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Abstract: In this study, we compared various block bootstrap methods in terms 

of parameter estimation, biases and mean squared errors (MSE) of the 

bootstrap estimators.  Comparison is based on four real-world examples and 

an extensive simulation study with various sample sizes, parameters and block 

lengths. Our results reveal that ordered and sufficient ordered non-overlapping 

block bootstrap methods proposed by Beyaztas et al. (2016) provide better 

results in terms of parameter estimation and its MSE compared to 

conventional methods. Also, sufficient non-overlapping block bootstrap 

method and its ordered version have the smallest MSE for the sample mean 

among the others.  
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1. Introduction 

The original non-parametric bootstrap method proposed by Efron (1979) does not work 

for dependent data, since the assumption of independently and identically distributed data is 

violated. Block bootstrap method is one of the techniques to extend this method to serially 

correlated data. In this technique, the series of size n is divided into blocks consisting of l 

consecutive observations. These blocks are then resampled with equal probability, and then 

pasted end-to-end to form the bootstrap series, in which the dependency structure of the 

original data can be preserved, at least within the adjacent observations in each block. This 

method is used in a wide variety of fields. For example, Suda et al. (2009) developed an 

automatic real-time monitoring system for deep nonvolcanic tremors in southwest Japan. 

Srinivas and Srinivasan (2005) presented a method for resampling multiseason hydrologic 

time series. Amiri and Zwanzig (2011) proposed a family of tests based on the bootstrap 

method and applied it to chemical experiments. Also, Sherman et al. (2010) analyzed tidal 

data using blockwise bootstrap in regression setting.  

In blocking technique, the blocks may be comprised of non-overlapping or overlapping 

subsets from the original series. The non-overlapping block bootstrap (NBB) approach was 

proposed by Carlstein (1986), and overlapping blocks known as moving block bootstrap 

(MBB) were independently proposed by Künsch (1989) and Liu and Singh (1992). In these 

techniques, let b and l denote the number of blocks and block length, respectively. In MBB, 
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the first and last l – 1 observations appear less frequently than the rest. To fix this 

disadvantage, the circular block bootstrap method (CBB) was suggested by Politis and 

Romano (1992) and Shao and Yu (1993) by wrapping the data around a circle so that each 

observation in the original data set has an equal probability. In addition to these methods, 

Politis and Romano (1994) proposed a stationary bootstrap method (SB) with random block 

lengths which have a geometric distribution. Recently, Beyaztas et al. (2016) proposed 

sufficient and ordered versions of the NBB methods to provide better inference in linear 

time series analysis. For sufficient NBB, they proposed replacing sufficient bootstrapping 

within the NBB to reduce the computing time and obtain more efficient results for sample 

mean. Since the sufficient bootstrap proposed by Singh and Sedory (2011) uses only 

distinct units in resamples, this method can only be extended to the NBB method. Because, 

for other block bootstrap methods, although the selected blocks are distinct, the 

observations in blocks may be the same since the consecutive blocks have the same 

observations. In more detail, let our time series data be 𝑌 = (𝑦1, 𝑦2, … , 𝑦12) and let l=3, 

then the data is represented with blocks as 𝑏1 = (𝑦1, 𝑦2, 𝑦3) , 𝑏2 = (𝑦4, 𝑦5, 𝑦6) , 𝑏3 =

(𝑦7, 𝑦8, 𝑦9) and 𝑏4 = (𝑦10, 𝑦11, 𝑦12). Suppose the bootstrapped blocks are 𝑏1
∗ = (𝑦1, 𝑦2, 𝑦3), 

𝑏2
∗ = (𝑦1, 𝑦2, 𝑦3), 𝑏3

∗ = (𝑦10, 𝑦11, 𝑦12) and 𝑏4
∗ = (𝑦7, 𝑦8, 𝑦9). Then, the new data is obtained 

by NBB as 𝑌1
∗ = (𝑦1, 𝑦2, 𝑦3, 𝑦1, 𝑦2, 𝑦3, 𝑦10, 𝑦11, 𝑦12, 𝑦7, 𝑦8, 𝑦9). However, it is obtained as 

