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Abstract: Breast cancer is the second most common type of cancer in the world 

(World Cancer Report, 2014 a, b). The evolution of breast cancer treatment usually 

allows a longer life of patients as well in many cases a relapse of the disease. Usually 

medical researchers are interested to analyze data denoting the time until the 

occurrence of an event of interest such as the time of death by cancer in presence of 

right censored data and some covariates. In some situations, we could have two 

lifetimes associated to the same patient, as for example, the time free of the disease 

until recurrence and the total lifetime of the patient. In this case, it is important to 

assume a bivariate lifetime distribution which describes the possible dependence 

between the two observations. We consider as an application, different parametric 

bivariate lifetime distributions to analyze a breast cancer data set considering 

continuous or discrete data. Inferences of interest are obtained under a statistical 

Bayesian approach. We get the posterior summaries of interest using existing 

MCMC (Markov Chain Monte Carlo) methods. The main goal of the study, is to 

compare the bivariate continuous and discrete distributions that better describes the 

breast cancer lifetimes. 

 

Key words: Bayesian analysis, Bivariate lifetime distributions, Breast cancer 
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1. Introduction and motivation 
 

It is estimated that every year about one and a half million new cases of breast cancer arise 

worldwide. It is the most common form of the disease in women, comprising 25% of all cancers 

(World Cancer Report, 2014 a, b). In the United States of America, it is the second largest cause 

of cancer deaths (DeSantis et al., 2014), and it is expected that every one in eight women will 

develop the disease in their lifetime (DeSantis et al., 2014). Breast cancer is a cancer that develops 

from breast tissue (Saunders and Jassal, 2009). Breast cancer signs can include a lump in the breast, 
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a change in shape of the breast, dimpling of the skin, fluid coming from the nipple, or a red scaly 

patch on the skin. The medical literature contains a large number of papers related to breast cancer, 

risk factors and possible therapies (see for example, Lacroix, 2006; Reeder and Vogel, 2008; 

Yager and Davidson, 2006; Kahlenborn et al, 2006; Gaffield et al , 2009; Yang and Jacobsen, 

2008; Brody et al, 2007; Ferro, 2012; Hendrix, 2010; Colditz et al, 2012, Nelson et al 2012; 

Sotiriou and Pusztai, 2009; Cuzick et al, 2013; Wu et al, 2008; Kelsey, 1993; McPherson et al, 

2000; Tiezzi, 2009). 

In oncology studies, often the researcher's interest is related to a variable representing the time 

until the occurrence of an event such as the time until relapse of disease or time to death. The 

statistical survival analysis methodology is therefore commonly used in the analysis of survival 

data from cancer clinical trials, with emphasis to the Cox proportional hazards model (Cox, 1972); 

to parametric regression models based on existing lifetimes distributions or to nonparametric 

methods for comparisons between survival curves, such as the Wilcoxon and log-rank tests (see, 

for example, Lee and Wenyuwang, 2003). The use of the Cox proportional hazards regression 

model (or the equivalent in the case of two treatment groups, the log-rank test) is well established 

as common practice in the statistical analysis of medical data. The great popularity of this model 

is motivated by being free of a parametric distribution assumption for the survival times.  

In some situations we could have more than one response of interest associated to the same 

patient, which require parametrical models based on some bivariate distribution in place of usual 

medical approach assuming independent survival times. 

In this paper, we consider as an application, a bivariate lifetime data set  related to a study 

accomplished at the Clinics Hospital, Medical School of the University of São Paulo, Ribeirão 

Preto, Brazil related to 54 female patients with locally advanced breast cancer (stage II and III) 

with overexpressing HER-2 (HER-2 positive), submitted to neoadjuvant chemotherapy from 2008 

to 2012 and where the researchers have two variables of interest associated to each patient: the 

time until relapse of the disease and the total time to death (data in Table 1A, Appendix A). 

The main goal of this study is to verify whether there are significant differences in the patients' 

survival times that received at least four cycles of a drug Herceptin before surgery or less than 

four cycles. Trastuzumab (brand name of the drug Herceptin® ) is a monoclonal  antibody derived 

from recombinant DNA linked with high affinity Growth Factor Receptor Human Epidermal 2 

(HER2). According to the European body "European Medicines Agency" Herceptin is used to 

treat various types of cancer: breast cancer in early stage (when the cancer has spread within the 

breast or to the glands under the arm but has not spread to other parts of the body) after surgery, 

chemotherapy or radiotherapy. It can also be used in a preliminary stage of treatment in 

combination with chemotherapy. In the case of locally advanced tumors (including inflammatory) 

or more than two centimeters wide, Herceptin is used before surgery in combination with 

chemotherapy, and again after surgery alone; cancer metastatic breast cancer (cancer that has 

spread to other parts of the body). It is used as monotherapy in patients who have not responded 

to previous treatments. The Herceptin is also used in combination with other cancer drugs. The 

Herceptin can also be used for gastric cancer (stomach cancer) breast cancer in combination with 

other medicines. The Herceptin can only be used after having been shown that cancer presents 

"overexpress" HER2. 

 

 

As secondary goals, we have, 
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 The medical researchers want to check if different factors (age, stage, type of surgery, 

pathologic complete response, positivity to estrogen receptor, positivity to progesterone 

receptor or relapse) have significant effects on the survival times of the patients (DFS: disease-

free survival and TS: total survival, both in months). 

 To verify if different bivariate lifetime distributions could imply in different and better 

inferences of interest. 

 To present a discussion on the choice of the best model. 

 

For a statistical analysis of bivariate lifetimes in presence of covariates and censored data, 

the literature presents different parametrical models assuming continuous or discrete lifetime data.  

In this way, for the analysis of the breast cancer data of Table 1A, we could assume different 

bivariate lifetime models for the responses DFS and TS denoted as lifetimes T1 and T2 associated 

to each patient. Some popular models for bivariate lifetimes assume bivariate exponential 

distributions considering continuous data. Among these bivariate exponential distributions, one 

model has being extensively used by reliability engineers and medical researchers: the exponential 

bivariate model introduced by Block and Basu (1974). Many other continuous models also are 

introduced in the literature (see for example, Freund, 1988; Coelho-Barros et al., 2016; Louzada-

Neto et al., 2012). Other possibility: the use of bivariate lifetime models for discrete data (see for 

example, Arnold, 1975; Basu and Dhar, 1995; Davarzani et al., 2015).  

In each application usually the researchers should decide by one of the existing bivariate 

lifetime models in the analysis of the data, a task usually not simple.  

The paper is organized as follows: in section 2, we present the dataset of the study and the 

bivariate lifetime distributions used in the data analysis; in section 3, we present the results of a 

Bayesian analysis for the cancer survival times of Table 1A assuming the three models introduced 

in section 2 in presence or not of covariates; finally in section 4, we introduce some conclusions 

and discussion of the obtained results. 

 

2. Material and methods 

 
The dataset is related to 54 female patients with stages II and III breast cancer with HER-

2 overexpression (HER-2 positive) in the period ranging from 2008 to 2012, undergoing 

neoadjuvant chemotherapy associated with the drug Herceptin® . Each patient was followed up 

from the date of the first visit at the hospital until the end of the study. 

