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Abstract: The concept of frailty provides a suitable way to introduce random 

effects in the model to account for association and unobserved heterogeneity. 

In its simplest form, a frailty is an unobserved random factor that modifies 

multiplicatively the hazard function of an individual or a group or cluster of 

individuals. In this paper, we study positive stable distribution as frailty 

distribution and two different baseline distributions namely Pareto and linear 

failure rate distribution. We estimate parameters of proposed models by 

introducing Bayesian estimation procedure using Markov Chain Monte Carlo 

(MCMC) technique. In the present study a simulation is done to compare the 

true values of parameters with the estimated value. We try to fit the proposed 

models to a real life bivariate survival data set of McGrilchrist and Aisbett (1991) 

related to kidney infection. Also, we present a comparison study for the same 

data by using model selection criterion, and suggest a better model. 
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1. Introduction:  

Let 𝑇  be a survival time with an absolutely continuous distribution. A non-negative 

random variable random variable 𝑍  is called ‘frailty’ if the conditional hazard function given 

𝑍 = 𝑧  is given by 

             ℎ(𝑡|𝑧) = 𝑧ℎ0(𝑡);       t>0                                         (1.1) 

where ℎ0(𝑡)  is called the baseline hazard function. Then the conditional survival function is 

given by, 

    𝑆(𝑡|𝑧) = 𝑒−𝑧𝐻(𝑡) ;    t >0   (1.2) 

where 𝐻(𝑡) = ∫ ℎ0(𝑢)𝑑𝑢
𝑡

0
  is the cumulative baseline hazard. 

And the marginal survival function 

   𝑆(𝑡) = 𝐸[𝑆(𝑡|𝑧)] = 𝐸[𝑒−𝑧𝐻(𝑡)] = 𝐿𝑍[𝐻(𝑡)]; t >0 (1.3) 

where 𝐿𝑍(. ) is the Laplace transform of the frailty distribution. 

 

Hanagal (2005, 2007) proposed positive stable frailty model using bivariate Weibull 

distribution as a baseline distribution. Hanagal and Dabade (2013), Hanagal and Sharma 
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(2013), Hanagal and Bhambure (2015) and Hanagal and Pandey (2015) analyzed shared 

gamma frailty models with different baseline distributions. 

In this paper, we consider the shared frailty model with the positive stable distribution as 

a frailty distribution and the Pareto and linear failure rate distribution as baseline distributions. 

We show that the shared positive frailty with linear failure distribution as a baseline 

distribution is the best model for modeling kidney infection data among the proposed models. 

The remainder of the paper is organized as follows. In Section 2, we give the properties of 

the general shared frailty models. In Section 3, we introduce the shared positive stable frailty 

model. The baseline distributions are given in Section 4. In Section 5, we propose two 

different positive stable frailty models. In Section 6, we discuss Bayesian method is used to 

estimate the parameters of the proposed models. We discuss the different Model selection 

criterion by Bayesian approach in section 7. In Section 8 we present the simulation study. We 

compare the above two positive stable frailty distributions with two baseline models (without 

frailty) and suggest a better model from these proposed models for the kidney infection data 

set in Section 9. Finally in Section 10, we discuss the conclusion of the study. 

 

2. General Shared Frailty Model: 

Shared frailty models explain correlations within groups (family, litter or clinic) or for 

recurrent events facing the same individual. i.e. the different events within each community 

share a common frailty, shared by each individual within the community, each unit belongs 

to precisely one category. The shared gamma frailty model was suggested by Clayton (1978) 

for the analysis of the correlation between clustered survival times in genetic epidemiology. 

Let a bivariate random variable (𝑇1𝑗, 𝑇2𝑗) be the survival time of ith ( i =1, 2) component 

of  jth individual ( j=1,2,..,n). Given the unobserved 𝑍𝑗 the hazard function for the (𝑇1𝑗, 𝑇2𝑗) 

is given by, 

 ℎ𝑖(𝑡𝑖𝑗|𝑧𝑗 , 𝑿𝑗) = 𝑧𝑗ℎ0𝑖(𝑡𝑖𝑗) exp(𝑿𝑗
′𝜷 ) ,    𝑖 = 1,2              (2.1) 

 

where 𝑧𝑗 represent frailty acting as multiplicative effect at an individual level,  ℎ0𝑖(𝑡𝑖𝑗)  is 

the baseline hazard at time 𝑡𝑖𝑗  > 0 and 𝜷  is the vector of regression coefficients with k 

components and 𝑿𝑗 is the vector of observed covariates having k components.  

Integrating the hazard function ℎ𝑖(𝑡𝑖𝑗|𝑧𝑗, 𝑿𝑗) we get, the conditional cumulative hazard 

function for the jth individual at the  ith component survival time 𝑡𝑖𝑗 > 0  for the given frailty 

𝑍𝑗 = 𝑧𝑗 is, 

                               𝐻𝑖(𝑡𝑖𝑗|𝑧𝑗 , 𝑿𝑗) = 𝑧𝑗𝐻0𝑖(𝑡𝑖𝑗)𝜂𝑗,   𝑖 = 1,2                     (2.2) 

 

where 𝜂𝑗 = exp (𝑿𝑗
′𝛽 )  and 𝐻0𝑖(𝑡𝑖𝑗) is the cumulative baseline hazard function at time 𝑡𝑖𝑗> 

0. The conditional survival function for the jth individual at the ith  component survival time 

𝑡𝑖𝑗 > 0 for the given frailty 𝑍𝑗 = 𝑧𝑗 is, 

𝑆(𝑡𝑖𝑗|𝑧𝑗, 𝑿𝑗) = 𝑒
−𝐻𝑖(𝑡𝑖𝑗|𝑧𝑗, 𝑿𝑗) 

 

                   = 𝑒−𝑧𝑗𝐻0𝑖(𝑡𝑖𝑗)𝜂𝑗                                (2.3) 
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When 𝑇1𝑗 and 𝑇2𝑗 for j=1,2,..,n are independent, the bivariate conditional survival function 

of (𝑇1𝑗, 𝑇2𝑗) for the given frailty 𝑍𝑗 = 𝑧𝑗 is the product to conditional survival function of 𝑇1𝑗 

and 𝑇2𝑗 for the given frailty 𝑍𝑗 = 𝑧𝑗. Thus, we have 

    𝑆(𝑡1𝑗, 𝑡2𝑗|𝑧𝑗, 𝑿𝑗) = 𝑒
−𝑧𝑗( 𝐻01(𝑡1𝑗)+𝐻02(𝑡2𝑗))𝜂𝑗  (2.4) 

where 𝐻01(𝑡1𝑗) and 𝐻02(𝑡2𝑗) be the cumulative baseline hazard functions of first and second 

component at 𝑡1𝑗 > 0  and 𝑡2𝑗> 0 respectively. 

Integrate out the bivariate conditional survival function of (𝑇1𝑗, 𝑇2𝑗 ) over the frailty 

variable 𝑍𝑗  having the probability function 𝑓(𝑧𝑗), for jth individual in order to obtain the 

unconditional bivariate survival function at time 𝑡𝑖𝑗> 0. 

𝑆(𝑡1𝑗, 𝑡2𝑗| 𝑋𝑗) = ∫ 𝑒−𝑧𝑗( 𝐻01(𝑡1𝑗)+𝐻02(𝑡2𝑗))𝜂𝑗
𝑍𝑗

 𝑓(𝑧𝑗) 𝑑𝑧𝑗 

                                                  = 𝐿𝑍𝑗 ((𝐻01(𝑡1𝑗) + 𝐻02(𝑡2𝑗)) 𝜂𝑗)  (2.5) 

where 𝐿𝑍𝑗(. ) is the Laplace transform of frailty the variable of 𝑍𝑗 for jth individual. 