𝑌𝑣1
∗ = (𝑦1, 𝑦2, 𝑦3, 𝑦10, 𝑦11, 𝑦12, 𝑦7, 𝑦8, 𝑦9), where ι denotes the expected number of distinct 

observations, when sufficient NBB (SNBB) is used. Since the first and second blocks are 

the same, sufficient block bootstrap discards one of them. For ordered NBB (ONBB) and its 

sufficient version (SONBB), Beyaztas et al. (2016) proposed ordering the bootstrapped 

blocks according to given labels to each original block for capturing more dependence 

structure compared to the conventional NBB method. For the same example mentioned 

above, the labels are determined as 𝑏1 = 1, 𝑏2 = 2 , 𝑏3 = 3 and 𝑏4 = 4 , and then each 

bootstrapped block is sorted according to these labels  𝑏1
∗ = 1, 𝑏2

∗ = 2, 𝑏4
∗ = 3 and  𝑏3

∗ = 4, 

and pasted end-to-end to obtain new data. Again, to obtain SONBB data, the repeated 

blocks are discarded. Hence, the new data set is obtained by the ONBB as 𝑌𝑂,𝑛
∗ =

(𝑦1, 𝑦2, 𝑦3, 𝑦1, 𝑦2, 𝑦3, 𝑦7, 𝑦8, 𝑦9, 𝑦10, 𝑦11, 𝑦12 . However, it is obtained as 𝑌𝑂,𝑣
∗ =

(𝑦1, 𝑦2, 𝑦3, 𝑦7, 𝑦8, 𝑦9, 𝑦10, 𝑦11, 𝑦12when the SONBB method is used.  

Bootstrap methods have been involved in a large variety of applications with different 

nature, ranging from natural phenomena to biomedical researches. That's why, to assess the 

performances of the block bootstrap methods mentioned in this study, four real-world data 

sets are chosen from different fields and linear time series models. The rest of the paper is 

organized as follows. In Sections 2 and 3, we present the results of the simulation and case 

studies, respectively. Some concluding remarks are given in Section 4. 

 

2. Simulation Study 

To assess the performances of the aforementioned block bootstrap methods, we conduct 

a simulation study under first order autoregressive (AR(1)) and moving average (MA(1)) 

models with 𝜙1 = 𝜃1 = −0.9, −0.5, −0.1,0.1,0.5,0.9  autoregressive and moving average 

parameter values. The sample sizes and block lengths are chosen as n=100, 250 and l=5, 10, 

respectively. The comparisons are made in terms of biases and MSEs of the block bootstrap 

estimators of 𝜙1 and𝜃1. The number of Monte Carlo simulations MC are set at MC=1000, 
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and for each simulation, the bootstrap replicates B=1000 are used. It should be noted that all 

the calculations were carried out using R 3.1.1. The simulation results are presented in 

Figures 1-4. As presented in these figures, the SONBB estimators of autoregressive and 

moving average parameters have the smallest bias and MSE values among all the block 

bootstrap estimators. Also, another prominent method is the ONBB with smaller biases and 

MSEs compared to other block bootstrap methods. Moreover, the estimators obtained by 

the ONBB and SONBB methods are more robust to the parameters close to unity which 

means that the process is close to nonstationarity. We also performed a simulation study for 

the first order autoregressive and first order moving average model (ARMA(1,1)) with 

various parameters and sample sizes. Since our conclusions do not vary significantly, 

therefore to save space, the numerical details are omitted for the mixed model. As a 

consequence, considering the simulation results, the ordered versions of the NBB methods 

produce more stable and reliable estimators than those obtained using the conventional 

methods in the context of linear time series models.   