Around 25% of all breast cancer overexpress the human epidermal growth factor receptor 

2 (HER2) and is considered a more aggressive disease (Vu et al., 2012). The patients in this dataset 

received the drug trastuzumab (Herceptin® ), which is a humanized monoclonal antibody that 

binds to HER-2. Some patients received at least 4 cycles of the drug before surgery, while others 

received less than four cycles pre-operatively. All patients received the drug after surgery for one 

year except those that developed severe toxicity.  Data from this study shows two responses of 

interest associated with each patient: the disease-free survival time (DFS-the patient may relapse 

or not) and the overall survival time in months (TS-death or survival until the last follow-up). The 

columns "Relapse" and "Death" of Table 1A in Appendix A at the end of the paper contain the 

information of censorship associated respectively with the DFS (Disease free times) and the TS 

(Overall survival times). 
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In Table 1A, we have the following definitions for each column:  

• Ident: Identification of the patient. 

• Age: Age of the patient (in years). 

• Hercep: Use of the drug Herceptin® (1: ≥ 4 cycles; 2: < 4 cycles). 

• Stage: stage of the disease (2 or 3).  

• Surgical: Type of surgery performed on Patient (1: radical; conservative: 0).  

• pCR: pathologic Complete Response (1: Yes; 0: No). 

• Estr: Estrogen Receptor (1: positive; 0: negative). 

• Proge: Progesterone Receptor (1: positive; 0: negative). 

• Relapse: Relapse (1: Yes; 0: No). 

• DFS: Disease-free survival (in months).  

• Death: Death of the patient, for breast cancer (1: Yes; 0: No).  

• TS: Overall or total survival (in months) 

 

To analyze the breast cancer data given in Table 1A, we assume three bivariate lifetimes 

distributions introduced in the literature: the Block and Basu distribution, the Arnold distribution 

and the Basu-Dhar distribution.  

 

 

2.1. Dependent lifetimes assuming a Block and Basu bivariate exponential 

distribution  

 
The bivariate exponential distribution of Block and Basu (1974) with parameters  

λ1,  λ2 and λ3 for the lifetimes T1 and T2 has a joint density function given by: 

 

𝑓(𝑡1, 𝑡2) = {
𝑓1(𝑡1, 𝑡2) =

𝜆𝜆1𝜆23

𝜆12
𝑒𝑥𝑝{−𝜆1𝑡1−𝜆23𝑡2}        , 𝑖𝑓 𝑡1 < 𝑡2

𝑓2(𝑡1, 𝑡2) =
𝜆𝜆2𝜆13

𝜆12
𝑒𝑥𝑝{−𝜆13𝑡1−𝜆2𝑡2}         , 𝑖𝑓 𝑡1 ≥ 𝑡2

                         (1) 

where, λ12 = λ1 + λ2, λ13 = λ1 + λ3, λ23 = λ2 + λ3 and  λ = λ1 + λ2 + λ3, λ1 ≥ 0, λ2 ≥ 0 and 

λ3 ≥ 0. 

The means and variances for  T1 and T2 are given, respectively, by 

 

μ1 = E(T1) =
1

λ13
+

λ2λ3

λλ2λ13
  and  μ2 = E(T2) =

1

λ23
+

λ1λ3

λλ12λ23
                      (2) 

𝜎1
2 = 𝑉𝑎𝑟(𝑇1) =

1

𝜆13
2 +

𝜆2𝜆3(2𝜆1𝜆+𝜆2𝜆3)

𝜆2𝜆12
2 𝜆13

2   and  𝜎2
2 = 𝑉𝑎𝑟(𝑇2) =

1

𝜆23
2 +

𝜆1𝜆3(2𝜆2𝜆+𝜆1𝜆3)

𝜆2𝜆12
2 𝜆23

2  

The correlation coefficient for T1 and T2 is given by: 

 

𝜌12 =
𝜆3[(𝜆1

2+𝜆2
2)𝜆+𝜆1𝜆2𝜆3]

𝜙1𝜙2
                                                     (3) 

where, 
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𝜙1 = [𝜆12
2 𝜆13

2 + 𝜆2(𝜆2 + 2𝜆1)𝜆2]1/2 and  𝜙2 = [𝜆12
2 𝜆23

2 + 𝜆1(𝜆1 + 2𝜆2)𝜆2]1/2 

The covariance between  T1 and  T2 is given by: 

 

Cov(T1, T2) =
(𝜆1

2+𝜆2
2)𝜆3𝜆+𝜆1𝜆2𝜆3

2

𝜆2𝜆12𝜆13𝜆23
                                               (4) 

Inferences for the Block and Basu distribution under a Bayesian approach are introduced 

by different authors (see for example, Achcar and Leandro, 1998; or Achcar and Santos, 2011). 

 

Assuming  T1 or T2 as censored data where the censorship is independent of the lifetimes, 

we sub-divide the n observations into four classes: 

 

C1: both t1i and t2i are observed lifetimes; 

C2: t1i is an observed lifetime and t2i is a censored time (that is, we only know that T2i ≥ t2i); 

C3: t1i is a censored time and t2i is an observed lifetime; 

C4: both t1i and t2i are censored times,                                                                                        (5) 

 

where i = 1,…,n. 

 

The likelihood function for a continuous model (see for example, Lawless, 1982, page 

479) is given by: 

 

𝐿 = ∏ 𝑓(𝑡1𝑖, 𝑡2𝑖) ∏ (−
𝜕𝑆(𝑡1𝑖,𝑡2𝑖)

𝜕𝑡1𝑖
) ∏ (−

𝜕𝑆(𝑡1𝑖,𝑡2𝑖)

𝜕𝑡2𝑖
)𝑖∈𝐶3𝑖∈𝐶2𝑖∈𝐶1

∏ 𝑆(𝑡1, 𝑡2)𝑖∈4                  (6) 

where, 

 −
∂S(t1i,t2i)

∂t1i
   = {

S1t1

′ (t1i, t2i)           , if t1i < t2i

S2t1

′ (t1i, t2i)           , if t1i ≥ t2i
 

𝑆1𝑡𝑖

′ (𝑡1𝑖, 𝑡2𝑖) =
𝜆𝜆1

𝜆12
exp{−𝜆1𝑡1−𝜆23𝑡2𝑖}  and  

𝑆2𝑡𝑖

′ (𝑡1𝑖, 𝑡2𝑖) =
𝜆𝜆13

𝜆12
exp{−𝜆13𝑡1𝑖−𝜆2𝑡2𝑖} −

𝜆𝜆3

𝜆12
exp{−𝜆𝑡1𝑖} 

 −
𝜕𝑆(𝑡1𝑖,𝑡2𝑖)

𝜕𝑡2𝑖
= {

𝑆1𝑡2

′ (𝑡1𝑖, 𝑡2𝑖)             , 𝑖𝑓 𝑡1𝑖 < 𝑡2𝑖

𝑆2𝑡2

′ (𝑡1𝑖, 𝑡2𝑖)             , 𝑖𝑓 𝑡1𝑖 ≥ 𝑡2𝑖
 

 