Similarly one can extend this result (2.5) to multivariate lifetimes with the shared frailty 

as  

𝑆(𝑡1𝑗, 𝑡2𝑗, … , 𝑡𝑘𝑗| 𝑋𝑗) = ∫ 𝑒
−𝑧𝑗( 𝐻01(𝑡1𝑗)+𝐻02(𝑡2𝑗)+⋯.+𝐻0𝑘(𝑡𝑘𝑗))𝜂𝑗

𝑍𝑗

 𝑓(𝑧𝑗) 𝑑𝑧𝑗 

                          = 𝐿𝑍𝑗 ((𝐻01(𝑡1𝑗) + 𝐻02(𝑡2𝑗) + ⋯ . . +𝐻0𝑘(𝑡𝑘𝑗)) 𝜂𝑗) 

 (2.6) 

3. Shared Positive Stable Frailty Model: 

The shared gamma frailty model was suggested by Clayton (1978) for the analysis of the 

correlation between clustered survival times in genetic epidemiology. .In many situations, the 

gamma frailty model may not fit well, see (Shih, 1998; Glidden, 1999; Fan et al., 2000). The 

positive stable model (Hougaard,2000) is an useful alternative, in part because it has the 

attractive feature that predictive hazard ratio decreases to 1 over time (Oakes, 1989). The 

property is observed in familial associations of ages of onset of diseases with etiologic 

heterogeneity, where genetic cases occur early and long term survivors are weakly correlated. 

The gamma model has predictive hazard ratios which are time invariant and may not be 

suitable for the pattern of failures (Fine et al., 2003). Positive stable frailty is the special case 

of generalized gamma frailty given by Balakrishnan and Peng (2006) and is also special case 

of power variance function frailty given by Hougaard (2000). The aim of this paper is to 

analyze kidney infection data using positive stable frailty which has interesting properties as 

mentioned above. 

The density function of a continuous random variable 𝑍  that has the positive stable 

distribution with two parameters 𝜎2 and 𝜐 is given by 

  

𝑓(𝑧) =
−1

𝜋 𝑧
∑

Γ(𝑘𝜎2 + 1)

𝑘!

∞

𝑘=1

(−
𝑧−𝜎

2
𝜐

𝜎2
)

𝑘

sin(σ2 k π)     ;  z > 0, 0 < σ2 < 1, 𝜐 > 0      

          

 (3.1) 
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with the  Laplace  transform 

 

           𝐿𝑍(𝑠) = 𝐸[𝑒
−𝑠𝑍] = exp (

−𝜐sσ
2

σ2
) ;   z > 0, 0 < σ2 < 1, 𝜐 > 0  

 (3.2) 

                    

(See Hougaard, 2000). 

In order to solve the non-identifiability problem, we take σ2 = 𝜐. Thus, we have the  

following form of probability density function of the positive stable distribution and its 

Laplace transformation.  

𝑓(𝑧) =
1

𝜋 
∑

Γ(𝑘σ2 + 1)

𝑘!
(−1)𝑘+1

∞

𝑘=1

(
1

𝑧
)
σ2𝑘+1

sin(σ2 k π)      ;  z > 0, 0 < σ2 < 1          

                                                                                                                                     (3.3) 

          𝐿𝑍(𝑠) = 𝑒
−𝑠σ

2

             ;   z > 0, 0 < σ2 < 1 

 

The unconditional bivariate survival function for the jth individual at the time t1j > 0 and 

t2j > 0 by replacing the above mentioned Laplace transformation in equation ( 2.5 ) we have, 

                                                    

𝑆(𝑡1𝑗,𝑡2𝑗) = 𝑒
−[𝜂𝑗((𝐻01(𝑡1𝑗)+𝐻02(𝑡2𝑗))]

σ2

               (3.4) 

where 𝐻01(𝑡1𝑗)  and 𝐻02(𝑡2𝑗)  are the cumulative baseline hazard functions of lifetime 

random variables 𝑇1𝑗 and 𝑇2𝑗 respectively. 

To every bivariate survival function 
),( 21 ttS

with absolute marginal survival functions 

)( 1tS
 and 

)( 2tS
, corresponds a unique function ]1,0[]1,0[]1,0[: C , is called a copula 

such that  

𝑆 ( 21, tt ) = 𝐶 ( )(),( 21 tStS )     𝑓𝑜𝑟  ),0(),0(),( 21 tt
        (3.5) 

Here 𝑆(𝑡1, 𝑡2), 𝑆(𝑡1), and 𝑆(𝑡2) are the joint and marginal survival functions respectively. 

Conversely, using copula, it is possible to construct a bivariate survival function having the 

desired marginal survivals and a chosen dependence structure (see Nelsen (2006) for details). 

The joint bivariate survival function (3.4)  can be expressed in terms of survival copula 

as 

             
])))ln(())ln((([

22/12/1

),(
 vuevuC 

       (3.6) 

where   𝑢 = 𝑆(𝑡1)      and     𝑣 = 𝑆(𝑡2).  
The above copula is known as Gumbel-Hougaard copula. 

Imposing different assumptions on the baseline distributions we get different shared 

positive stable frailty models.  In this paper, we consider the two baseline distributions 

namely Pareto and linear failure rate distribution which yield two positive stable frailty 

models. The positive stable model has the advantage that it fits proportional hazards which 

means that if the conditional model has proportional hazards, so does the marginal 

distribution. This is an advantage, when considering the model as a random effect model. 
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When, σ2 = 1, the frailty distribution is degenerate at 1Z . The bivariate survival 

function in the case when the frailty variable is degenerate is given by 

 

   𝑆(𝑡1𝑗,𝑡2𝑗) = 𝑒
−[𝜂𝑗((𝐻01(𝑡1𝑗)+𝐻02(𝑡2𝑗))]        (3.7) 

 

4. Baseline Distributions: 

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to 

model the distribution of incomes. This distribution is not limited to describing wealth or 

income, but to many situations in which an equilibrium is found in the distribution of the 

"small" to the "large". 

The first baseline distribution is the Pareto distribution (Deshpande and Purohit, 2005 ). 

A continuous random variable 𝑇  is said to follow the Pareto distribution with the scale 

parameter 𝜆 and the shape parameter 𝛼 if its survival function is, 

  𝑆0(𝑡) = {
(𝜆𝑡 + 1)−𝛼      ;  𝑡 > 0, 𝜆 > 0, 𝛼 > 0
0                     ;               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        

(4.1) 

and the hazard function and the cumulative hazard function as  

   ℎ0(𝑡) = {
𝛼 𝜆

(1+𝜆 𝑡)
     ;     𝑡 > 0, 𝜆 > 0, 𝛼 > 0

            0          ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
      (4.2) 

  𝐻0(𝑡) = {
     𝛼 log (𝜆 𝑡 + 1)   ;     𝑡 > 0, 𝜆 > 0, 𝛼 > 0 

  0              ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (4.3) 

Observe that ℎ0(𝑡) decreases with 𝑡 ;  𝜆 > 0, 𝛼 > 0 . Hence this distribution belongs to the 

Decreasing Failure Rate class. 

The exponential and Rayleigh are the two most commonly used distributions for 

analyzing lifetime data. These distributions have several desirable properties and nice 

physical interpretations. Unfortunately the exponential distribution only has constant failure 

rate and the Rayleigh distribution has increasing failure rate. The linear failure rate 

distribution generalizes both these distributions. We consider this is the second baseline 

distribution. 

