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Abstract: In this paper, a new class of five parameter gamma-exponentiated or 

generalized modified Weibull (GEMW) distribution which includes 

exponential, Rayleigh, Weibull, modified Weibull, exponentiated Weibull, 

exponentiated exponential, exponentiated modified Weibull, exponentiated 

modified exponential, gamma-exponentiated exponential, gamma-

exponentiated Rayleigh, gamma-modified Weibull, gamma-modified 

exponential, gamma-Weibull, gamma-Rayleigh and gamma-exponential 

distributions as special cases is proposed and studied. Mathematical properties 

of this new class of distributions including moments, mean deviations, 

Bonferroni and Lorenz curves, distribution of order statistics and Renyi entropy 

are presented. Maximum likelihood estimation technique is used to estimate the 

model parameters and applications to real data sets presented in order to 

illustrate the usefulness of this new class of distributions and its sub-models. 

 

Key words: Modified Weibull distribution; statistical properties; maximum 

likelihood; applications. 

 

 

1. Introduction 

Weibull distribution (Weibull, 1951) has exponential and Rayleigh as special sub-models 

and it is one of the most popular distributions for modeling lifetime data with monotone 

failure rates. However, as for non-monotone failure rates, Weibull distribution does not t very 

well. Recently, several modified Weibull distributions with additional parameters have been 

proposed and studied as lifetime distributions in reliability and lifetime data analysis. 

Recently, several ways of generating new probability distributions from classic ones have 

been developed and discussed in the literature on distribution theory and its applications. 

Nelson (1982) stated that distributions with bathtub-shaped failure rate are complex and, 

therefore, di cult to model. The distribution pro-posed by Hjorth (1980) is an example. 

Rajarshi and Rajarshi (1988) presented a revision of these distributions, and Haupt and 

Schabe (1992) introduced a new lifetime model with bathtub-shaped failure rates. However, 

these models are not sufficient to address the various complex practical situations, so new 

classes of distributions were presented based on the modifications of the Weibull distribution 

to satisfy non-monotonic failure rate. For a review of these models, the reader can refer to 

Pham and Lai (2007), where the authors summarized some generalizations of Weibull 

distribution. Jones (2004) studied a family of distributions derived from the distribution of 

order statistics, the beta-generated family proposed by Eugene et al. (2002). Other 

generalizations include: the exponentiated Weibull (EW) (Gupta and Kundu, 1999), the 

modified Weibull (MW) (Lai et al., 2003), the beta exponential (BE) (Nadarajah and Kotz, 
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2006). Some re-cent extensions are the generalized modified Weibull (GMW) (Carrasco et 

al., 2008), the beta modi ed Weibull (BMW) (Silva et al., 2010), the Weibull-G fam-ily 

(Burguignon et al., 2014), the Gamma-exponentiated Weibull distributions (GEW) (Pinho et 

al., 2012) and the McDonald exponentiated modified Weibull (McEMW) (Merovci and 

Elbatal, 2015). 

Ristic and Balakrishnan (2011), provided a new family of distributions whose cumulative 

distribution function (cdf) were generated by equation (1). As a natural extension, in this 

paper we introduce a new distribution with ve pa-rameters, referred to as the gamma-

exponentiated modi ed Weibull (GEMW) distribution with the aim of attracting wider 

application in reliability, biology and other areas of research. This generalization contains as 

special sub-models several distributions such as the EW (Gupta and Kundu, 1999), MW, 

generalized Rayleigh (GR) (Kundu and Rekab, 2005) and a new sub-model, namely Gamma 

modi ed Weibull (GMW) distributions, along with several others. Due to its exibility in 

accommodating all the forms of the hazard function, the proposed GEMW distribution seems 

to be an important distribution that can be used in various problems in modeling survival data. 

The GEMW distribution is not only useful for modeling bathtub-shaped failure rate data but 

also suitable for testing goodness-of- t of some special sub-models such as the EW (Gupta 

and Kundu, 1999), MW, GMW (new) and GEW distributions. 

The rest of the paper is organized as follows. In Section 2; we de ne the GEMW 

distribution and provide its hazard rate, reverse hazard and quantile functions. Expansions for 

its probability density function (pdf) and some special sub-models are presented as well. The 

moments, moment generating and characteristic functions are given in section 3: Section 4 is 

devoted to mean deviations about the mean and the median, Bonferroni and Lorenz curves. 