𝑆1𝑡2

′ (𝑡1𝑖, 𝑡2𝑖) =
𝜆𝜆23

𝜆12
exp{−𝜆1𝑡1𝑖−𝜆23𝑡2𝑖} −

𝜆𝜆3

𝜆12
exp{−𝜆𝑡2𝑖}  and 

𝑆2𝑡2

′ (𝑡1𝑖, 𝑡2𝑖) =
𝜆𝜆2

𝜆12
exp{−𝜆13𝑡1𝑖−𝜆2𝑡2𝑖} 
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 𝑆(𝑡1, 𝑡2) = 𝑃(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = {
𝑆1(𝑡1, 𝑡2)             , 𝑖𝑓 𝑡1 < 𝑡2

𝑆2(𝑡1, 𝑡2)             , 𝑖𝑓 𝑡1 ≥ 𝑡2
 

𝑆1(𝑡1, 𝑡2) =
𝜆

𝜆12
exp(−𝜆1𝑡1 − 𝜆23𝑡2) −

𝜆3

𝜆12
exp(−𝜆𝑡2) 

𝑆2(𝑡1, 𝑡2) =
𝜆

𝜆12
exp(−𝜆13𝑡1 − 𝜆2𝑡2) −

𝜆3

𝜆12
exp(−𝜆𝑡1) .                                                             (7) 

 

For a Bayesian analysis of the Block and Basu distribution in presence of censored 

observations, we assume independent gamma prior distributions for the parameters λk, namely:  

 

λk~Gamma (ak, bk)                                                                                                        (8) 

for k = 1,2 and 3; ak and bk are known hyperparameters; Gamma (ak, bk) denotes a gamma 

distribution  with mean ak ∕ bk and variance ak ∕ bk
2. 

 

In the presence of a covariate vector x, let us consider the model: 

 

λ1i = α1exp {𝛃𝟏
′ 𝐱𝐢}  

𝜆2𝑖 = 𝛼2exp {𝛃𝟐
′ 𝐱𝐢}                                                                                                          (9) 

where 𝛃j = (βj1, βj2, … , βjp)
′
;  j = 1, 2  is the vector of regression parameters and 𝐱𝐢 =

(x1i, x2i, … , xpi), i =1,2,...,n. 

 

In this case, we assume the following prior distributions for the 

parameters  α1, α2, β1l, β2l and λ3: 

 

αk~Gamma (ck, dk);  βkl~N(0, σkl
2 )  and   λ3~Gamma(e, f)                                     (10) 

for k=1,2; l=1,2,...,p; ck, dk , e, f and σkl
2  are known hyperparameters and N(0, σkl

2 ) denotes a 

normal distribution  with mean equals to zero and variance equals to σkl
2 . We further assume prior 

independence among all parameters. 

 

Under the Bayesian framework, we use Markov Chain Monte Carlo (MCMC) methods 

(see for example, Casella and George, 1992; Chib and Greenberg, 1995; Gelfand and Smith, 1990) 

and the OpenBugs software (Spiegelhalter, et al, 2003) to simulate samples of the joint posterior 

distribution of interest. Using OpenBugs we do not need to use all the conditional posterior 

distributions required for the Gibbs sampler algorithm  (not included in this article) and we only 

need the likelihood function and prior distributions for the model parameters. From the simulated 

Gibbs samples, we get Monte Carlo estimates for the posterior summaries of interest. 
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2.2. Dependent lifetimes assuming an Arnold bivariate geometric distribution 

 
An alternative for the use of a continuous distribution for the bivariate survival times is to 

assume the lifetimes T1 and T2 as discrete random variables that can take values on any positive 

integer approaching the decimal part of the survival time to the nearest integer. 

In this way, the literature introduces different discrete bivariate distributions that could be 

used to analyze the bivariate lifetime data of Table 1A. A special multivariate discrete distribution 

was introduced by Arnold (1975) motivated from a Marshall-Olkin multivariate exponential 

distribution. In another direction, Nair and Nair (1988) studied the characteristics of some 

geometric bivariate exponential distributions. The bivariate geometric distribution proposed by 

Arnold (1975) has the probability mass function given by: 

 

P(T1 = t1, T2 = t2) = {

P1(t1, t2) = θ1θ2(1 − θ1 − θ2)t1−1(1 − θ2)t2−t1−1 , t1 < t2

0                                                                                              , t1 = t2

P2(t1, t2) = θ1θ2(1 − θ1 − θ2)t2−1(1 − θ1)t1−t2−1 , t1 > t2

           (11) 

 

where the marginal mass probability functions for T1 and T2 are standard geometric distributions 

starting at one, given, respectively by, 

 

p(t1) = (1 − θ1)t1−1θ1  , t1 = 1,2,3, …  and  p(t2) = (1 − θ2)t2−1θ2  , t2 = 1,2,3, … 

The means, variances, covariance and correlation are given, respectively, by,  

 

μ1 = E(T1) =
1

θ1
   and  μ2 = E(T2) =

1

θ2
  

σ1
2 = Var(T1) =

1−θ1

θ1
2   and  σ2

2 = Var(T2) =
1−θ2

θ2
2  

Cov(T1, T2) =
−1

1−r
  and  ρ12 = Corr(T1, T2) = −

θ1θ2

(1−r)[(1−θ1)(1−θ2)]0.5                         (12) 

where  = 1 − θ1 − θ2 , 0 < θ1 < 1 and  0 < θ2 < 1. 

 

Assume Y1 and Y2 as the censoring indicators of  T1 and T2  which are independent of the 

lifetimes. As considered for the continuous case (see (5)), we also sub-divide the n observations 

into four classes: 

 

C1: T1i <  Y1i and T2i <  Y2i, that is, t1i and t2i are complete lifetimes; 

C2: T1i <  Y1i and Y2i <  T2i, thus we observe  t1i and t2i is censored; 

C3: Y1i < T1i  and T2i <  Y2i, thus we observe  t2i and t1i is censored; 

C4: Y1i < T1i  and Y2i <  T2i, thus t1i and t2i are both censored data.                                       (13) 

Given the above definitions, the likelihood function for θ1 and  θ2 assuming a Arnold 

bivariate geometric distribution with probability mass function (11) with right censored data is 

given by: 
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𝐿(𝜃1, 𝜃2) = ∏ 𝑃(𝑡1𝑖, 𝑡2𝑖)𝑖∈𝐶1
∏ (∑ 𝑃(𝑡1𝑖, 𝑡2𝑖)∞

𝑡2𝑖=𝑦2𝑖+1
)𝑖∈𝐶2

∏ (∑ 𝑃(𝑡1𝑖, 𝑡2𝑖)∞
𝑡1𝑖=𝑦1𝑖+1

)𝑖∈𝐶3
  

∏ (∑ ∑ 𝑃(𝑡1𝑖, 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

∞
𝑡1𝑖=𝑦1𝑖+1

)𝑖∈𝐶4
                                                                                      (14) 

where, 

 

 ∑ 𝑃(𝑡1𝑖, 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

= {
∑ 𝑃1(𝑡1𝑖, 𝑡2𝑖)∞

𝑡2𝑖=𝑦2𝑖+1
 , 𝑖𝑓 𝑡1𝑖 < 𝑡2𝑖 

∑ 𝑃2(𝑡1𝑖, 𝑡2𝑖) ∞
𝑡2𝑖=𝑦2𝑖+1

, 𝑖𝑓 𝑡1𝑖 ≥ 𝑡2𝑖
 

∑ 𝑃1(𝑡1𝑖 , 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

= 𝜃1(1 − 𝜃1 − 𝜃2)𝑡1𝑖−1(1 − 𝜃2)𝑦2𝑖−𝑡1𝑖−1  

∑ 𝑃2(𝑡1𝑖 , 𝑡2𝑖) ∞
𝑡2𝑖=𝑦2𝑖+1

= 𝜃1(1 − 𝜃1 − 𝜃2)𝑦2𝑖−1(1 − 𝜃1)𝑡1𝑖−𝑦2𝑖−1  

 ∑ P(t1i, t2i)
∞
t1i=y1i+1

= {
∑ P1(t1i, t2i)