The linear failure rate distribution of a continuous random variable 𝑇 with the parameters 

𝛼 > 0 and 𝜆> 0, will be denoted by LFRD (𝛼, 𝜆 ) has the following survival function  

 

                               𝑆0(𝑡) = {
exp (−𝛼𝑡 −

𝜆

2
𝑡2)     ;  𝑡 > 0, 𝛼 > 0, 𝜆 > 0

0                           ;           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (4.4)                                 

           

It is easily observed that the exponential distribution (ED (𝛼 )) and the Rayleigh 

distribution (RD (𝜆 )) can be obtained from LFRD (a, b) by putting 𝜆  = 0 and 𝛼  = 0 

respectively. Moreover, the probability density function (PDF) of the LFRD (𝛼,𝜆) can be 

decreasing or unimodal but the failure rate function is either constant or increasing only. See 

for example Bain (1974), Sen and Bhattacharya (1995), Lin et al. (2006), Ghitany and Kotz 

(2007) and the references cited their in this connection.  

The hazard function and the cumulative hazard function of linear failure rate distribution are 

respectively as stated below: 
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ℎ0(𝑡) = {
𝛼 + 𝜆 𝑡     ;     𝑡 > 0, 𝛼 > 0, 𝜆 > 0

            0          ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
                   (4.5) 

       𝐻0(𝑡) = {
     𝛼 𝑡 + 𝜆

𝑡2

2
   ;     𝑡 > 0, 𝛼 > 0, 𝜆 > 0 

  0              ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (4.6) 

5. Proposed Models: 

 Here we present the two positive stable frailty models say Model I and Model II by 

putting respectively the cumulative hazard function of the baseline distributions namely 

Pareto and linear failure rate distribution in the unconditional survival function of bivariate 

random variable (𝑇1𝑗, 𝑇2𝑗) given in equations (4.3) and (4.6). 

 

𝑆(𝑡1𝑗,𝑡2𝑗) =  𝑒𝑥𝑝 [−𝜂𝑗 (𝛼1 𝑙𝑜𝑔(𝜆1𝑡1𝑗 + 1) + 𝛼2 𝑙𝑜𝑔(𝜆2𝑡2𝑗 + 1))]
σ2

;   𝑡1𝑗 > 0, 𝑡2𝑗 > 0     

(5.1) 

𝑆(𝑡1𝑗,𝑡2𝑗) =  𝑒𝑥𝑝 [−𝜂𝑗 ((𝛼1𝑡1𝑗 + 𝜆1
𝑡1𝑗
2

2
) + (𝛼2𝑡2𝑗 + 𝜆2

𝑡2𝑗
2

2
))]

σ2

 ;   𝑡1𝑗 > 0, 𝑡2𝑗 > 0     

(5.2) 

Here onwards, equations (5.1) and (5.2) as Model I and Model II which correspond to 

positive frailty models with baseline Pareto and linear failure rate distributions respectively. 

Similarly, by putting the same cumulative hazard functions given in equations (4.3) and (4.6) 

of the above baselines in equation (3.5) we get, the corresponding bivariate survival functions 

for the degenerate frailty (without frailty) at time  𝑡1𝑗 > 0, 𝑡2𝑗 > 0 as given below. We refer 

these models as Model III and Model IV respectively. 

𝑆(𝑡1𝑗,𝑡2𝑗) = 𝑒𝑥𝑝 [−𝜂𝑗 (𝛼1 𝑙𝑜𝑔(𝜆1𝑡1𝑗 + 1) + 𝛼2 𝑙𝑜𝑔(𝜆2𝑡2𝑗 + 1))]      ; 𝑡1𝑗 > 0, 𝑡2𝑗 > 0      

(5.3)  

                                                                                                                                                        

𝑆(𝑡1𝑗,𝑡2𝑗) = 𝑒𝑥𝑝 [−𝜂𝑗 ((𝛼1𝑡1𝑗 + 𝜆1
𝑡1𝑗
2

2
) + (𝛼2𝑡2𝑗 + 𝜆2

𝑡2𝑗
2

2
))]       ;         𝑡1𝑗 > 0, 𝑡2𝑗 > 0       

(5.4) 

 

6. Estimation of Parameters by Bayesian Approach: 
 

Suppose that there are n independent pairs of components under study and the jth pair of 

the component have lifetimes ( 𝑡1𝑗,   𝑡2𝑗)   i.e. there are n individuals with a pair of 

components having lifetimes ( 𝑡1𝑗,   𝑡2𝑗) for j=1, 2,… , n. The life time times associated with 

jth individual is given by, 

(𝑇1𝑗, 𝑇2𝑗) =

{
 
 

 
 
  (𝑡1𝑗 , 𝑡2𝑗)      ;     𝑡1𝑗 < 𝑐1𝑗 , 𝑡2𝑗 < 𝑐2𝑗 

(𝑡1𝑗 , 𝑐2𝑗)      ;    𝑡1𝑗 < 𝑐1𝑗 , 𝑡2𝑗 > 𝑐2𝑗

(𝑐1𝑗 , 𝑡2𝑗)      ;    𝑡1𝑗 > 𝑐1𝑗 , 𝑡2𝑗 < 𝑐2𝑗

(𝑐1𝑗 , 𝑐2𝑗)      ;    𝑡1𝑗 > 𝑐1𝑗 , 𝑡2𝑗 > 𝑐2𝑗
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where 𝑐1𝑗  and 𝑐2𝑗 be the observed censoring times for jth individual (j = 1, 2, …, n) with  a 

pair of components respectively. We assume that the lifetimes and censoring times are 

independently distributed. 

Now the likelihood of the sample of size n is given by, 

𝐿( 𝜃, 𝛽, 𝜎2)

= (∏𝑓1(𝑡1𝑗 , 𝑡2𝑗

𝑛1

𝑗=1

))(∏𝑓2(𝑡1𝑗 , 𝑐2𝑗) 

𝑛2

𝑗=1

)(∏𝑓3(𝑐1𝑗 , 𝑡2𝑗) 

𝑛3

𝑗=1

)(∏𝑓4(𝑐1𝑗 , 𝑐2𝑗) 

𝑛4

𝑗=1

) 

           

 (6.1) 

where 𝜃, 𝛽, 𝜎2  are the vector of parameters of the baseline distributions, the vector of 

regression coefficients and the frailty parameter respectively. Let the counts 𝑛1, 𝑛2, 𝑛3and 𝑛4 

be the number of individuals for which the first and the second components failure times 

(𝑡1𝑗 , 𝑡2𝑗)  lie in the ranges   𝑡1𝑗 < 𝑐1𝑗 , 𝑡2𝑗 < 𝑐2𝑗 ;   𝑡1𝑗 < 𝑐1𝑗 , 𝑡2𝑗 > 𝑐2𝑗 ;    𝑡1𝑗 >

 𝑐1𝑗 , 𝑡2𝑗 < 𝑐2𝑗 and    𝑡1𝑗 > 𝑐1𝑗   𝑡2𝑗 > 𝑐2𝑗  respectively and  

 

 𝑓1(𝑡1𝑗, 𝑡2𝑗) =
𝜕2𝑆(𝑡1𝑗 , 𝑡2𝑗)

𝜕𝑡1𝑗𝜕𝑡2𝑗
   

= 𝜎2ℎ01(𝑡1𝑗) ℎ02(𝑡2𝑗) 𝑆(𝑡1𝑗, 𝑡2𝑗)
𝜙1(𝑡1𝑗, 𝑡2𝑗) 

𝜙2(𝑡1𝑗, 𝑡2𝑗)
(1 + 𝜎2(−1 + 𝜙1(𝑡1𝑗, 𝑡2𝑗))) 

      