Section 5 contains results on the distribution of order statistics and Renyi entropy. In section 

6; estimation of the parameters of the GEMW distribution via the method of maximum 

likelihood is presented. Applications are given in section 7, followed by concluding remarks 

in section 8: 

 

 

2. The Model 

2.1 Definition 

Based on a continuous cdf F(x) with survival function �̅�(x) and pdf f(x) and the method 

proposed by Zografos and Balakrishnan (2009), Ristic and Balakrishnan (2011) proposed an 

alternative gamma-generator defined by the cdf and pdf: 

 

  (1) 

and 

 

   (2) 

respectively. For 𝛿 = 𝑛 ∈ N, equation (2) is the pdf of the nth lower record value of a sequence 

of i.i.d. variables from a population with density f(x). 
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Consider the exponentiated modified Weibull (EMW) (Carrasco et al., 2008) distribution 

with cdf given by 

 

    (3) 

and pdf 

 

 (4) 

where 𝑥, 𝑘, 𝛼, 𝜆 > 0 and β ≥ 0. By replacing F(x) in (1) by the EMW cdf, we obtain a new 

extension of EMW distribution, called the gamma-exponentiated modified Weibull (GEMW) 

distribution. Inserting (3) in (1) yields the GEMW cdf (for x > 0) 

   (5) 

 
Figure 1: Graphs of GEMW pdf with varying values of α and β; respectively 

 
Figure 2: Graphs of GEMW pdf with varying values of δ and λ; respectively 

 

where , 𝑘, 𝛼, 𝜆 > 0 , 𝛽 ≥ 0 and γ(δ, 𝑥) = ∫ 𝑡𝛿−1𝑒−𝑡𝑑𝑡
𝑥

0
 is the incomplete gamma function. 

The pdf corresponding to (5) is given by 
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for 𝑥, 𝑘, 𝛼, 𝜆 > 0 and 𝛽 ≥ 0. A random variable X having density (6) is denoted by X~GEM 

W(𝛿, 𝛼, 𝛽, 𝑘, 𝜆). Several possible shapes of the GEMW pdf are shown in Figure 1, 2 and 3. 

Note that the parameters 𝜆 controls the scale of the distribution, 𝑘, 𝛼 and 𝛿 controls its shape, 

𝛽 is a sort of accelerating factor in the imperfection time that works as a factor of fragility in 

the survival of the individual as time increases. 

 
Figure 3: Graph of GEMW pdf when only the parameter k changes 

 

2.2 Hazard rate, reverse hazard and quantile functions 

In this section, we provide the hazard rate, reverse hazard and quantile functions of the 
GEMW distribution. 

 
 

2.2.1 Hazard rate and reverse hazard functions 

Note that if X is a continuous random variable with cdf G(x); and pdf g(x); then the 
failure of hazard rate function (hrf), reverse hazard function (rhf) and mean residual life 

functions are given by ℎ𝐺(𝑥) =
𝑔(𝑥)

�̅�(𝑥)
, 𝜏𝐺(𝑥) =

𝑔(𝑥)

G(x)
; and 𝛿𝐺(𝑥) = ∫ �̅�(𝑢)𝑑𝑢/�̅�(𝑢)

∞

𝑥
, 

respectively. The functions ℎ𝐺(𝑥), 𝛿𝐺(𝑥) , and �̅�(𝑥)  are equivalent. (Shaked and 
Shanthikumar, 1994). The hazard rate and reverse hazard rate functions of GEMW 
distribution are given by 
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and 

 
respectively 

 

 
Figure 4: Graphs of GEMW hazard function 

 

Plots of hrf are presented in Figure 4. These plots show various shapes including 

monotonically decreasing, monotonically increasing, unimodal and bathtub shapes for 

different combinations of the values of the parameters. This flexibility makes the GEMW hrf 



590      A GENERALIZED CLASS OF EXPONENTIATED MODI ED WEIBULL DISTRIBUTION  

WITH APPLICATIONS 

 

suitable for monotonic and non-monotonic empirical hazard behaviors which are more likely 

to be the case in real life situations. 

