  is too 

large. Instead of (3), we shall consider the penalized log likelihood function 
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where the term )( 1 nnr , penalizes large )( 1 n . Let nrXX r  1,1 , 

nrXX nrn ,  and iri XX ,  for 12  ni . Then 
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maximized at 
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which is just formula (5) with 
iX  replaced by riX , . Furthermore, it is clear that 

,ˆ
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,

1

, XnX
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which suggests a test statistic of the form 
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                                                            (8) 

where 
2ˆ
n  is a consistence estimator of 

2 . If 
2  is known and 

22ˆ  n , then rnT ,  is the 

penalized log likelihood ratio statistic. The asymptotic null distribution rnT ,  is given in 

subsections 2.2 and 2.3. 

2.2. Short range dependent errors 

For the remainder of section 2, let the stationary sequence kZ , for any k , exhibits short range 

dependence in the following way. First suppose that the covariances )()( 0 kZZEk   are 

absolutely summable, i.e. 

 






0

.)(
k

k
                                                                     (9) 

Next let 



k

i

ik ZT
1

, ,2,1,0k , and nF  be a continuous piecewise linear function for which 

kn TtF )(  for 
n

k
t  ,  and suppose that 
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,W
n

Fn 
                                                             (10) 

where W  is a standard Brownian Motion and 





1

2 ).(2)0(
k

k  

There are many families of processes for which (10) are satisfied. If kZ , for any k ,  is a linear 

process, 





0j

jijk aZ  , say, where the j  are independent and identically distributed with 

mean 0 and finite variance and the ja  are absolutely summable, then (10) holds. Nonlinear 

process that exhibit suitable mixing conditions satisfy (10); see Peligrad’s (1986) review. 

If we don’t assume strong mixing, sufficient conditions are that )|(| k

pZE  for some 2p  

and that 
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for some 2 ; see Maxwell and Woodroof (2000). 

The asymptotic distribution of rnT ,  is obtained in theorem 1 and 2 below for local alternatives. 

Suppose that 
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where   is a right continuous, nondecreasing function on ]1,0[  for which 

 
1

0
.1)( dtt  
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Let 
t

dsst
0

)()(   and define 

 
).()()1()()( ]1,0[ tcItWttWtUc 

                                      (13) 

Also, write 
cU  for  


cU  when 0 . Finally, if H  is a bounded function on ]1,0[ , let H

~
 

denote the greatest convex minorant of  H  and let h
~

 denote the left-hand derivative of H
~

. Thus 

cu~  is the left-hand derivative of the greatest convex minorant of 


cU . Then 

 )1(~)0(~ 
cc uu  with probability 1. 

Theorem 1. If (9), (10) and (11) hold, then we have 
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in distribution, where 

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Proof. From Robertson et. al. (1988), 
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Thus it is necessary to show that the right hand side of (15) converges in distribution to the right 

hand side of (14). This seems plausible in view of (10) and (12). Details may be found in the 

Appendix. 

Remark 1. If 0c , then the  right hand side (14) in infinity with probability 1; see Groeneboom 

and Pyke (1983). This is the spiking problem mentioned above.  The left hand side of (14) does 

not have a nondegenerate asymptotic under null hypothesis. 

Remark 2. In the context of classical change point analysis, there is a similar problem. Suppose 

that we want to test the following hypothesis 

.: 1211 nvvH  
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does not have an asymptotic distribution, since it becomes unstable at the ends. 

2.3. Estimation of parameter 
2  

If the iZ , for any i , were observed, then the covariance function )()( 0 kZZEk   could be 

estimated by the sample covarinces 





kn

i

kiin ZZ
n

k
1

1
)( . Then 

2  could be estimated by the 

lag window estimators 

 

,)(2)0(
1

2 












nm

k

n

n

nn k
m

k
w 

                                             (16) 



690 More Powerful Test for Homogeneity of Means Under an Order Restriction in Time Series with 

Stationary    

                                                                                Process 

 

where the lag window w  satisfies 1)0( w , 0)( xw  for 1x  and 1)( xw  for all x ; see 

Brockwell and davis (1991, equation (10.4.8)). Under conditions of their Theorem 10.4.1, 
2

n  is 

a consistent estimator of 
2  provided that nm  and )(nomn  . 