∞
t1i=y1i+1

 , if t1i < t2i 

∑ P2(t1i, t2i) ∞
t1i=y1i+1

, if t1i ≥ t2i
 

∑ P1(t1i, t2i)
∞
t1i=y1i+1

= θ2(1 − θ2)t2i−y1i−1(1 − θ1 − θ2)y1i   

∑ P2(t1i, t2i)
∞
t1i=y1i+1

= θ2(1 − θ1)y1i−t2i(1 − θ1 − θ2)t2i−1  

 

 ∑ ∑ 𝑃(𝑡1𝑖, 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

∞
𝑡1𝑖=𝑦1𝑖+1

= {
∑ ∑ 𝑃1(𝑡1𝑖, 𝑡2𝑖)∞

𝑡2𝑖=𝑦2𝑖+1

∞
𝑡1𝑖=𝑦1𝑖+1

 , 𝑖𝑓 𝑡1𝑖 < 𝑡2𝑖

∑ ∑ 𝑃2(𝑡1𝑖, 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

∞
𝑡1𝑖=𝑦1𝑖+1

 , 𝑖𝑓 𝑡1𝑖 ≥ 𝑡2𝑖
  

∑ ∑ 𝑃1(𝑡1𝑖, 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

∞
𝑡1𝑖=𝑦1𝑖+1

= (1 − 𝜃2)𝑦2𝑖−𝑦1𝑖(1 − 𝜃1 − 𝜃2)𝑦1𝑖  

∑ ∑ 𝑃2(𝑡1𝑖, 𝑡2𝑖)∞
𝑡2𝑖=𝑦2𝑖+1

∞
𝑡1𝑖=𝑦1𝑖+1

= (1 − 𝜃1)𝑦1𝑖−𝑦2𝑖(1 − 𝜃1 − 𝜃2)𝑦2𝑖  

 

For a Bayesian analysis, we assume the following joint prior distribution for θ1 and θ2 : 

 

 

π(θ1, θ2) ∝ θ1
α1−1

θ2
α2−1(1 − θ1 − θ2)α0−1, θ1 + θ2 < 1                                           (15) 

 

where (15) is the mass probability function of a  Dirichlet (α0, α1, α2)  distribution  with 

hyperparameters α0, α1and α2.  

 

Combining the Dirichlet prior (15) distribution with the likelihood function (14), we get 

from the Bayes formula, the joint posterior distribution for θ1 and θ2 . 

 

In the presence of a covariate vector 𝐱𝐢 = (x1i, x2i, … , xpi) associated to each bivariate 

lifetime  T1i and  T2i, we assume logistic regression models given, respectively, by, 
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θ1i =
exp{𝛃𝟏

′ 𝐱i}

1−exp{𝛃𝟏
′ 𝐱i} 

  and  θ2i =
exp{𝛃𝟐

′ 𝐱i}

1−exp{𝛃𝟐
′ 𝐱i} 

                                  (16)                                  

where 𝛃𝐣 = (βj1, βj2, … , βjp)
′
;  j = 1, 2 is the vector of regression parameters i = 1,2,...,n. 

 

2.3. Dependent lifetimes assuming a Basu-Dhar bivariate geometric distribution 
 

In this section we consider another bivariate geometric distribution introduced in literature 

to analyse the bivariate lifetimes introduced in Table 1A: the Basu-Dhar (BD) bivariate geometric 

distribution. 

 

The bivariate geometric distribution derived by Basu and Dhar (1995) (BD geometric 

distribution) has survival function is given by: 

𝑃(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝑝1
𝑡1  𝑝2

𝑡2 𝑝12
max (𝑡1,𝑡2)

                                                                    (17) 

where 0 < 𝑝1 < 1, 0 < 𝑝2 < 1 and 0 < 𝑝12 ≤ 1. It is seen that the survival function satisfies the loss 

of memory property without any additional parameter restrictions, namely, 

 

𝑃(𝑇1 > 𝑠1 + 𝑡, 𝑇2 > 𝑠2 + 𝑡 / 𝑇1 > 𝑠1, 𝑇2 > 𝑠2) = 𝑃(𝑇1 > 𝑡, 𝑇2 > 𝑡) = (𝑝1𝑝2𝑝12)𝑡   (18) 

 

The mass probability function of the BD distribution is given by, 

 

𝑃(𝑇1 = 𝑡1, 𝑇2 = 𝑡2) = {

(𝑝1)𝑡1−1(1 − 𝑝1)(𝑝2𝑝12)𝑡2−1(1 − 𝑝2𝑝12)         𝑓𝑜𝑟 𝑇1 < 𝑇2 

(𝑝1𝑝2𝑝12)𝑡1−1(1 − 𝑝1𝑝12 − 𝑝2𝑝12 + 𝑝1𝑝2𝑝12)  𝑓𝑜𝑟 𝑇1 = 𝑇2

(𝑝2)𝑡2−1(1 − 𝑝2)(𝑝1𝑝12)𝑡1−1(1 − 𝑝1𝑝12)          𝑓𝑜𝑟 𝑇1 > 𝑇2

       (19) 

The marginal distributions for T1 and T2 are given respectively, by, 

𝑃(𝑇1 = 𝑡1) = 𝑃(𝑇1 > 𝑡1 − 1) − 𝑃(𝑇1 > 𝑡1) = (1 − 𝑝1𝑝12)(𝑝1𝑝12)𝑡1−1 

𝑃(𝑇2 = 𝑡2) = 𝑃(𝑇2 > 𝑡2 − 1) − 𝑃(𝑇2 > 𝑡2) = (1 − 𝑝2𝑝12)(𝑝2𝑝12)𝑡2−1 
 

where t1, t2 = 1,2,3,….. and, the means are given, respectively by, 

 

𝐸(𝑇1) = ∑ 𝑡1
∞
𝑡1=1 𝑃(𝑇1 = 𝑡1) = (1 − 𝑝1𝑝12)−1  

𝐸(𝑇2) = ∑ 𝑡2
∞
𝑡2=1 𝑃(𝑇2 = 𝑡2) = (1 − 𝑝2𝑝12)−1                          (21) 

 

The likelihood function for p1, p2 and p12 is given by, 

 

𝐿(𝑝1, 𝑝2, 𝑝12) = {
∏ 𝑃(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖)𝑖∈𝑐1 ∏ 𝑃(𝑇1𝑖 = 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)𝑖∈𝑐2