The density and hazard functions can exhibit different behavior depending on the values 

of the parameters when chosen to be positive, as shown in these plots. However, it is hard to 

analyze the shape of both the density and hazard function due to their complicated forms. 

 

 

2.2.2 Quantile function 

We can know more about this model by expanding the density function and analyzing the 

quantile function. The GEMW quantile function can be obtained by inverting �̅�(𝑥) = 1 − 𝑢, 

where 𝐺(𝑥) = 𝑢 and 

 

 
and the inverse incomplete gamma function can be implemented by using numerical methods. 

Consequently, random number can be generated based on (8). 

 

2.3 Expansion of the GEMW Density Function 

Consider the series − log(1 − 𝑦) = ∑
𝑦𝑖+1

𝑖+1
∞
0  , where 0 < 𝑦 < 1 , and y = 𝑒−(

𝑥

𝜆
)𝑘𝑒𝛽𝑥

. The 

GEMW distribution can be written as 

 
Note that: 

 

Next , let 𝑎𝑠 =
1

𝑠+2
 , then (∑ 𝑎𝑠𝑦

𝑠)∞
𝑠=0

𝑚
= ∑ 𝑏𝑠

∞
𝑠=0 , 𝑦𝑠

𝑚
  where 

 
ad 𝑏0,𝑚 = 𝑎0

𝑚 . Now , we can write the GEMW pdf as  
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where 𝑓𝑀𝑊(𝑥) = 𝑓(𝑥; 𝑘, 𝛽, 𝜆𝑀𝑊)denotes the pdf of the modified Weibull distribution (Lai et 

al., 2003) with 𝜆𝑀𝑊 =
𝜆

(𝑟+𝑚+𝑠+𝛿)
1
𝑘

> 0 . To simplify the notation, one can define 𝑉 =

{(𝑚, 𝑠, 𝑟) ∈ 𝒁+
𝟑 } as an index set and the weights w𝑣 =

(−1)𝑟𝛼𝛿

Γ(𝛿)
(𝛿−1

𝑚
)(𝛼−1

𝑟
)

𝑏𝑠,𝑚

𝑟+𝑚+𝑠+𝛿
, for 𝑣 ∈

𝑉. Therefore, the GEMW pdf can be written as 

 

 
 

Equation (13) shows that the GEMW density is indeed a linear combination of modified 

Weibull distribution. Hence, most of its mathematical properties can be immediately obtained 

from those of the modified Weibull distribution. For the convergence of equations (12) and 

(13), as well elsewhere in this paper, note that for > 0; 

 
so that  

 

is convergent if and only if 0 < (𝑦 ∑
𝑦𝑘

𝑘+2
∞
𝑘=0 )𝑘 < 1 ∀ 𝑦 ∈ (0,1),since 0 < y = 𝑒−(

𝑥

𝜆
)𝑘𝑒𝛽𝑥

<

1,𝑥 > 0, 𝜆, 𝑘 > 0, and β ≥ 0 . Now , 0 < 𝑦 ∑
𝑦𝑘

𝑘+2
∞
𝑘=0 = −

log(1−y)

y
− 1 , so we must have 

0 < −
log(1−y)

y
− 1 < 1  . This leads to 1 − y > exp (−2y)  , and on the other hand 

exp(−y) = ∑
(−1)𝑘𝑦𝑘

𝑘!
∞
𝑘=0 > 1 − y . Thus , we have the system of inequalities  1 − y >

exp (−2y) and exp(−y) > 1 − y , which is statisfied ∀y ∈ (0,0.7968). 

 

 

2.4 Some Sub-models 

In this section, some sub-models of the GEMW distribution are presented. The GEMW 

distribution contains several special sub-models that are well known distributions. When β = 

0, we obtain 

 
which is the gamma-exponentiated Weibull (GEW) distribution, given by Pinho et al. (2012). 