Recall that the unpenalized isotonic regression estimator ̂  is given by (5). Hence for any k , the 
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where nm  and )(nomn  . 

Theorem 2. Assume that the kZ  satisfy (9) and (10), and let k̂  is of the form (11). If nm , 

)( nomn   and 
2ˆ
n  is a consistent estimator of 

2 , then 
2ˆ
n  converges to 

2  in probability. 

Proof. In view of (16), it suffices to show that 
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see the Appendix for details. 

Meyer and Woodroofe (2000), have established the asymptotic normality of )0(ˆ
n  when the 

errors are independent and normally distributed. In the remainder of the paper rnT ,  is defined by 

(8) with 
2ˆ
n  dfined by (17). 

Corollary 1. Suppose that 0H  is true, then under the conditions of theorem 2 
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, dttuT crn 

                                                       (19) 

in distribution, where 


r
c  . Note that in practice, r  must be 

nc̂ . This does not affect the 

asymptotic distribution. 

3. Applications of test 

3.1. Estimation of the asymptotic null distribution rnT ,  

The asymptotic null distribution of rnT ,  given in (8) is complicated, but the critical points can be 

computed by Monte Carlo simulation method. The complete source programs are written in R  

software. We simulated 10000 Brownian motions and computed the right hand side of (19) for 

each of them. The asymptotic null distribution was estimated from these values. Brownian motion 

was simulated by generating standard normal variates kZ  and forming piecewise linear functions 

with value 
n

ZZ k )( 1 
 at 

n

k
t   for nk ,,1 . This simulation is done for some of the 

different values of n . The number of grid points was 2000,1000,500,200,100,50,20n . The 

critical values )(ct  are given in Table 1 for some of the different values of   and c , 

01.0,05.0  and 15.0,1.0,05.0c . 

Table 1. Critical values )(ct  for 01.0,05.0  and 15.0,1.0,05.0c  

n  05.0c  01.0c  15.0c  

 0.05 0.01 0.05 0.01 0.05 0.01 

20 7.01 10.76 6.10 9.62 5.32 8.65 

50 8.16 12.27 6.99 10.68 6.01 9.47 

100 9.13 13.36 7.70 11.58 6.59 10.27 

200 9.82 14.30 8.17 12.23 6.95 10.74 

500 10.49 15.30 8.58 12.85 7.19 11.27 

1000 10.70 15.25 8.70 12.98 7.34 11.39 

2000 11.02 15.56 8.88 13.03 7.45 11.35 
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In the following example, we used the values 15.0c  and 3

1

nmn  , and the truncated window, 

namely 1)( xw , for 1x  and 0)( xw  otherwise. These values performed well in 

simulations and 15.0  was chosen for c  after comparing power curves for selected alternatives. 

3.2. Iran rainfall data 

Figure 1 shows the volume of yearly rainfall in Iran from 1898 to 2010 along with the penalized 

and unpenalized isotonic regression functions. There is a mild spiking problem: the year 1898 

has a low value. The spiking problem is clearly suppressed in the penalized isotonic regression. 

From an autocorrelation plot, the residuals appear to be short range dependent. Only the eighth 

of the first twenty autocorrelations is significant at the 05.0  level. From (8) and (17), 

57.253ˆ 2   and 95.17, rnT , which is significant at the 01.0  level since the 99.0  quantile 

is between 27.10  and 74.10  from Table 1. Thus the apparent increase in the mean is highly 

significant. 