 
Figure 1. Plots of block bootstrap methods for AR(1) model with sample size n=100,  and block 

lengths l=5, 10 
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Figure 2. Plots of block bootstrap methods for AR(1) model with sample size n=250,  and block 

lengths l=5, 10 

 
Figure 3. Plots of block bootstrap methods for MA(1) model with sample size n=100,  and block 

lengths l=5, 10 
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Figure 4. Plots of block bootstrap methods for MA(1) model with sample size n=250,  and block 

lengths l=5, 10 

3. Case Study 

Next subsections serve to compare of the performances of traditional block bootstrap 

and the newer ones in the application ground. The performances of the methods were 

compared in terms of parameter estimation of univariate linear time series models and 

MSEs of the relevant block bootstrap estimators. The data sets used in this study were 

chosen with different sample sizes and block lengths. The block bootstrap estimates and 

their MSE values are calculated based on B=1000 bootstrap replicates. The descriptive 

statistics of the four real-world data are given in Table 1. Also, the descriptive statistics and 

Anderson-Darling normality test results for the residuals of the fitted models are given in 

Table 2. 
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Table 1. The descriptive statistics of the real-world data 

 Operation 

time 

Number 

of 

earthquake 

Chemical 

concentration 

Unemployment 

rate 

Sample size 70 71 180 241 

Mean 488.360 20.141 17.064 4.388 

Std. dev. 158.750 7.374 0.395 2.776 

Skewness 0.147 0.568 0.229 0.911 

Kurtosis -0.413 0.446 -0.128 -0.440 

Block lengths 2, 5, 7, 10 2, 5, 7, 10 3, 5, 9, 12, 15 
4, 6, 8, 10, 12, 

16 

 

Table 2. The descriptive statistics and normality test results for the residuals of the fitted models 

Real-world data Fitted model Mean 
Std. 

deviation 
Skewness Kurtosis 

Anderson-

Darling 

normality test 

Liver operation 

time 
AR(1) -0.336 151.556 0.266 -0.214 

0.231 

(p-value=0.797) 

Number of 

earthquakes 
IMA(1,1) -0.075 6.088 0.382 0.630 

0.557 

(p-value=0.144) 

Chemical 

concentration 
ARMA(1,1) -0.003 0.309 0.356 0.895 

0.531 

(p-value=0.172) 

Unemployment rate ARI(1,1) 0.000 0.136 0.600 4.070 
2.934 

(p-value=0.000) 

 

3.1 Liver transplantation operation time  

The operation time of liver transplantation patients who had surgery in an university 

hospital between January 2003 and December 2013 is examined in detail. The liver 

transplantation operation time is modeled  as AR(1) process with Maximum Likelihood 

estimate (MLE) as in Equation (1).  

ttt YY  1298.006.344
,   t     (1) 

where ε𝑡 follows a N(0,1) distribution. 

As reported in Table 3, the calculated p-value < 0.05 of t-tests indicated that both 

constant term 𝛿 and 𝜙1  are statistically significant at %5 level of significance. Beside,  

Ljung-Box Q-statistics (please see Table 4) to test for autocorrelations in residuals shows 

that the residuals are not auto-correlated. Also, the p-value > 0.05 of Anderson-Darling test 

(see Table 2) indicates that the residuals are normally distributed. All of exploratory 

analysis indicates that AR(1) model is a suitable choice to model operation time data. 

The parameter estimates and their MSEs obtained by the block bootstrap methods are 

presented in Figure 5. As it is seen from this figure, the true parameter value is captured by 
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the SONBB method in a better way. Although the results of the SNBB are not as good as 

the results of the SONBB for parameter estimation, it has almost the same MSE values with 

the SONBB since SNBB provides smallest variances for �̂�1 compared to others. It means 

that the variance of parameter which is obtained by the SNBB is smaller than the one 

obtained by the SONBB, but more biased for parameter estimation in comparison with the 

SONBB. The results show that using SONBB method gets less biasedness and less error for 

AR(1) parameter.  

The worst estimation performance belongs to the MBB, additionally CBB and SB have 

the similar performances which are not satisfactory. When the block length is 7, all the non-

overlapping block bootstrap methods' (i.e. NBB, SNBB, ONBB, SONBB) performances are 

in the same manner.  