The GEW distribution has several special cases as its sub-models. For instance, = 1 leads to 

the exponentiated Weibull (EW) distribution (Gupta and Kundu, 2001), with a pdf: 



592      A GENERALIZED CLASS OF EXPONENTIATED MODI ED WEIBULL DISTRIBUTION  

WITH APPLICATIONS 

 

 
When α = 𝑘 = 1 , EW distribution has the exponential distribution (Gupta and Kundu, 2001) 

as a sub-model with a pdf 

 
By setting k = 1; EW distribution leads to the exponentiated exponential (EE) with a pdf 

 
Let 𝛼 = 1, from EW distribution we can also obtain Weibull distribution (Weibull, 1951) 

whose pdf is given by 

 
When 𝛽 = 0 , 𝛼 = 1 and 𝛽 = 0, 𝛼 = 𝑘 = 1 , the gamma-Weibull (GW) (Pinho et al., 2012) 

with a pdf 

 
and gamma-exponential (GE) (Pinho et al., 2012) distributions with a pdf 

 
are obtained, respectively. The gamma-exponentiated exponential (GEE) distri-bution 

follows from 𝛽 = 0 and k = 1, whose pdf is given by 

 
Moreover, when 𝛽 = 0, 𝑘 = 2 𝑎𝑛𝑑 𝛽 = 0, 𝑘 = 2, 𝛼 = 1 we obtain gamma-exponentiated 

Rayleigh (GER) (Ristic and Balakrishnan, 2011) distribution with a pdf 

 
and gamma-Rayleigh (GR) distribution (Ristic and Balakrishnan, 2011) with a pdf 

 
respectively. 

When𝛽 ≠ 0 , by setting 𝛼 = 𝛿 = 1, we obtain the modified Weibull distribution (MW) 

(Lai et al., 2003), whose pdf is given by 
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For 𝑘 = 0 , α = 1 and 𝑘 = 0 , δ =  α = 1 , GEMW gives gamma-extreme value (GEV) 

(Coles, 2001) and extreme value (EV) (Coles, 2001) distributions, with pdfs 

 
and 

 
respectively. One can also obtain gamma-modified Weibull (GMW) distribution by letting 

α = 1 in GEMW distribution, the corresponding pdf of GMW is: 

 
which is a new distribution. 

 

 

3. Moments, moment generating and characteristic functions 

In this section, the moments, moment generating function and characteristic function of 

the GEMW distribution are presented. Let Z be a random variable with a density function 

g(z), as in equation (6) and X be a random variable with modified Weibull density function 

𝑓𝑀𝑊(𝑥). 

 

3.1 Moments 

As mention earlier in section 2.3, the GEMW distribution is a linear combination of 

modified Weibull distribution. Recall the general results for the beta-modi ed Weibull (BMW) 

distribution given by Nadarajah et al. (2011). Let 𝑌~𝐵𝑀𝑊(𝑎, 𝑏, 𝛼, 𝛾, 𝜆) with pdf 

 

 
 

where 𝑎, 𝑏, α > 0  and γ, λ ≥ 0  . Note that 𝑓𝑀𝑊(𝑥)  is a sub-model of BMW distribution 

(Silva et al., 2010) with the parameters: 

 
Using the moments of BMW distribution, the moments of the MW distribution (Nadarajah et 

al., 2011) are as follow: 
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where 𝐼1(𝑗, 𝑡), 𝑤𝑗 and 𝑎𝑗 given by 

 
and 

 
respectively. 

There is also another relatively simpler form of the tth moment by using the Lambert W 

(.) function. We can get the following equation for 𝐼1(𝑗, 𝑡), 

 
Substituting equation (18) in (14) gives a representation for moments of the MW (Lai et al., 

2003) distribution in a relatively concise form with only a doubly infinite series. Thus, the 

moments of GEMW can be obtained from the moments above. Let 𝑍~𝐺𝐸𝑀𝑊(𝜆, 𝛿, 𝛼, 𝛽, 𝑘) , 

then E(Zt) can be expressed in terms of the tth moments of the same baseline MW distribution, 

which is

 
 

where E(Xt) is defined by equation (14), and by substituting 𝐼1(𝑗, 𝑡) from equation (18), one 

can also get another form of moments for GEMW distribution. 

Conditional expectations are very useful for lifetime models, so it is very important to know 

E(𝑋𝑡|𝑋 > 𝑥), which is given by: 

 
where 
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and 𝑤𝑗 𝑎𝑛𝑑 𝑎𝑗 are given by (16), (17) and Γ(𝑎, 𝑥) = ∫ 𝑦𝑎−1𝑒−𝑦𝑑𝑦
∞

𝑥
. 