𝑓2(𝑡1𝑗, 𝑐2𝑗) = −
𝜕𝑆(𝑡1𝑗, 𝑐2𝑗)

𝜕𝑡1𝑗
=
𝜎2ℎ01(𝑡1𝑗)𝑆(𝑡1𝑗, 𝑐2𝑗)𝜂𝑗

𝜙1(𝑡1𝑗, 𝑐2𝑗) 
 

 

𝑓3(𝑐1𝑗, 𝑡2𝑗) = −
𝜕𝑆(𝑐1𝑗, 𝑡2𝑗)

𝜕𝑡2𝑗
=
𝜎2ℎ02(𝑡2𝑗)𝑆(𝑐1𝑗, 𝑡2𝑗)𝜂𝑗

𝜙1(𝑐1𝑗, 𝑡2𝑗) 
 

𝑓4(𝑐1𝑗, 𝑐2𝑗) =  𝑆(𝑐1𝑗, 𝑐2𝑗) 

           

 (6.2) 

where 

𝜙1(𝑡1𝑗, 𝑡2𝑗) = 𝜂𝑗 (𝐻01(𝑡1𝑗) + 𝐻02(𝑡2𝑗))
𝜎2

 and  𝜙2(𝑡1𝑗, 𝑡2𝑗) = (𝐻01(𝑡1𝑗) + 𝐻02(𝑡2𝑗))
2
 

 

Thus, we get the two likelihood functions for the two proposed positive stable frailty 

models namely Model I, Model II by substituting the corresponding hazard functions and 

cumulative hazard functions in the likelihood function given by equation (6.1) with  

𝑆(𝑡1𝑗, 𝑡2𝑗) stated in equation (5.1) and (5.2). 

The likelihood function for the degenerate frailty model (without frailty) is, 

 

𝐿( 𝜃, 𝛽) = (∏𝑓1(𝑡1𝑗 , 𝑡2𝑗

𝑛1

𝑗=1

))(∏𝑓2(𝑡1𝑗 , 𝑐2𝑗) 

𝑛2

𝑗=1

)(∏𝑓3(𝑐1𝑗 , 𝑡2𝑗) 

𝑛3

𝑗=1

)(∏𝑓4(𝑐1𝑗 , 𝑐2𝑗) 

𝑛4

𝑗=1

) 
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 (6.3) 

where 𝜃 and 𝛽 are respectively  the vector of baseline parameters and the vector of regression 

coefficients. The counts 𝑛1, 𝑛2, 𝑛3and 𝑛4 be the number of individuals for which the first and 

the second components failure times (𝑡1𝑗 , 𝑡2𝑗)  lie in the ranges   𝑡1𝑗 < 𝑐1𝑗 , 𝑡2𝑗 < 𝑐2𝑗 ; 

  𝑡1𝑗 < 𝑐1𝑗 , 𝑡2𝑗 > 𝑐2𝑗 ;    𝑡1𝑗 > 𝑐1𝑗 , 𝑡2𝑗 < 𝑐2𝑗 and    𝑡1𝑗 > 𝑐1𝑗   𝑡2𝑗 > 𝑐2𝑗  respectively  

  𝑓1(𝑡1𝑗, 𝑡2𝑗) =
𝜕2𝑆(𝑡1𝑗, 𝑡2𝑗)

𝜕𝑡1𝑗𝜕𝑡2𝑗
= 𝜂𝑗

2 ℎ01(𝑡1𝑗) ℎ02(𝑡2𝑗) 𝑆(𝑡1𝑗, 𝑡2𝑗) 

 𝑓2(𝑡1𝑗, 𝑐2𝑗) = −
𝜕𝑆(𝑡1𝑗, 𝑐2𝑗)

𝜕𝑡1𝑗
= 𝜂𝑗 ℎ01(𝑡1𝑗) 𝑆(𝑡1𝑗, 𝑐2𝑗) 

 𝑓3(𝑐1𝑗, 𝑡2𝑗) = −
𝜕𝑆(𝑐1𝑗, 𝑡2𝑗)

𝜕𝑡2𝑗
= 𝜂𝑗 ℎ02(𝑡2𝑗) 𝑆(𝑐1𝑗, 𝑡2𝑗) 

 𝑓4(𝑐1𝑗, 𝑐2𝑗) =  𝑆(𝑐1𝑗, 𝑐2𝑗) 

        (6.4) 

Substituting the hazard functions  ℎ01(𝑡1𝑗) ,   ℎ02(𝑡2𝑗)   and the survival function 

𝑆(𝑡1𝑗, 𝑡2𝑗)for two baseline models (without frailty) we get the likelihood function given by 

equation (6.3).  

The proposed models I and II consist of ten parameters computing the maximum 

likelihood estimators (MLEs) involves solving a ten dimensional optimization problem for 

these model whereas model III and IV consist of nine parameters computing the maximum 

likelihood estimators (MLEs) involves solving a nine dimensional optimization problem for 

these model. As the method of maximum likelihood fails to estimate the several parameters 

due to convergence problem in the iterative procedure, so we use the Bayesian approach. The 

traditional maximum likelihood approach to estimation is commonly used in survival analysis, 

but it can encounter difficulties with frailty models. Moreover, standard maximum likelihood 

based inference methods may not be suitable for small sample sizes or situations in which 

there is heavy censoring (see Kheiri et al. (2007)). Thus, in our problem a Bayesian approach, 

which does not suffer from these difficulties, is a natural one, even though it is relatively 

computationally intensive. 

Several authors have discussed Bayesian approach for the estimation of parameters of the 

frailty models. Some of them are, Ibrahim et al.(2001) and references theirin, Santos and 

Achcar (2010). Santos and Achcar (2010) considered the parametric models with Weibull 

and the generalized gamma distribution as the baseline distributions and gamma and log-

normal as frailty distributions. Ibrahim et al. (2001) and references therein considered 

Weibull model and the piecewise exponential model with gamma frailty. Therefore we 

proposed Bayesian inferential approach in this study to estimate the parameters of the model, 

which is a popularly used method, because computation of the Bayesian analysis becomes 

feasible due to advances in computing technology.  

To apply Markov chain monte carlo (MCMC) methods, we assume that, conditional on 

observed covariates and on the entire set of parameters, observations are independent and 

prior distributions for all parameters are mutually independent. We used the Metropolis-

Hastings algorithm within Gibbs sampler technique which is the most basic MCMC method 

used in Bayesian Inference. Convergence of Markov chain to a stationary distribution is 

observed by the trace plots, the coupling from the past plots, the Gelman-Rubin convergence 
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statistic, and the Geweke test. The trace plots are used to check the behavior of the chain and 

the coupling from the past plots can be used to decide the burn-in period. The Gelman-Rubin 

convergence statistic values are approximately equal to one then sample can be considered to 

be come from the stationary distribution. The Geweke test examines the convergence of a 

Markov chain based on the sub parts of a chain at the end and at the beginning of the 

convergence period. The large standardized difference between ergodic averages at the 

beginning and at the end of the convergence period indicates non convergence. The sample 

autocorrelation plots can be used to decide the autocorrelation lag.  

In Bayesian paradigm the parameters of the model are viewed as random variables with 

some distribution known as prior distribution. It enables us to combine both the prior 

information and the data at hand to update the information of parameter. Thus, posterior 

density of a parameter is the distribution of a parameter updated by combining its prior 

distribution and the likelihood function. We assume that, conditional on explanatory variables 

and on the entire set of parameters, observations are independent and prior distributions for 

all parameters are mutually independent while applying MCMC methods. 