 

Table 3. AR(1) model estimates for Liver operation time data 

Parameter Standard error (s.e.) t-stat. p-value 

  17.981 19.231 0.000 

1  0.115 2.589 0.009 

 

Table 4. Ljung-Box Q-Statistics for the residuals of the estimated AR(1) model for Liver operation time 

data 

Considered lag Ljung-Box test Degrees of freedom Significance level 

12 5.285 10 0.871 

24 10.324 22 0.983 

36 20.515 34 0.967 

 
Figure 5. Plots of block bootstrap methods for �̂�1and its MSE for Liver operation time data 

 

3.2 Number of earthquakes  
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The number of earthquakes per year which has occurred greater than magnitude 7.0 

over the 1928-1998 period is analyzed. The data is obtained from 

http://datamarket.com/data/list. For this data set, by using Box-Jenkins' methodology the 

integrated moving average model of order 1 (IMA(1,1)) is fitted as in Equation (2) and the 

MLE of 1  is statistically significant at the 0.05 level (see Table 5).   

 

  tY ttt   ,623.0 1
    (2) 

where {ε𝑡}  is a sequence of normally distributed random variables, and ∆1𝑌𝑡 =

(1 − 𝐵)1𝑌𝑡 − 𝑌𝑡−1  show the first-order difference of {Yt} where B and ∆  denote the 

backshift and difference operators, respectively. 

The results of Ljung-Box autocorrelation test for this data set is given in Table 6, and it 

shows that the residuals do not have statistically significant autocorrelation. Moreover, 

descriptive statistics and normality test results of the residuals given in Table 2 show that 

the residuals follow the normal distribution.  

In Figure 6, we plot the estimated parameters and MSE values of the block bootstrap 

estimators. As in the first example, SONBB provides better results among the others even 

in small block lengths which is the point of our study. The other methods tend to have the 

same trend for both estimation of 𝜃1and its MSE. The results of all the bootstrap methods 

become more consistent with increasing block length.  

 

Table 5. IMA(1,1) model estimates for Number of earthquakes data 

Parameter Standard error (s.e.) t-stat. p-value 

1  0.088 7.046 0.000 

 
Table 6. Ljung-Box Q-Statistics for the residuals of the estimated IMA(1,1) model for Number 

of earthquakes data 

Considered lag Ljung-Box test Degrees of freedom Significance level 

12 10.404 11 0.494 

24 25.024 23 0.349 

36 41.329 35 0.214 
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Figure 6. Plots of block bootstrap methods for 1̂  and its MSE for Number of earthquakes data 

 

3.3 Chemical concentration 

 
Chemical concentration data is chosen because of being an example from ARMA(1,1) 

model. The original data is given as Series A in Box-Jenkins (1976). The analysis is 

implemented for between 14th  - 193th observations. The estimated ARMA(1,1) model 

based on Box-Jenkins methodology is represented as in Equation (3). The results of residual 

analysis given in Table 8 and Table 2 indicate that the residuals of the fitted model are 

normally distributed and not serially correlated. Therefore, the p-value < 0.05 of t-tests 

presented in Table 7 shows that ARMA(1,1) model appears adequate at the significance 

level under 0.05.  

  tYY tttt   ,612.0247.1927.0 11 
       (3) 

where {ε𝑡} is a sequence of normally distributed random variables. 

Figure 7 and 8, respectively, show the results of the block bootstrap estimators of 𝜙1  

and 𝜃1. It is clear that the ONBB and SONBB produce more preferable results for both 

parameter estimations and their MSEs while the other methods behave in the same manner 

and their estimated values get close to the results of the ONBB and SONBB as l increases. 

The point of interest in this example is that the results of the ONBB and SONBB grow 

away from the true parameter value as block length increases. The interpretation of this 

could be that the ONBB and SONBB may be preferred for small block lengths unlike the 

other methods. 