Similarly, a relatively simpler representation for E(𝑋𝑡|𝑋 > 𝑥)  can be obtained from 

equation (18),  

 
3.2 Moment generating and characteristic functions 

Let 𝑋~𝐺𝐸𝑀𝑊(𝜆, 𝛿, 𝛼, 𝛽, 𝑘), the moment generating function and characteristic function 

of X are given by 𝑀(𝑡) = 𝐸(𝑒𝑡𝑥) and 𝜙(𝑡) = 𝐸(𝑒𝑖𝑡𝑥) , respectively, where 𝑖 = √−1. Note 

that 𝑀(𝑡) and 𝜙(𝑡) can be express as 𝑀(𝑡) = ∑
𝑡𝑘

𝑘!
∞
𝑘=0 𝐸(𝑋𝑘) and 𝜙(𝑡) = ∑

(𝑖𝑡)𝑘

𝑘!
𝐸(𝑋𝑘)∞

𝑘=0 , 

where 𝐸(𝑋𝑘) is the given by equation (14). Nothing that, 𝑔(𝑥) can be expressed as an infinite 

weighted sum, we have 

 
Where 𝑀𝑀𝑊(𝑡) is the moment generating function of the MW distribution, which is, 

 
The corresponding characteristic function is 

 
with 

 
where 𝑤𝑗 is given by equation (16). 

 
 

4. Mean deviations, Bonferroni and Lorenz curves 

In this section, mean deviations about the mean and the median, Bonferroni and Lorenz 

curves of the GEMW distribution are represented. 

 

4.1 Mean deviations 

Let 𝑋~𝐺𝐸𝑀𝑊(𝛿, 𝛼, 𝛽, 𝑘, 𝜆), the mean deviation about the mean and the mean deviation 

about the median are defined by 𝛿1(𝑋) = ∫ |𝑥 − 𝑢|𝑔(𝑥)𝑑𝑥
∞

0
, and 𝛿2(𝑋) = ∫ |𝑥 −

∞

0
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𝑀|𝑔(𝑥)𝑑𝑥 , respectively, where μ = E(X) and 𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) denotes the median. The 

measures 𝛿1(𝑋) and 𝛿2(𝑋) can be calculated using the relationships 

 

Recall that 𝑔(𝑥) = ∑ 𝜔𝑢𝑓𝑀𝑊(𝑥)𝜐∈𝑉 , so that ∫ 𝑥𝑔(𝑥)𝑑𝑥 =
∞

𝜇
∑ 𝜔𝑢𝐼3𝜐∈𝑉  and 

∫ 𝑥𝑔(𝑥)𝑑𝑥 =
∞

𝑀
∑ 𝜔𝑢𝐼4𝜐∈𝑉  , where 

 
and 𝜔𝑗 and 𝑎𝑗 are given by equation (16) and (17), respectively. It follows that 

 
4.2 Bonferroni and Lorenz Curves 

In this section, some inequality measures, namely Bonferroni and Lorenz curves are 

presented. These quantities have been applied to a wide variety of fields, such as studying of 

income and property in economics, reliability, demography, insurance and medicine.  

For 𝑋~𝐺𝐸𝑀𝑊(𝛿, 𝛼, 𝛽, 𝑘, 𝜆), they are defined by 

 
respectively, where 𝜇 = 𝐸(𝑋) and q = 𝐺−1(𝑝) is obtained from equation (8). 

Using similar methods in deriving the moments, we can show that 

 
where 
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and 𝜔𝑗 and 𝑎𝑗 are given by equation (16) and (17), respectively. We can reduce the curves in 

equation (25) to  

 
respectively. 

 

 

5. Order Statistics and Renyi Entropy 

In this section, the distribution of the ith order statistic and Renyi entropy for the GEMW 

distribution are presented. 