∏ 𝑃(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 = 𝑡2𝑖)𝑖∈𝑐3 ∏ 𝑃(𝑇1𝑖 > 𝑡1𝑖, 𝑇2𝑖 > 𝑡2𝑖)𝑖∈𝑐4
                 (22)  

where, 

 P(T1 = t1, T2 = t2) = {

(p1)t1−1(1 − p1)(p2p12)t2−1(1 − p2p12)         for T1 < T2 

(p1p2p12)t1−1(1 − p1p12 − p2p12 + p1p2p12)  for T1 = T2

(p2)t2−1(1 − p2)(p1p12)t1−1(1 − p1p12)          for T1 > T2
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Observe that, 

 

 𝑃(𝑇1 > 𝑡1, 𝑇2 > 𝑡2) = 𝑝1
𝑡1𝑝2

𝑡2𝑝12
max (𝑡1,𝑡2)

  

 𝑃(𝑇1 = 𝑡1, 𝑇2 > 𝑡2) = {
(𝑝1)𝑡1−1(1 − 𝑝1)(𝑝2𝑝12)𝑡2         𝑓𝑜𝑟 𝑇1 ≤ 𝑇2

(𝑝2)𝑡2(𝑝1𝑝12)𝑡1−1(1 − 𝑝1𝑝12)  𝑓𝑜𝑟 𝑇1 > 𝑇2
 

 𝑃(𝑇1 > 𝑡1, 𝑇2 = 𝑡2) = {
(𝑝1)𝑡1(𝑝2𝑝12)𝑡2−1(1 − 𝑝2𝑝12)        𝑓𝑜𝑟 𝑇1 < 𝑇2

(𝑝2)𝑡2−1(𝑝1𝑝12)𝑡1(1 − 𝑝2)              𝑓𝑜𝑟 𝑇1 ≥ 𝑇2
 

 

3. Results 

 
In this section we present the Bayesian analysis of the dataset assuming the bivariate 

lifetime models introduced in section 2. 

 

3.1. A Bayesian analysis of the survival times of Table 1A assuming the Block and 

Basu distribution  

 
Assuming the Block and Basu distribution first not considering the presence of covariates, 

let us denote as 𝛿1the indicator of censored observation (relapse) for T1 and 𝛿2 the indicator of 

censored observation (death) for T2. Assuming Gamma(1,100) prior distributions for the 

parameters 𝜆𝑟, r = 1,2,3 of the Block and Basu bivariate geometric distribution for the lifetimes 

T1 (disease-free survival time) and T2  (overall survival time)  and using the OpenBugs software  

(burn-in sample =10,000  and 1,000 final Gibbs samples taken every 100th  sample from 100,000 

simulated samples), we have in Table 1, the posterior summaries of interest. Convergence of the 

Gibbs sampling algorithm was verified from standard traceplots of the simulated Gibbs samples. 

 

Table 1. Posterior summaries; Block and Basu bivariate exponential distribution 

 Mean 
Standard 

Deviation 

95% Credibility interval 

Lower limit Upper limit 

𝜆1 0.0025 0.0016 0.3830 0.0063 

𝜆2 0.1850 0.2510 0.0029 0.9230 

𝜆3 0.0075 0.0021 0.0038 0.0119 

Mean 1 108.4000 22.9000 71.8800 158.1000 

Mean 2 232.6000 56.4400 147.0000 358.6000 

𝜌12 0.0013 0.0006 0.2480 0.0026 

SD 1 107.9000 22.5300 71.7200 156.5000 

SD 2 173.5000 44.4700 111.0000 282.7000 

 

From the results of Table 1, we observe that the Monte Carlo estimates for the means 

based on the squared error loss function, there is, the posterior means for μ1  and μ2 (see (2)) for 

the disease-free survival time  and the overall survival time are given, respectively, by 108.4 

months and 232.6 months. 
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Now consider a Bayesian analysis for the bivariate survival data T1 (disease-free survival 

time) and  T2  (overall survival time) of Table 1A in the presence of covariates assuming the 

following regression models, 

λvi = αvexp(βv1agei + βv2hercepi + βv3stagei + βv4surgicali + βv5pCRi +
βv6estrogi + βv7progesti)                                                                                                        (23) 

where v=1 (disease-free survival time) and v=2 (overall survival time ). 

Assuming normal N(0,1) prior distributions for all regression parameters  β1r  and β2r, r = 

1,2,...,7 ; α1 ~ Gamma(1,1), α2 ~ Gamma(1,1)  and  λ3 ~ Gamma(1,100) using the OpenBugs 

software (burn-in sample =10,000  and 1,000 final samples  taken every  50th  generated sample 

from a Gibbs sample of size 50,000), we have in  Table 2, the posterior summaries of interest. 

From the results of Table 2, it is concluded that only covariate age has a significant effect 

(95% credible intervals for the regression parameters β11 and β21 do not include zero) for the 

disease-free survival times and for the overall survival times. The number of cycles of trastuzumab 

received before surgery does not show significant difference since zero is included in the 95% 

credible intervals for  β12 and β22. 

 

Table 2. Posterior summaries of interest assuming the Block and Basu distribution in the 

presence of covariates 

 Mean 
Standard 

Deviation 

95% Credibility interval  

Lower limit Upper limit 

α1 1.006 1.020 0.02049 3.7600 

α2 0.9899 1.055 0.02332 3.6040 

β11 -0.3400 0.1441 -0.5960 -0.0769 

β12 -0.04429 0.9928 -1.9200 1.8860 

β13 -0.04462 1.0050 -1.9430 1.9780 

β14 -0.01633 0.9956 -2.0180 2.0110 

β15 -0.03633 0.9818 -1.9000 1.8920 

β16 -0.09187 0.9617 -2.0250 1.7510 

β17 -0.1226 0.9443 -1.9460 1.6990 

β21 -1.1050 0.5564 -2.5100 -0.3612 

β22 0.0038 0.9603 -1.8740 1.8890 

β23 -0.1133 0.9691 -1.9890 1.7280 

β24 -0.0121 1.0040 -1.9660 1.8820 

β25 0.0690 1.0010 -1.9650 2.0110 

β26 0.0527 0.9837 -2.0230 1.9510 

β27 -0.0335 0.9877 -2.0090 1.9030 

λ3 0.0092 0.0019 0.0058 0.0133 

 

 

3.2. A Bayesian analysis of the survival times of Table 1A assuming the Arnold 

bivariate geometric distribution 
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 As a first analysis, we do not consider the presence of covariates assuming T1 = disease-

free survival time, T2 = overall survival time, δ1= censoring indicator (relapse) for T1 and δ 2= 

censoring indicator (death) for T2. 

Assuming a Dirichlet(1,1,1) prior distribution with mass probability function (15) for the 

parameters θ1 and  θ2 where 𝑟 = 1 − 𝜃1 − 𝜃2  of the Arnold bivariate geometric distribution for 

the lifetimes T1 = disease-free survival time and  T2 = overall survival time, given in  Table 1A , 

we use the OpenBugs software (burn-in sample =10,000  e 1,000 final Gibbs samples chosen 

taking every 100th generated sample from a total of 100,000 Gibbs samples), to get the posterior 

summaries of interest (see Table 3). 