 

Figure 1. Iran rainfall Data: yearly rainfall (millimeters) in Iran from 1898 to 2010 with its penalized and 

unpenalized isotonic regression functions 

From the penalized isotonic regression in Figure 1, we can see there is a large jump around the 

years 1970-1971. This observation justifies the belief of meteorologist that the increase might be 

caused by construction of a dam. The mean rainfall volume is 34.76  before 1971 and 11.90  

after 1971. 
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Now let us consider Brillinger’s (1989) test. If we use the estimated variance 57.253ˆ 2  , the 

test statistic, see Brillinger (1989, equation (2.3)), is 
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Then the p value is 0796.0)4079.1( ZPr , where Z  is standard normal. Hence, at the 

05.0  level of significance, Brillinger’s (1989) test is unable to detect the trend. Section 4, 

contains some power comparisons. 

4. Power study of test statistic 

In this section, the power of our test statistic rnT ,  is compared to that of the proposed by Brillinger 

(1989). Suppose that the trend has the form 

nk
n

k

n
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
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                               (20) 

where   is a nondecreasing function with 0)(
1

0
 dtt . The test developed by Brillinger (1989) 

is unable to detect the trend (20) with  n  and 













 2

1

)(log non ; see Brillinger’s 

(1989) equation (3.2). On the other hand, suppose that   is not identically 0, then by theorem 1, 

the asymptotic power of test based on (8) is given by 
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
  . 



694 More Powerful Test for Homogeneity of Means Under an Order Restriction in Time Series with 

Stationary    

                                                                                Process 

 

Figure 2(a) presents a simulated power study, when 
iZ  are independent and identically 

distributed as standard normal, 
2

1
k , for 1001  k , 

2

1
k , for 200101  k  and 

100

k
 , for 99,,1,0 k . From the plot, we see that the testing procedure based on isotonic 

regression is more powerful than Brillinger’s (1989) test. In Figure 2(b), the mean function is 

linear: 5.0
200

)( 
k

k , for 2001  k , and 
100

k
 , for 99,,1,0 k . Similar 

conclusions hold. 

 

Figure 2. Power curves for the uniformly most powerful test (dot-dashed lines), the isotonic regression test 

and Brillinger’s (1989) test (dotted) for (a) step function with independently distributed )1,0(N  errors, and 

(b) linear function with independently distributed )1,0(N  errors 

5. Conclusions 

The present article considers an approach to testing homogeneity of several means under an order 

restriction in time series with stationary process and short range dependent sequences errors. This 

approach is based on penalized likelihood ratio and the test statistic obtained and its critical values 

computed by using Monte Carlo simulation for some values of sample sizes at different 

significance levels. To show the application of the proposed test the real dataset contains monthly 

Iran rainfall records collected from 1898 to 2010. The volume of yearly rainfall in these years 

shown in Figure 1 along with the penalized and unpenalized isotonic regression functions. In the 

year 1898 there was a low value of mild spiking problem. The value of test statistic computed 

along with the data which is significant at the 1.0  level. Also, from the Figure 2, it was clear that 

the testing procedure based on isotonic regression is more powerful than Brillinger’s (1989) test. 
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Appendix 

Proof of Theorem 1. The proof uses strong approximation. If the probability space sufficiently 

rich, then there are versions 
nF   of nF  and Brownian motions 

nW  such that 
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in probability, and there is no loss of generality in supposing that nn FF   for the purposes of 

proving Theorem 1. 

Recall the definitions (12) and (13) of nH  and 

cU  and relation (15), and define 
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cnU ,  by (13) 

with W . Then it suffices show that 
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Lemma 1. The functions )0(
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nh  and )1(
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nh  are stochastically bounded. 
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where 
a

1
 . Since 

n

Sk

nk
max  is stochastically bounded, it then follows that 

0))0(
~

(  ahP n , as first n  and then a . This establish the stochastic 

boundedness of )0(
~

nh . The right endpoint may be handled similarly. 

Now, to prove (18), the also following lemma is needed. 
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Also, n̂  and 1̂  are stochastically bounded by Lemma 1. Thus 
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which is stochastically bounded by theorem 1 and formulas (9) and (11). Also
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