Let 𝐿(𝜃|𝑦) be the likelihood function and 𝑝(𝜃) be the prior density of a parameter then 

posterior density function of a parameter 𝜋(𝜃|𝑦)  is given by,  

𝜋(𝜃|𝑦) ∝ 𝐿(𝜃|𝑦)𝑝(𝜃)                            (6.5) 

In our case the joint posterior density function of a parameter for given failure times 

( 𝑡1𝑗, 𝑡2𝑗) is 𝜋 ( 𝜃 = (𝛼1, 𝜆1, 𝛼2, 𝜆2, 𝜎
2, 𝛽 |( 𝑡1𝑗,   𝑡2𝑗)) as 

 

𝜋 ( 𝜃 = (𝛼1, 𝜆1, 𝛼2, 𝜆2, 𝜎
2, 𝛽 |( 𝑡1𝑗,   𝑡2𝑗))

∝ 𝐿 (𝜃 = (𝛼1, 𝜆1, 𝛼2, 𝜆2, 𝜎
2, 𝛽 |( 𝑡1𝑗,   𝑡2𝑗)) (𝑔1(𝛼1) 𝑔2(𝜆1) 𝑔3(𝛼2) 𝑔4(𝜆2) 𝑔5(𝜎

2))∏𝑝𝑖(𝛽𝑖

𝑘

𝑖=1

) 

          

 (6.6) 

where 𝑔𝑖( . ) for 𝑖 = 1, 2, ..,5 denotes the prior density function with known hyper parameters 

of corresponding argument for baseline parameters and frailty variance; 𝑝𝑖(𝛽𝑖) is the 

prior density function for regression coefficients 𝛽𝑖 for  𝑖 = 1, 2, .., 𝑘. And the likelihood 

function 𝐿( . ) is given by equation (6.1). 

Algorithm consists in successively obtaining a sample from the conditional distribution 

of each of the parameter given all other parameters of the model. These distributions are 

known as full conditional distributions. Since the full conditional distributions are not easy 

to integrate out therefore full conditional distributions are obtained by considering that they 

are proportional to the joint distribution of the parameters of the model. The samples are then 

obtained from these full conditional distributions. 

 

7. Model Selection Criterion by Bayesian Approach: 

 

Bayesian model comparison is commonly performed by computing posterior model 

probabilities. In order to compare proposed models we use the Akaike Information Criterion 

(AIC), the Bayesian Information Criterion (BIC), the Deviance Information Criterion (DIC) 

and  the Bayes factor. These are the most common methods of Bayesian model assessment.  
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Akaike (1973) suggested that, given a class of competing models for a data set, one 

choose the model that minimizes 

      𝐴𝐼𝐶 =  𝐷(𝜃) +  2 𝑝     (7.1) 

where 𝑝 represents number of parameters of the model. 𝐷(𝜃) represents an estimate of the 

deviance evaluated at the posterior mean, 𝜃 = 𝐸(𝜃 |𝑑𝑎𝑡𝑎). The deviance is given by, 

𝐷(𝜃 ) = −2 log 𝐿(𝜃 )  , where 𝜃  is a vector of unknown parameters of the model and 

 𝐿(𝜃 ) is the likelihood function of the model.  

Bayesian information criterion (BIC) was suggested by Schwarz (1978). Shibata (1976) 

and Katz (1981) have shown that the AIC tends to overestimate the number of parameters 

needed, even asymptotically. The Schwarz criterion indicates that the model with the highest 

posterior probability is the one that minimizes 

  𝐵𝐼𝐶 =  𝐷(𝜃) +  𝑝 log  (𝑛)       (7.2) 

where 𝑛 is the number of observations, or equivalently, the sample size. 

DIC, a generalization of AIC, is introduced by Spiegelhalter et al. (2002) and is defined as; 

   𝐷𝐼𝐶 =  𝐷(𝜃) + 2 𝑝𝐷     (7.3) 

where 𝑝𝐷 is the difference between the posterior mean of the deviance and the deviance of 

the posterior mean of parameters of interest, that is, 𝑝𝐷 = 𝐷 − 𝐷(𝜃) and 𝐷 =

𝐸(𝐷(𝜃)|𝑑𝑎𝑡𝑎). 

Models with smaller values of the AIC, BIC and DIC are preferred. 

Kadane and Lazar (2004) review model selection from Bayesian and frequent 

perspectives. The Bayes factor 𝐵𝑗𝑘  for a model 𝑀𝑗  against 𝑀𝑘 for given data 𝐷 =

 (𝑡1𝑗;  𝑡2𝑗);  𝑗 = 1,2, … , 𝑛   is  

                                                   𝐵𝑗𝑘  =
𝑃(𝐷|𝑀𝑗 )

𝑃(𝐷|𝑀𝑘) 
                                                        (7.4)                                                             

where 𝑃(𝐷|𝑀𝑘  ) = ∫ 𝑃(𝐷|𝑀𝑘 , 𝜃𝑘)𝜋(𝜃𝑘|𝑀𝑘) 𝑑𝜃𝑘𝑆
 

 𝜃𝑘 is the parameter vector under model 𝑀𝑘 and  𝜋(𝜃𝑘|𝑀𝑘) is prior density and 𝑆 is the 

support of the parameter k . Raftery (1994), following Jeffreys (1961), propose the rules of 

thumb for interpreting twice the logarithm of the Bayes factor. For two models of substantive 

interest, 𝑀𝑗 and 𝑀𝑘, twice the log of the Bayes factor is approximately equal to the difference 

in their BIC approximations.  

To compute Bayes factor we need to obtain  𝐼𝑘 = 𝑃(𝐷|𝑀𝑘). By considering one of the 

approaches given in Kass and Raftery (1995), we obtain the following MCMC estimate of 𝐼𝑘 

which is given by, 

          𝐼𝑘 = {
∑ 𝑃(𝐷|𝜃(𝑖))−1𝑁
𝑖=1

𝑁
}
−1

        (7.5) 

which is harmonic mean of the likelihood values. Here 𝑁 represents the posterior sample size 

and { 𝜃(𝑖), 𝑖 = 1, 2 , . . . , 𝑁 } is the sample from the prior distribution. 

 

8. Simulation Study: 

A simulation study is done to evaluate the performance of the Bayesian estimation 

procedure. For the simulation purpose we have considered only one covariate X1 and we 

assume that it follows normal distribution. The frailty variable Z is assumed to have positive 

http://en.wikipedia.org/wiki/Observation
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stable distribution with variance 3.6. Life times (T1j , T2j) for the jth individual are 

conditionally independent for the given frailty Zj = zj . We considered that Tij (i = 1, 2; j = 

1, 2, … , n) follows one of the baseline distributions, namely, Pareto (Model-I) or linear 

failure rate (Model-II) distribution respectively. As the Bayesian methods are time consuming, 

we generate only twenty, fourty and sixty pairs of lifetimes using inverse transform technique. 

Here we have generated different random samples of size n = 20, 40 and 60 for lifetimes T1j 

and T2j. But here we are giving procedure for sample generation of only one sample size, 

say, n = 20. Samples are generated using the following procedure: 

1. Generate a random sample of size 20 from the positive stable distribution with the 

same shape and the scale parameter =1/3.6 as shared frailties (zj) for jth (j = 1, 2, …, 

20) individual. 