 

5.1 Order Statistics 

Consider 𝑋1, … . . , 𝑋𝑛 i.i.d random variables distributed according to (2). The pdf of the 

ith order statistic, say𝑋𝑖:𝑛, is given by 

 
Using the binomial theorem, the pdf of ith order statistic can be written as 

 
Applying the power series (see Gradshteyn and Ryzhik, 2000) 

 
we have 

 

Let 𝑐𝑚 =
(−1)𝑚

𝑚!(𝑚+𝛿)
 and use the result on a power series raised to a positive integer, as in 

section 2.3, to write 
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where 𝑑0,𝑛+𝑗−𝑖 = 𝑐0
(𝑛+𝑗−𝑖)

 and 𝑑𝑚,𝑛+𝑗−𝑖 = (𝑚𝑐0)
−1 ∑ [(𝑛 + 𝑗 − 𝑖)𝑙 − 𝑚 +𝑚

𝑙=1

𝑙] 𝑐𝑙𝑑𝑚−𝑙,𝑛+𝑗−𝑖. Replacing 𝑔(𝑥) by the right hand side of (2), we obtain 

 
where 𝑔𝛿(𝑛+𝑗−𝑖+1)+𝑚(𝑥)  denotes the GEMW with δ∗ = δ(𝑛 + 𝑗 − 𝑖 + 1) + 𝑚 > 0 . 

Consequently, 𝑔𝑖:𝑛(𝑥) is a linear combination of modified Weibull densities. This is very 

useful result since we can derive properties of the order statistics of the GEMW distribution 

from those of modified Weibull distribution. For instance, we can obtain 

 
where 𝐼1(𝑙, 𝑡) is given by equation (15). These moments are used in areas such as quality 

control, reliability and insurance, for prediction of future failure times from a set of past 

failures. 

 

5.2 Renyi Entropy 

Renyi entropy is defined by 

 
where 𝑣 > 0 and 𝑣 ≠ 1. Raising equation (6) to the power and using the similar expansion 

in section 2, we obtain 

 

where 𝜆∗∗ =
𝜆

(𝛿𝑣+𝑚+𝑠+𝑟)1/𝑘 > 0  and 𝑏𝑠,𝑚  is given by equation (11). Consequently Renyi 

entropy for the GEMW distribution reduces to: 
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(29) 

where 𝜔𝑗 and 𝑎𝑗 are given by equation (16) and (17), and Γ(a) = ∫ 𝑦𝑎−1𝑒−𝑦∞

0
𝑑𝑦. 

 

 

6. Estimation of Parameters 

Let 𝑋~𝐺𝐸𝑀𝑊(𝛿, 𝛼, 𝛽, 𝑘, 𝜆) and Δ = (𝛿, 𝛼, 𝛽, 𝑘, 𝜆)𝑇 be the parameter vector. The log-

likelihood for a single observation 𝑥 of X is given by 

 
The first derivative of the log-likelihood function with respect to the parameters 

Δ = (𝛿, 𝛼, 𝛽, 𝑘, 𝜆)𝑇 are given by  

 

 
and 
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The total log-likelihood function based on a random sample of n 

observations:{𝑥1, 𝑥2, ……𝑥𝑛} drawn from the GEMW distribution is given by ℓ∗ = 𝐿(Δ) =
∑ ℓ𝑖(Δ)𝑛

𝑖=1 , where ℓ𝑖(Δ), 𝑖 = 1,2,…… , n is given by equation (30). The equations obtained 

by setting the above partial derivatives to zero are not in closed form and the values of the 

parameters α, β, θ, λ, δ must be found by using iterative methods. The maximum likelihood 

estimates of the parameters, denoted by Δ̂ is obtained by solving the nonlinear equation 

(
𝜕ℓ∗

𝜕𝛼
,
𝜕ℓ∗

𝜕𝛽
,
𝜕ℓ∗

𝜕𝑘
,
𝜕ℓ∗

𝜕𝜆
,
𝜕ℓ∗

𝜕𝛿
)T = 0 , using a numerical method such as Newton-Raphson procedure. 

We maximize the likelihood function using NLmixed in SAS as well as the function nlm 

in R (2011). These functions were applied and executed for wide range of initial values. This 

process often results or lead to more than one maximum, however, in these cases, we take the 

MLEs corresponding to the largest value of the maxima. In a few cases, no maximum was 

identified for the selected initial values. In these cases, a new initial value was tried in order 

to obtain a maximum. 

The issues dealing with the existence and uniqueness of the MLEs are theo-retical interest 

and has been studied by several authors for di erent distributions including Seregin (2010), 

Santos Silva and Tenreyro (2010), Zhou (2009), and Xia et al. (2009). We hope to investigate 

this problem or issue for the GEMW distribution in the future. 