 

Table 3. Posterior summaries of interest; Arnold bivariate geometric distribution 

 Mean 
Standard 

Deviation 

95% credibility interval 

Lower limit Upper limit 

Mean 1 140.4000 36.2600 87.7500 222.1000 

Mean2 343.6000 144.1000 160.100 720.6000 

r 0.9891 0.0022 0.9845 0.9931 

𝜃1 0.0076 0.0018 0.0045 0.0113 

𝜃2 0.0033 0.0012 0.0014 0.0062 

 

From the results of Table 3, the posterior means for the disease-free survival time and the 

overall survival time are given, respectively, by 140.4 months and 343.6 months, that is, similar 

result obtained using the Block and Basu distribution for the disease-free survival time (108.4 

months) but very different for the overall survival time (232.6 months). 

Assuming discrete time survival in the presence of covariates, initially let us assume 

independent geometric distributions for the two survival times. The geometric distribution has 

probability function given by: 

𝑃(𝑇 = 𝑡) = 𝜃(1 − 𝜃)𝑡  , 𝑡 = 0,1,2,3, …                                                         (24) 

 

where the mean is given by,  
(1−θ)

θ
. 

The likelihood function assuming the ith contribution is given by: 

𝐿𝑖 = [𝑃(𝑇𝑖 = 𝑡𝑖)]𝛿𝑖  [𝑃(𝑇𝑖 ≥ 𝑡𝑖)]1−𝛿𝑖                                                             (25) 

 

where 𝛿𝑖 = 1 for a complete observation and 𝛿𝑖 = 0 for a censored observation and  𝑃(𝑇𝑖 ≥ 𝑡𝑖) = 1 −

𝑃(𝑇𝑖 < 𝑡𝑖), that is, 𝑃(𝑇𝑖 < 𝑡𝑖) = ∑ 𝜃(1 − 𝜃)𝑢𝑡𝑖−1
𝑢=0 = 𝜃 + 𝜃(1 − 𝜃) + 𝜃(1 − 𝜃)2 + 𝜃(1 − 𝜃)3 + ⋯ +

𝜃(1 − 𝜃)𝑡𝑖−1.  

From the result, 

∑ 𝑎𝑟𝑘 =
𝑎(1−𝑟𝑛−1)

1−𝑟
𝑛
𝑘=0  we get with 𝑎 = 𝜃, 𝑟 = 1 − 𝜃 and 𝑛 = 𝑡𝑖 − 1 ,  

𝑃(𝑇𝑖 < 𝑡𝑖) = ∑ 𝜃(1 − 𝜃)𝑢𝑡𝑖−1
𝑢=0 =

{𝜃[1−(1−𝜃)𝑡𝑖]}

𝜃
= [1 − (1 − 𝜃)𝑡𝑖]  
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that is, 

𝑃(𝑇𝑖 ≥ 𝑡𝑖) = 1 − 𝑃(𝑇𝑖 < 𝑡𝑖) = 1 − [1 − (1 − 𝜃)𝑡𝑖] = (1 − 𝜃)𝑡𝑖                            (26) 

Thus, the likelihood function considering the ith contribution is given by, 

𝐿𝑖 = [𝜃(1 − 𝜃)𝑡𝑖]𝛿𝑖  [𝑃(𝑇𝑖 ≥ 𝑡𝑖)]1−𝛿𝑖 = [𝜃(1 − 𝜃)𝑡𝑖]𝛿𝑖  [𝜃(1 − 𝜃)𝑡𝑖]1−𝛿𝑖                   (27) 

In the presence of covariates, let us assume logistic regression models given by, 

logit(θvi) = βv0 + βv1agei + βv2hercepi + βv3stagei + βv4surgicali + βv5pCRi + βv6estrogi +
βv7progesti ,                                                                                                                                  (28) 

where v=1(disease-free survival times) and v=2 (overall survival times). 

Assuming normal N(0,1) prior distributions  for all regression parameters βvr, r = 0,1,2, ..., 

7; v = 1,2 and using the OpenBugs software (burn-in sample = 10,000 and 1,000 samples taking 

every 50th generated Gibbs sample from 50,000 simulated samples), we have in Table 4 the 

posterior summaries of interest considering the disease-free survival times and the overall survival 

times.  From the results of Table 4, it is possible to observe that the covariate stage has a 

significative effect (95% credibility interval for the corresponding regression parameters β13 and 

β23 do not include zero) for the disease-free survival times and for the overall survival times. 

 

Table 4. Posterior summaries of interest; independent geometric distributions in the 

presence of covariates 

 
Mean 

Standard 

Deviation 

95% credibility interval 

 Lower limit Upper limit 

disease-free survival times 

β10 -1.2000 0.8696 -2.7800 0.4977 

β11 -0.0152 0.0230 -0.0619 0.0291 

β12 -0.8317 0.6561 -2.1860 0.3560 

β13 -0.8810 0.3691 -1.5770 - 0.1058 

β14 0.1874 0.5084 -0.7282 1.2350 

β15 -0.6282 0.4772 -1.6170 0.2523 

β16 -0.3752 0.5529 -1.5060 0.7418 

β17 -0.5505 0.6116 -1.7720 0.6415 

overall survival times 

β20 -1.186 0.8751 -2.8780 0.6109 

β21 0.0211 0.0311 -0.0366 0.0840 

β22 -0.9263 0.7884 -2.5530 0.5488 

β23 -1.3850 0.4176 -2.1660 -0.5847 

β24 0.8654 0.6555 -0.3827 2.1350 

β25 -0.8230 0.6276 -2.0780 0.3818 

β26 0.0619 0.6718 -1.2790 1.3560 

β27 -0.6686 0.7095 -2.1230 0.6201 

As a second analysis, let us consider assume the Arnold bivariate geometric distribution 

in presence of covariates and the regression model given by (28). In this case, we assume 

informative normal prior distributions using prior information (use of empirical Bayes methods, 

see, for example, Carlin and Louis, 2002)  of Table 4  (independent geometric distributions): β10 

~ N(-1,2,1), β20 ~ N(-1.2,1), β11 ~ N(-0.015,1), β12 ~ N(-0.83,1), β13 ~ N(-0.88,1), β14 ~ 
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N(0.18,1), β15 ~ N(-0.62,1), β16 ~ N(-0.37,1), β17 ~ N(-0.55,1),  β21 ~ N(0.02,1), β22 ~ N(-

0.92,1), β23 ~ N(-1.38,1), β24 ~ N(0.86,1), β25 ~ N(-0.82,1), β26 ~ N(0.06,1) and  β27 ~ N(-

0.66,1). Using the OpenBugs software (burn-in sample = 1,000 and 1,000 samples taking every 

10th generated Gibbs sample), we have in Table 5, the posterior summaries of interest. It is 

important to point out, that in this case, the convergence of the Gibbs sampling algorithm using 

the OpenBugs software only was obtained using this class of informative priors.  

From the results of Table 5, it is observed that all covariates do not have significant effect 

on the parameter θ1 related to the marginal distribution for the disease-free survival times (95% 

credibility intervals for all regression parameters include the zero value); in the same way, the 

covariates stage and surgery type  have significant effects on the parameter θ2 related to the 

marginal distribution for the overall survival times (95% credibility intervals for the regression 

parameters β23 and β24 does not include the zero value). 