2. Generate 20 covariate values for X1 from the normal distribution. 

3. Compute  𝜂 =  𝑒−𝑋1𝛽 with the regression coefficient 𝛽 = 0.5. 

4. Generate 20 pairs of lifetimes (t1j , t2j) for the given frailty (zj) using the following 

generators, 

    for Model-I and Model-II respectively,  

𝑡1𝑗 =
1

𝜆1
(𝑒𝑥𝑝 (

𝐴1𝑗

𝛼1
) − 1)        ,        𝑡2𝑗 =

1

𝜆2
(𝑒𝑥𝑝 (

𝐴2𝑗

𝛼2
) − 1)  

 (8.1) 

𝑡1𝑗 =
1

𝜆1
(−𝛼1 −√𝛼1

2 − 4(
𝜆1

2
)𝐴1𝑗)          𝑡2𝑗 =

1

𝜆1
(−𝛼1 −√𝛼1

2 − 4(
𝜆1

2
)𝐴1𝑗) 

 (8.2) 

where 𝐴1𝑗 =
− log𝑟1

𝑧𝑗𝜂𝑗
 and 𝐴2𝑗 =

− log𝑟2

𝑧𝑗𝜂𝑗
  and 𝑟𝑖𝑗 i=1,2 are random sample from U(0,1). 

5. Generate the censoring times (c1j and c2j) from the exponential distribution. 

6. Observe the ith survival time  tij = min ( tij ,cij) and the censoring indicator 𝛿𝑖𝑗for 

the jth individual (i = 1; 2 and j = 1, 2, …., 20), where 

𝛿𝑖𝑗 = {
 1      ;             tij  <  cij

       0      ;             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Thus we have data consists of 20 pairs of the survival times ( t1j;  t2j) and the censoring 

indicators 𝛿𝑖𝑗 . 

We run two parallel chains for the proposed model with the different starting points using 

Metropolis-Hastings algorithm within Gibbs sampler based on normal transition kernels. 

We iterate both the chains for 95,000 times. In our study we use same non-informative 

prior for the frailty parameter 𝜎2and the regression coefficient 𝛽1. Since we do not have any 

prior information about baseline parameters,  𝛼1, 𝜆1, 𝛼2  and  𝜆2 , prior distributions are 

assumed to be flat. A widely used prior for frailty parameter 𝜎2 is the gamma distribution 

with mean one and large variance, G (𝜙,𝜙) say with a small choice of 𝜙  and for the 

regression coefficients 𝛽𝑖  i=1, 2, .., k, we use the normal prior with mean zero and large 

variance  𝜖2.  

For both the chains the results were somewhat similar so we present here the analysis for 

only one chain (i.e. chain 1) for the resulting model. Also due to lack of space we are not 

providing graphs. Simulated values of the parameters have the autocorrelation of lag k, so 

every kth iteration is selected as a sample from posterior distribution. The posterior mean and 

standard error with credible intervals for different sample sizes are reported in Table 1 and 2 
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for Model-I, Model-II respectively. From these Tables, it can be observed that the estimated 

values of the parameters are close to the true values of the parameters and the standard errors 

decrease as the sample size increases.  

 

9. Analysis of Kidney Infection Data: 

To study the Bayesian estimation procedure we use kidney infection data of McGilchrist 

and Aisbett (1991). The data is regarding recurrence times to infection at point of insertion 

of the catheter for 38 kidney patients using portable dialysis equipment. For each patient, first 

and second recurrence times (in days) of infection from the time of insertion of the catheter 

until it has to be removed owing to infection is recorded. The catheter may have to be removed 

for reasons other than kidney infection and this regard as censoring. So survival time for a 

patient given may be first or second infection time or censoring time. After the occurrence or 

censoring of the first infection sufficient (ten weeks interval) time was allowed for the 

infection to be cured before the second time the catheter was inserted. So the first and second 

recurrence times are taken to be independent apart from the common frailty component. The 

data consists of three risk variables age, sex and disease type GN, AN and PKD where GN, 

AN and PKD are short forms of Glomerulo Neptiritis, Acute Neptiritis and Polycyatic Kidney 

Disease. 

Let T1 and T2 be represents first and second recurrence time to infection. Five covariates 

age, sex and presence or absence of disease type GN, AN and PKD are denoted by 

𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5. 

To analyze kidney data set, various models have been applied by different researchers. 

Some of them are, McGilchrist and Aisbett (1991), McGilchrist (1993), Sahu et al. (1997), 

Boneg (2001), Yu (2006) and Santos and Achcar (2010). McGilchrist and Aisbett (1991) 

considered semi-parametric Cox proportional hazards model with log-normal frailty 

distribution and applied Newton-Raphson iterative procedure to estimate the parameters of 

the model. McGilchrist (1993) and Yu (2006) both considered the same model as in 

McGilchrist and Aisbett(1991) but McGilchrist (1993) estimated the parameters of the model 

using BLUP, ML and REML methods and Yu (2006) proposed modified EM algorithm and 

penalized partial likelihood method. Sahu et al. (1997) considered four parametric models 

first two are piecewise exponential model with constant baseline hazard say 𝜆𝑘 within each 

interval having gamma prior for 𝜆𝑘 for Model-I and for Model-II normal prior to log 𝜆𝑘. Both 

the models have frailty distribution as gamma. Other two models are multiplicative gamma 

frailty as Model-III and additive frailty as Model-IV with Weibull as baseline distribution. 

Santos and Achcar (2010) used MCMC method to estimate the parameters of parametric 

regression model with Weibull and generalized gamma distribution as baseline and gamma 

and log-normal as frailty distributions. Boneg (2001) considered Cox proportional hazards 

model and also parametric frailty models. In parametric frailty models he considered Weibull 

distribution as the baseline and log-normal, Weibull as frailty distributions. He applied MHL 

and RMHL methods to estimate the parameters of the models. 

First we check the goodness of fit of the data for positive stable frailty distributions with 

two baseline distributions and then apply Bayesian estimation procedure. To check the 

goodness of fit of kidney infection data set, we consider Kolmogrove-Smirnov (K-S) test for 

two frailty models. Table 3 gives K-S statistics and p-values of K-S statistics for Models I 

and II. Thus from the p-values of K-S test we can say that there is no substantial evidence to 
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reject the hypothesis that data are from Model I and Model II in the univariate case and we 

assume that they also fit for the bivariate case. Figure 1 shows the parametric plot versus non-

parametric plot of the survival function and these two graphs are close to each other which is 

also the evidence that the proposed models fit very well. 

We run two parallel chains for both models using two sets of prior distributions with the 

different starting points using Metropolis-Hastings algorithm and Gibbs sampler based on 

normal transition kernels. On the similar line of simulation, here also we assume same set of 

prior distributions. We iterate both the chains for 95000 times. We present here the analysis 

for only one chain with G (a1; a2) as prior for baseline parameters, for both the proposed 

models. Gelman-Rubin convergence statistic values are nearly equal to one and Geweke test 

statistic values are quite small and corresponding p-values are large enough to say the chains 

attain stationary distribution. Simulated values of parameters have autocorrelation of lag k, 

so every kth iteration is selected as sample.  

The trace plots for all the parameters show zigzag pattern which indicates that the 

parameters move and mix more freely. Thus it seems that the Markov chain has reached the 

stationary state. Burn-in period is decided by using coupling from the past plot. However, a 

sequence of draws after burn-in period may have autocorrelation. Because of the 

autocorrelation, consecutive draws may not be random, but values at widely separated time 

points are approximately independent. So, a pseudo random sample from the posterior 

distribution can be found by taking values from a single run of the Markov chain at widely 

spaced time points (autocorrelation lag) after burn-in period. The autocorrelation of the 

parameters become almost negligible after certain lag. We present trace plots, the coupling 

from the past plots and autocorrelations plots for the parameters of Model II only due to lack 

of space in the Figures 2, 3 and 4 respectively. 

The posterior mean and standard error with 95% credible intervals for baseline 

parameters, frailty parameter and regression coefficients for the Model I and II are presented 

in Table 4. Table 5 contain the posterior mean and standard error with 95% credible intervals 

for baseline parameters, and regression coefficients for the Model III and IV. 