Table 7. ARMA(1,1) model estimates for Chemical concentration data 

Parameter Standard error (s.e.) t-stat. p-value 
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  0.048 19.154 0.000 

1  0.008 143.681 0.000 

1  0.113 5.406 0.000 

 
Table 8. Ljung-Box Q-Statistics for the residuals of the estimated ARMA(1,1) model for 

Chemical concentration data 

Considered lag Ljung-Box test Degrees of freedom Significance level 

12 13.951 9 0.124 

24 23.397 21 0.323 

36 45.228 33 0.076 

 

 
Figure 7. Plots of block bootstrap methods for �̂�1 and its MSE for Chemical concentration data 
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Figure 8. Plots of block bootstrap methods for 𝜃1 and its MSE for Chemical concentration data 

 

3.4 Unemployment rate  

 
The seasonally adjusted registered unemployment rate of United Kingdom is discussed 

as an example of labour market statistics. The quarterly data (01/01/1955 – 01/01/2015 time 

period) were obtained from https://research.stlouisfed.org/fred2/series.rate. The 

autoregressive integrated model (ARI(1,1)) is fitted as in Equation (4), and Table 9 shows 

that the estimated coefficient is statistically significant at %5 level of significance. Also, 

Ljung-Box Q-statistics reported in Table 10 indicate that there is no evidence of 

autocorrelation in the residuals.  

ttt YY  1842.0
,  t     (4) 

where {ε𝑡} is a sequence of random variables which has normal distribution, and ∆1𝑌𝑡 =
𝑌𝑡 − 𝑌𝑡−1  is the first difference of {Yt} process. 

Table 2 indicates that the residuals are not normally distributed. All of empirical 

analysis lead us to consider an ARI(1,1) model as a suitable choice in the context of linear 

time series models although the residuals do not follow normal distribution.  

In this example, the results of the SONBB are better than the others especially in small l 

values as shown in Figure 9. But the difference between the performances is not statistically 

significant for large block lengths.  

As it is seen from the Figure 10, sufficient versions of the NBB method have the 

smallest MSE values for the sample mean compared with the conventional block bootstrap 

methods. The reason of this is based on using distinct observations in the resamples. For 

more information see Pathak (1961). 
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Figure 9. Plots of block bootstrap methods for 1̂  and its MSE for Unemployment rate data 

 
Table 9. ARI(1,1) model estimates for Unemployment rate data 

Parameter Standard error (s.e.) t-stat. p-value 

1  0.034 24.548 0.000 

 

 

 
Table 10. Ljung-Box Q-Statistics for the residuals of the estimated ARI(1,1) model for Unemployment 

rate data 

Considered lag Ljung-Box test Degrees of freedom Significance level 

12 18.684 11 0.067 

24 34.537 23 0.058 

36 47.971 35 0.071 
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Figure 10. Plots of block bootstrap methods for MSE of the sample means 

 

4. Conclusion 

In this study, the performances of four different conventional block bootstrap methods 

are compared to the newer ones' performances. The evaluation of the performances have 

been done in terms of estimations of the parameters and their MSEs with a simulation study 

and four real-world data sets which come from different linear time series models and 

different fields. The empirical findings for the parameter estimation under considered data 

sets in this study are consistent with the simulation results presented by Beyaztas et al. 

(2016). 

One of the important results observed from the simulation study is that the estimators 

obtained by the SONBB have the significantly smaller biases and MSEs compared to other 

block bootstrap methods. Moreover, the SONBB and ONBB methods have more stable 

estimators under various parameter values considered in this paper.  

For the real-world examples, SONBB method provides better results for the data sets 

under consideration even for small block sizes in general. For Liver operation time and 

Registered unemployment rate of UK data sets, the non-overlapping block bootstrap 

method and its sufficient and ordered versions fluctuate in an unstable manner for different 

block lengths while these fluctuations do not occur for other linear time series models. MSE 

values of the sample means for the sufficient versions of the non-overlapping block 

bootstrap methods are smaller than the other block bootstrap methods' for each data because 

of using only distinct observations in the resamples.  
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As a future research, the performances of the newer methods can also be examined 

under unit root processes or can be studied in other areas such as testing mixture models as 

studied by Yang et. al. (2010). Finally, it should be noted that all the calculations in this 

study are performed under the assumption that the considered model forms are correct. Also, 

changing the block length affects overall results, but it does not make any different decision 

about the comparison among performances of the bootstrap methods. 
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