 

Table  5. Posterior summaries of interest; Arnold bivariate geometric distribution in 

presence of covariates 

 Mean 
Standard 

Deviation 

95% Credibility interval 

Lower limit Upper limit 

β10 -1.8740 0.8219 -3.4810 -0.2531 

β11 -0.0158 0.0234 -0.0619 0.0307 

β12 -0.8795 0.6582 -2.1070 0.4762 

β13 -0.6307 0.3652 -1.3620 0.0627 

β14 0.2534 0.4839 -0.6496 1.2250 

β15 -0.7046 0.4962 -1.6820 0.2873 

β16 -0.3690 0.5558 -1.4590 0.6577 

β17 -0.6515 0.6313 -1.9100 0.5810 

β20 -1.7990 0.8942 -3.3820 0.0757 

β21 0.0233 0.0324 -0.0355 0.0868 

β22 -1.0570 0.7301 -2.5330 0.3101 

β23 -1.3260 0.4500 -2.1050 -0.4563 

β24 1.4880 0.7580 0.0771 3.0031 

β25 -0.9385 0.6561 -2.2590 0.3240 

β26 0.2356 0.6829 -1.0710 1.5580 

β27 -0.9555 0.7874 -2.5620 0.4550 

 

3.3. A Bayesian analysis of the survival times of Table 1A assuming the Basu-

Dhar bivariate geometric distribution 

 
Assuming uniform U(0, 1) prior distributions for the parameters p1, p2 and p12 of the BD 

bivariate distribution geometric for the lifetimes T1 (disease-free survival) and T2 (overall survival) 

introduced in Table 1A, not considering the presence of covariates, we also have used the software 

OpenBugs (burn-in sample = 10,000 and a final sample of size 100; every 10th Gibbs sample), to 

find the posterior summaries of interest (see Table 6). 

From the results of Table 6, the Monte Carlo estimates of the posterior means for the 

disease-free survival time and the overall survival time are given, respectively, by 111.8 months 

and 296.8 months, that is, similar results obtained using the Block and Basu distribution for the 
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disease-free survival time (108.4 months) but a little different for the overall survival time (232.6 

months). 

 

Table 6. Posterior summaries of interest; bivariate BD geometric distribution with no 

presence of covariates 

 Mean 
Standard 

Deviation 

95% credibility interval 

Lower limit Upper limit 

Mean 1 111.8000 29.2600 69.9700 177.9000 

Mean2 296.8000 121.6000 151.7000 559.6000 

p1 0.9924 0.0019 0.9882 0.9957 

p12 0.9981 0.0013 0.9952 0.9999 

p2 0.9981 0.0013 0.9949 0.9999 

 

Now consider a Bayesian analysis of the discrete bivariate survival data T1 (disease free 

survival) and T2 (overall survival) in the presence of covariates with a Basu-Dhar bivariate 

geometric distribution and the following regression models:  

logit(p1i) = β10 + β11(agei − 48.29) + β12hercepi + β13stagei + β14surgicali + β15pCRi +
β16estrogi + β17progesti                                                                                                                      , 

logit(p2i) = β20 + β21(agei − 48.29) + β22hercepi + β23stagei + β24surgicali + β25pCRi +
β26estrogi + β27progesti ,                                                                                                                    ,  

logit(p12i) = β30 + β31(agei − 48.29) + β32hercepi + β33stagei + β34surgicali + β35pCRi +
β36estrogi + β37progesti .                                                                                                               (29) 

Assuming normal N(0,1) prior distributions for all regression parameters and using the 

OpenBugs software (burn-in sample = 2,000 and 1,000 final samples taken every 10th), we have 

in Table 7, the posterior summaries of interest.  

From the results of Table 7, it is observed that the covariate stage has a significant effect 

(95% credibility interval for the regression parameters β13, β23 and β33 do not include the zero 

value), that is, they have significant effects at p1, p2 and p12. From the expressions (21) for the 

means, it is concluded that stage affects the disease free times and the overall survival times. 

It is important to point out that for this model, we convergence of the MCMC simulation 

algorithm considering non-informative prior distributions was easily obtained with no need for 

informative priors as it was assumed using the Arnold bivariate geometric distribution (an 

advantage of the Basu-Dhar geometric distribution when compared with the Arnold geometric 

distribution). Additionally, we observe that the regression model assuming a Basu-Dhar geometric 

distribution is more sensitive to identify the significant effects of the covariates. 

4. Conclusions and discussion of the obtained results 

 
The identification of appropriated models to analyze bivariate survival data in presence of 

censored data and covariates is of great importance and interest to many application areas such as 

engineering and medicine. In the presence of a large proportion of censored data, we usually could 

have great difficulties to get the inferences of interest assuming standard continuous bivariate 

distributions introduced in the literature. In this way, the use of bivariate discrete distributions 

could be a good alternative to analyze bivariate lifetime data.  
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Table 7. Posterior summaries of interest; BD bivariate geometric distribution in the 

presence of covariates 

 Mean 
Standard 

Deviation 

95% Credibility interval 

Lower limit Upper limit 

β10 1.3140 0.8603 -0.2721 2.9290 

β11 0.0138 0.0232 -0.0296 0.0606 

β12 0.9656 0.6458 -0.2764 2.2440 

β13 0.7564 0.3642 0.0151 1.4580 

β14 -0.1023 0.5181 -1.1240 0.8989 

β15 0.6145 0.4915 -0.3446 1.6110 

β16 0.3507 0.5735 -0.7618 1.5390 

β17 0.5777 0.6353 -0.6480 1.8160 

β20 1.1530 0.9321 -0.6813 3.0080 

β21 -0.0191 0.0667 -0.1559 0.1312 

β22 1.0900 0.8652 -0.6978 2.8240 

β23 1.6480 0.6862 0.6425 3.3490 

β24 -0.3494 0.9079 -1.9790 1.6200 

β25 0.7181 0.8034 -0.9457 2.2820 

β26 0.0945 0.8543 -1.5110 1.8830 

β27 0.5058 0.8394 -1.2520 2.1570 

β30 1.1280 0.9296 -0.7318 2.9710 

β31 -0.0169 0.0732 -0.1666 0.1510 

β32 1.0430 0.8421 -0.5590 2.6840 

β33 1.7460 0.6663 0.6496 3.3100 

β34 -0.2448 0.9106 -1.9580 1.6260 

β35 0.6825 0.8014 -0.9267 2.2660 

β36 0.1583 0.8724 -1.5520 1.9140 

β37 0.4331 0.8699 -1.3040 2.1410 

 
The use of Bayesian methods and MCMC simulation techniques also open a new horizon 

in the analysis of such data, as noted in the application data of breast cancer introduced in this 

article. Moreover, we observed that the use of bivariate models considering discrete data can be 

more sensitive and efficient in getting the inferences of interest. 

Important inferences were obtained for our application considering the breast cancer data 

introduced in Table 1A. 

Assuming the three bivariate lifetime distributions, we see that there are no significant 

differences between the survival times for the patients receiving at least four or less than four 

cycles of trastuzumab before surgery.  

The factors age, stage and surgical has significant effect on the survival times of the 

patients (not at the same time). Under a regression model for the parameters of the Block and Basu 

distribution, we see that only the covariate age has significant effect (zero not included in the 95% 

credible intervals for β11 and β21 in the regression model (23)).  