 The AIC, BIC and DIC values for both the models are given in Table 6. The Bayes 

factors for the proposed models are also computed as given in Table 7. 

From the Tables 4 and 5, we can observe that for all other models except Model II ,  the 

value zero is not a credible value for the credible interval of the regression coefficient 𝑋2 and 

𝑋5 so 𝑋2 that is sex and disease type PKD variable seems significant. Negative value of  𝛽2 

indicates that the female patients have a slightly lower risk of infection and Negative value 

of  𝛽5 indicates that the patients with the absence of the disease type PKD have lower risk of 

infection. Whereas, these two covariates 𝑋2 and 𝑋5 are observed insignificant for the Model 

II. The remaining covariates  𝑋1 , 𝑋3 and 𝑋4 are insignificant for all the four models. 

The estimate of 𝜎2 from two models Model I and II shows that there is a strong evidence 

of high degree of heterogeneity in the population of patients. Some patients are expected to 

be very prone to infection compared to others with same covariate value. This is not 

surprising, as seen in the data set there is a male patient with infection time 8 and 16, and 

there is also male patient with infection time 152 and 562. 

The comparison between two proposed models is made using AIC, BIC and DIC values 

given in Table 6. If we order AIC values from smallest to largest then Model II ( the linear 

failure rate distribution) gets first rank then Model I (the Pareto distribution). Same order hold 

for BIC and DIC. The comparison among the four models is done using AIC, BIC and DIC 
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values given in Table 6. It is observed that the Model III and Model IV have AIC, BIC and 

DIC values are near about same. An alternative way to take the decision about the best model 

among the proposed Models I to IV, we use the Bayes factor which is defined as, 

 𝑀𝑖𝑗 = 2 𝑙𝑜𝑔 (
𝐼𝑖

𝐼𝑗
)     (9.1) 

Where 𝐼𝑖 is as defined as in equation (7.5). 

Bayes factor is calculated for all pairs of model and some of them given in Table 7.  From 

Table 7, we can observe that, between Model II and Model I, there is strong positive evidence 

against Model I, so Model II is better model for modeling kidney infection data. The estimate 

of the frailty parameter  σ2 for Model I is 0.9905874 and for Model II is 0.09947308 which 

is not equal to zero. This shows that there is heterogeneity between the first and second 

recurrence times of infection for each patient. Similarly the Bayes factor for Model II against 

Model IV is 4.509948 which shows that Model I and Model II are better fit for kidney 

infection data set as compared to Model III and Model IV, respectively. This is also a 

Bayesian test for testing  σ2 = 0  against σ2 > 0  and which supports the alternative 

hypothesis i.e., positive stable frailty models are better than positive stable models without 

frailty models. Also AIC, BIC and DIC values for two baseline models namely the Pareto 

(without frailty) and the linear failure rate (without frailty) are larger than that of positive 

stable frailty models for the two baseline distributions. 

Now, we are in a position to say that, we have suggested a new shared positive stable 

frailty model with linear failure rate distribution as the baseline distribution is best among the 

four proposed models for modeling of kidney infection data. For simulation study and to 

analysis the kidney infection data we used R software. 

 

10. Conclusions 

In the present study we discuss results for the four proposed models of inverse Gaussian 

frailty namely Pareto, linear failure rate distribution as the baseline distributions. The main 

aim of our study is to check which distribution (with the positive stable frailty or without 

frailty) fits better. We provide a mathematical set up and compare the four models. Models I 

and II are with the positive frailty and Models III and IV are without frailty. For maximum 

likelihood estimate, likelihood equations do not converge and method of maximum likelihood 

fails to estimate the parameters so we use Bayesian approach. Using the Bayesian approach 

we perform simulation study and analyze kidney infection data. The estimate of 𝜎2  is 

0.09947308 for Model-II which is the best model shows that there is a strong evidence of 

degree of heterogeneity in the population of patients. The covariate sex and the disease type 

PKD are significant for all the models except positive stable frailty with baseline distribution 

as the linear failure rate distribution. Negative value of the regression coefficient (𝛽2) of 

covariate sex indicates that the female patients have a slightly lower the risk of infection. 

Negative value of the regression coefficient (𝛽5) of covariate, the disease type PKD indicates 

that the patient with the absence of this diseases have a slightly lower the risk of infection. 

On the basis of AIC, BIC, DIC and Bayes factor, the Model II, the shared positive stable 

frailty with linear failure rate distribution is best model for modeling kidney infection data 

among the proposed models. Now, we are in a position to state that the proposed new shared 

positive stable frailty model with the linear failure rate distribution as baseline distribution is 

better than the models proposed for modeling of kidney infection data. The methods 
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discussed in this paper may be extended into other shared frailty models and correlated frailty 

models with different baseline distributions, using the Bayesian approach, provided the 

models fit to data. One can also extend the proposed model to multi-component shared frailty 

models. 
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Appendix: Summary Tables and Figures: 

 
Table 1: Posterior summary for simulation study of Model-I. 

parameter 𝛼1 𝜆1 𝛼2  𝜆2 𝜎2 𝛽1 

True values 0.25 0.25 0.25 0.25 0.75 -3.8 

sample size=20 

burn in period =  950                                                          autocorrelation lag= 150 

estimates 0.280904 

 

0.2838714 

 

0.2723999 

 

0.261723 

 

0.8801124 

 

-3.939452 

 

standard error 0.1233409 

 

0.1225483 0.1184056 

 

0.1195386 

 

0.08106604 

 

2.576794 

 

lower credible 

limit 

0.066087 

 

0.06343372 

 

0.05869177 

 

0.04933541 

 

0.6832267 

 

-8.461468 

 

upper credible 

limit 

0.4887591 

 

0.4867706 

 

0.4849388 0.4781525 

 

0.9913789 

 

0.7801628 

 

sample size=40 

burn in period=620                                                               autocorrelation lag=75 

estimates 0.2930073 

 

0.3126566 

 

0.2849835 

 

 

0.2585286 

 

0.8011688 

 

-3.693858 

 

 standard error 0.1096766 

 

0.1088458 

 

0.1129356 0.1128761 

 

0.08220506 

 

2.433693 

lower credible 

limit 

0.08831176 

 

0.1030195 

 

0.08711319 

 

0.06023422 

 

0.6283727 

 

-8.214474 

 

 upper credible 

limit 

0.4844478 

 

0.4918806 

 

0.4828043 

 

0.4705605 

 

0.9475134 

 

0.774409 

sample size=60 

burn in period = 565                                                               autocorrelation lag=200 

estimates 0.2754175 

 

0.2659712 

 

 

0.2774788 

 

0.2840123 

 

0.9069161 

 

-3.777176 

 

 standard error 0.1131657 

 

0.11845 0.100278 

 

0.112632 

 

0.0496931 

 

2.39094 

lower credible 

limit 

0.08402532 

 

0.06558146 

 

0.09949041 

 

 

0.08802531 

 

0.7908275 

 

 

-8.121762 

 

upper credible 

limit 

0.4802355 

 

0.479929 

 

0.4835334 0.4867116 

 

0.9852454 0.6786623 
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Table 2: Posterior summary for simulation study of Model-II. 

parameter 𝛼1 𝜆1 𝛼2  𝜆2 𝜎2 𝛽1 

True values 0.25 0.25 0.25 0.25 0.75 -3.8 

sample size=20 

burn in period =  890                                                          autocorrelation lag= 180 

estimates 0.3393066 

 

0.3549633 

 

0.3603378 

 

0.271885 

 

0.6182421 

 

-1.326632 

 

 standard error 0.1130688 

 

0.1114313 

 

0.08816078 

 

0.1308277 

 

0.07329836 

 

2.009523 

lower credible 

limit 

0.1015206 

 

0.09482809 

 

 

0.1756803 

 

 

0.03112865 

 

0.507201 

 

-5.988828 

 

 upper credible 

limit 

0.4941504 

 

0.4961589 0.4937157 0.4887756 

 

0.7811557 

 

1.085623 

sample size=40 

burn in period=1000                                                               autocorrelation lag=220 

estimates 0.3832357 

 

0.3463455 

 

 

0.3420224 

 

0.3201831 

 

0.7366764 

 

-1.358665 

 

standard error 0.0850148 

 

0.1086084 0.09436857 

 

0.1148916 

 

0.08612583 1.823473 

lower credible 

limit 

0.185013 

 

0.1130564 

 

0.1497686 

 

0.07528673 

 

0.5652054 

 

-5.497042 

 

upper credible 

limit 

0.4977976 

 

0.4889666 

 

0.4881111 

 

0.4882701 

 

0.9030554 

 

1.038235 

 

sample size=60 

burn in period = 860                                                               autocorrelation lag=140 

estimates 0.3399367 

 

0.2296347 

 

0.3313701 

 

0.2453776 

 

0.9010157 

 

-3.612104 

 

 standard error 0.09395233 

 

0.1318234 

 

0.09644859 

 

0.1227285 

 

0.05932499 

 

2.3117 

lower credible 

limit 

0.1436716 

 

0.01743385 

 

0.1277884 

 

0.03335041 

 

0.7691643 

 

-7.970002 

 

upper credible 

limit 

0.4846883 

 

0.4816327 

 

0.4823248 

 

0.474177 

 

0.9906815 

 

0.7209903 
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Table 3: Goodness-of-Fit Test: p-values K-S statistic for kidney infection data. 

 

 

Table 4: Posterior summary for kidney infection data (with frailty). 
parameter estimates Standard errors Credible Intervals 

Lower                   Upper 

Model-I 

burn in period =4900 ;                          autocorrelation lag = 390 

 

 

 

 

𝛼1 374.0661 

 

 

144.2624 113.7419 

 

 

647.5056 

𝜆1 0.0001027526 

 

4.355268e-05 2.867684e-05 

 

 

0.0001856185 

 𝛼2 168.0822 

 

72.6489 

 

55.16457 

 

319.454 

 𝜆2 0.0001829079 

 

8.768454e-05 

 

4.948535e-05 

 

 

0.000365592 

 𝜎2 0.9905874 

 

 

0.005358941 0.9806914 

 

0.9993841 

𝛽1 -0.001826926 

 

0.01119982 

 

-0.02458576 

 

 

0.01898687 

𝛽2 -1.963393 

 

0.3446205 

 

-2.659972 

 

 

-1.225246 

𝛽3 0.08457348 

 

0.5049168 

 

-0.8824975 

 

 

1.001987 

𝛽4 0.5743893 

 

0.4807577 

 

-0.3318283 

 

 

 

1.570036 

𝛽5 -1.739805 0.7929413 

 

-3.435528 -0.1741612 

 

 
Model-II 

sample size =376;          burn in period = 2900     ; autocorrelation lag = 245 

 

𝛼1 0.4255726 

 

0.1729295 

 

0.1319948 0.707844 

𝜆1 0.6505053 

 

0.2505449 0.1746949 

 

 

 

1.085266 

𝛼2 0.2344126 

 

0.1104899 

 

0.0512453 

 

0.4229779 

  𝜆 2 0.2623358 

 

0.09153172 0.07128838 

 

 

0.4160256 

 𝜎2 0.09947308 

 

0.005559472 

 

0.09056909 

 

 

0.1092915 

 𝛽1 0.0385522 

 

0.033049 -0.02673231 

 

 

0.1008662 

𝛽2 2.834081 

 

1.674205 

 

-0.7860735 

 

 

6.059215 

𝛽3 -1.117593 

 

1.808156 

 

-4.431651 

 

 

2.485092 

 𝛽4 1.827481 

 

1.608901 

 

-1.135988 

 

5.129128 

 𝛽5 4.573523 

 

2.097591 

 

-0.004322224 

 

8.629341 

  

 

  

Model K-S statistic p-value 

        T1                               T2       T1                          T2 

M51  0.0916115                      0.2164123 0.94958              0.18087 

M52 0.092606                        0.09700206 0.94521               0.96135 

M53 0.2694944                     0.3045484 0.02377                0.01795                   
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Table 5: Posterior summary for kidney infection data (without frailty). 

parameter estimates Standard errors Credible Intervals 

Lower                   Upper 

Model-III 

burn in period =4200;                             autocorrelation lag = 175 

 

 

 

 

𝛼1 5.736529 

 

 

0.2907806 5.27021 

 

6.205373 

 𝜆1 0.004387376 

 

0.001076047 

 

0.002562282 0.006798781 

 𝛼2 4.639292 

 

0.2647609 

 

4.150602 

 

5.097112 

  𝜆2 0.003769206 

 

0.0009706187 

 

0.002218359 

 

0.006214084 

 𝛽1 0.007744368 0.001812187 

 

0.00513808 

 

0.01156880 

 𝛽2 -1.360372 

 

0.09258068 

 

-1.532108 

 

-1.176188 

 𝛽3 0.1366707 

 

0.02528144 

 

0.08922512 0.1835642 

 𝛽4 0.4392114 

 

0.0460324 

 

0.3512535 0.5276363 

 𝛽5 -0.975594 

 

0.0489514 

 

-1.060617 

 

-0.8829844 

 Model-IV 

sample size =614;          burn in period = 2800      ; autocorrelation lag = 150 

 

𝛼1 0.05934085 

 

0.00947535 

 

0.04229809 

 

0.07758285 

 𝜆1 9.003461e-05 

 

6.26851e-05 

 

4.211935e-06 

 

0.0002329112 

 𝛼2 0.03766217 

 

0.008481351 

 

0.0223056 

 

0.05364669 

  𝜆 2 0.0001444767 8.141666e-05 

 

1.337838e-05 

 

0.0003191021 

 𝛽1 -0.007967762 

 

0.001007799 

 

-0.009856889 

 

-0.006177085 

 𝛽2 -2.198325 

 

0.09721508 

 

-2.379813 

 

-2.025257 

 𝛽3 -0.02020167 

 

0.01010386 

 

-0.03814659 

 

-0.001807124 

 𝛽4 0.6997416 0.04967755 

 

0.6086342 

 

0.7881851 

 
𝛽5 -1.999475 

 

0.05185462 

 

-2.092303 

 

-1.910351 

  

 
Table 6: AIC, BIC and DIC values for kidney infection data. 

Model  AIC values BIC values DIC values 

I 671.9253 688.3012 665.5221 

II 644.7855 661.1613 634.2004 

III 

 

682.0526 696.7909 668.1965 

IV 681.6591 696.3973 668.2088 
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Table 7: Bayes factor values and decision for models fitted to kidney infection data set. 

Numerator model 

against denominator 

model 

2log(Bjk ) Range Evidence against 

model in denominator 

Model-II against Model-I  (M21) 3.544948 ( 2 to 6) positive 

 

positive 

 

positive 

Model-II against Model-IV (M24) 4.509948 

 

( 2 to 6) 

Model-I against Model-III (M13) 0.865703 

 

( 0 to 2) 

 

 

Figure1: Survival function plots for (K-M survival and parametric survival). 
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Figure 2: Trace plot (Chain I) for Model M52 
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Figure 3: Coupling from the past plots for Model M52 
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Figure 4: Autocorrelation Graphs for Model M52 
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