Under a regression model for the parameters of the Arnold distribution assuming non-

informative priors and independent lifetimes T1 and T2, we see that the covariate stage has 

significant effect (zero not included in the 95% credible intervals for the associated regression 

parameters in model (28)) and assuming informative priors with the bivariate Arnold model (T1 

and T2 dependent lifetimes), we see that the covariate stage and surgery has significant effect.  
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Finally, under a regression model for the parameters of the Basu-Dhar bivariate 

distribution, only the covariate stage has significant effect (zero not included in the 95% credible 

intervals for the associated regression parameters in model (29)). 

From these inference results considering the three different models and medical 

interpretations of cancer experts, we have some comments: 

Incidence rates of breast cancer increase rapidly up to 50 years old. After this age, the 

increase occurs more slowly, which strengthens the participation of female hormones in the 

etiology of the disease. However, breast cancer seen in young women have clinical and 

epidemiological characteristics very different from those in older women. They are generally more 

aggressive, have a high mutation rate of the presence of the BRCA1 and BRCA2 genes in addition 

to overexpress the gene for human epidermal growth factor receptor 2 (HER-2). 

Patients with advanced stages also in general have more relapses and die more as it is 

observed on the plots of the Kaplan and Meier non-parametric estimates considering the stages II 

and III (not included to save space). 

The type of surgery is a confounding factor. Radical surgery does not directly affect the 

survival times, actually patients who undergo radical surgery are usually in the stage 3. The stage 

2 patients are subjected to more conservative surgery.  

The Monte Carlo estimates for the posterior means of μ1 and μ2 (means of T1 - disease free 

survival  and T2 - overall survival) are very similar assuming the Block and Basu bivariate 

exponential distribution (108.4 and 232.6 months) and the Basu-Dhar distribution (111.8 and 

296.8 months), but the 95% credible intervals are different (larger for the Basu-Dhar distribution). 

Thus, the Monte Carlo estimates for the posterior means of μ1 and μ2 are very different assuming 

the Arnold bivariate exponential distribution (140.4 and 343.6 months) with larger 95% credible 

intervals. 

It is important to point out, that further discrimination methods should be developed for 

the the comparison of the different bivariate lifetime models assumed in the analysis of the breast 

cancer data of Table 1A in presence of a great number of censored observations, where some usual 

existing discrimination methods as the DIC (Deviance Information Criterion) introduced by 

Spiegelhalter et al (2002) could be not reliable to discriminate the proposed models. 

As an empirical way to compare the proposed models, we could compare the obtained 

Monte Carlo estimates of the posterior means for the disease-free survival times and the overall 

survival times with a non-parametrical estimate (Kaplan-Meier estimates). From the estimates  

given in Table 8, we observe that the Block and Basu estimates are more close to the Kaplan-

Meier estimates for the means, a possible indication of better fit by the data. Observe that the data 

set presents a great proportion of censored observations, a possible indication of immune or cured 

individuals and the proposed bivariate models are more sensible to capture this fact. Other 

possibility in a future work: use of bivariate cure fraction models. 

Finally, it is interesting to observe that using the popular Weibull distribution (see for 

example, Abrams et al, 1996) with two parameters, the Monte Carlo estimate of the posterior mean 

for the disease-free survival time assuming non-informative priors  is given by 81.71 and for the 

overall survival time is given by 139.9. In this case, the maximum likelihood estimates for the 

means are given, respectively by 73.0497 and 96.6122, but the Weibull regression models were 

not able to detect any covariate effect. 
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Table 8. Estimates for the means of the disease-free survival times and the overall 

survival times 
Estimate disease-free survival times overall survival times 

Kaplan-Meier 63.0 73.5 

Block and Basu 108.4 232.6 

Arnold 140.4 343.6 

Basu-Dhar 111.8 296.8 
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Appendix A - Data set 

 

Table 1A. Data of 54 patients with breast cancer 
Ident Age Hercep Stage Surgical pCR Estr Proge Relapse DFS Death TS 

2 50 1 3 1 1 0 0 0 60 0 60 

8 24 1 2 0 1 1 1 0 45 0 45 

9 44 1 3 1 1 1 1 0 83 0 83 

11 43 1 3 1 1 1 1 0 53 0 53 

14 29 1 3 0 0 1 1 1 30 0 58 

16 40 1 3 1 0 0 0 0 72 0 72 

18 48 1 3 1 1 1 1 0 30 0 30 

19 62 1 3 0 0 0 0 0 65 0 65 

20 51 1 3 0 1 0 0 0 68 0 68 

21 48 1 3 1 1 0 0 1 20 0 60 

22 50 1 3 0 0 1 0 0 64 0 64 

25 44 1 3 1 0 0 1 0 33 0 33 

29 63 1 2 1 1 0 0 0 37 0 37 

30 52 1 3 1 0 1 0 0 27 0 27 

32 35 1 3 1 0 0 0 1 22 0 59 

33 41 1 3 1 0 0 0 0 34 0 34 

35 57 1 3 1 1 0 0 0 34 0 34 

40 57 1 3 0 1 1 0 0 46 0 46 

41 32 1 3 1 0 0 0 0 32 0 32 

42 71 1 3 1 0 0 0 0 66 0 66 

49 37 1 3 1 0 1 0 1 53 1 61 

50 62 1 2 0 1 0 0 0 55 0 55 

51 42 1 3 1 1 0 0 0 65 0 65 

52 30 1 3 1 0 1 1 1 44 1 50 

53 60 1 3 1 0 1 0 1 15 1 53 

54 51 1 3 1 0 0 0 1 33 1 37 

55 62 1 3 1 0 0 0 1 12 1 17 

57 47 1 2 0 0 1 1 0 59 0 59 

58 42 1 3 1 0 1 0 0 39 0 39 

60 42 1 3 1 0 1 1 0 29 0 29 

63 63 1 3 1 0 0 0 0 35 0 35 

65 57 1 3 1 1 0 0 1 22 1 28 

66 56 1 2 * * 0 0 * 8 1 8 

68 63 1 3 1 0 0 0 * 22 0 22 

70 30 1 3 0 0 0 0 1 47 0 62 

71 34 1 2 1 0 0 0 0 25 0 25 

72 39 1 3 1 1 0 0 1 48 0 58 

73 41 1 3 1 0 1 1 1 49 0 83 

74 58 1 2 0 1 0 0 1 31 0 41 

3 57 2 3 0 0 0 0 0 42 0 42 

4 39 2 3 0 1 0 0 0 30 0 30 

7 65 2 3 0 0 1 1 0 30 0 30 

10 54 2 3 1 0 1 1 0 56 0 56 

13 53 2 3 1 1 0 0 0 32 0 32 

http://dx.doi.org/10.1089/jwh.2008.0917
http://dx.doi.org/10.1089/jwh.2008.0917
https://en.wikipedia.org/wiki/Journal_of_Women%27s_Health
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23 49 2 3 0 0 1 1 0 40 0 40 

26 57 2 3 1 1 0 0 1 39 1 44 

27 41 2 3 1 0 1 1 0 37 0 37 

31 62 2 3 0 0 0 0 1 24 0 34 

37 56 2 3 0 1 1 0 0 58 0 58 

39 52 2 2 1 1 1 1 0 29 0 29 

43 49 2 3 1 1 0 0 0 44 0 44 

48 40 2 3 1 1 1 1 0 22 0 22 

61 51 2 2 1 1 1 1 0 31 0 31 

75 48 2 2 0 1 1 1 0 16 0 16 
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