Let Δ̂ = (α̂, β̂, k̂, λ̂, δ̂) be the maximum likelihood estimate of Δ = (α, β, k, λ, δ) Under 

the usual regularity conditions and that the parameters are in the inte-rior of the parameter 

space, but not on the boundary, (Ferguson, 1996) we have: 

√𝑛(∆̂ − ∆)
𝑑
→ 𝑁5(0, 𝐼−1(∆)), where  𝐼(∆) is the expected Fisher information matrix. The 

asymptotic behavior is still valid if 𝐼(∆) is replaced by the observed information matrix 

evaluated at ∆̂ , that is J(∆̂). Elements of the observed information matrix are given in the 

Appendix. The multivariate normal distribution 𝑁5(0, 𝐽(∆̂)−1), where the mean vector 0 = (0, 

0, 0, 0, 0)T , can be used to construct confidence intervals and confidence regions for the 

individual model parameters and for the survival and hazard rate functions. That is, the 

approximate 100(1 − η)% two-sided confidence intervals for α, β, k λ, and δ are given by: 

 

and 𝛿 ± 𝑍𝜂

2

√𝐼𝛿𝛿
−1(∆̂), respectively, where 𝐼𝛼𝛼

−1(∆̂), 𝐼𝛽𝛽
−1(∆̂), 𝐼𝑘𝑘

−1(∆̂), 𝐼𝜆𝜆
−1(∆̂) and 𝐼𝛿𝛿

−1(∆̂) are the 

diagonal elements of 𝐼𝑛
−1(∆̂) = (𝑛𝐼(∆̂))−1, and 𝑍𝜂

2
 is the upper 

𝜂𝑡ℎ

2
 percentile od a standard 

normal distribution. 

The maximum likelihood estimates (MLEs) of the GEMW parameters α, β, θ, λ, and δ 

are computed by maximizing the objective function via the subroutine NLmixed in SAS. The 

estimated values of the parameters (standard error in parenthesis), -2log-likelihood statistic, 

Akaike Information Criterion, AIC = 2p− 2 ln(L), Bayesian Information Criterion, BIC = p 

ln(n) − 2 ln(L), and Consistent Akaike Information Criterion, AICC = AIC +2
  𝑝(𝑝+1)

𝑛−𝑝−1
 , where 

L = L(∆̂ ) is the value of the likelihood function evaluated at the parameter estimates, n is the 
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number of observations, and p is the number of estimated parameters, and Kolmogorov-

Smirnov (KS) statistic are presented in Tables 2 and 3. 

In order to compare the models, we use the criteria stated above. Note that for the value 

of the log-likelihood function at its maximum (L(∆̂ )), larger value is good and preferred, and 

for the Kolmogorov-Smirnov test statistic (K-S), smaller value is preferred. GEMW 

distribution is fitted to the data sets and these fits are compared to the fits using the 

Exponential, Weibull, EE, GE, GEE, GW, EW, MW, GEW and GMW distributions. 

We can use the likelihood ratio (LR) test to compare the fit of the GEMW distribution 

with its sub-models for a given data set. For example, to test λ = δ = 1, the LR statistic is 

𝜔 = 2[𝑙𝑛 (𝐿(�̂�, �̂�, �̂�. �̂�. 𝛿)) − 𝑙𝑛 (𝐿(�̃�, �̃�, �̃�, 1,1))], where α̂, β̂, k̂. λ̂ and δ̂, are the unrestricted 

estimates, and �̃�, �̃�, and �̃� are the restricted estimates. The LR test rejects the null hypothesis 

ifω > χ𝜖
2, where χ𝜖

2 denote the upper 100s% point of the χ2 distribution with 2 degrees of 

freedom. 

 

7. Applications 

In this section, we present two examples to illustrate the flexibility of the GEMW 

distribution and its sub-models for data modeling. 

The first data consists of the lifetimes of n = 50 devices given by Aarset (1987). It is 

known to have a bathtub-shaped hazard function thus been widely studied. The dataset are: 

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0 7.0 11.0 12.0 18.0 18.0 18.0 18.0 18.0 21.0 32.0 36.0 

40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0 67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0 

83.0 84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0. 

The second data gives failure and running times of a sample of n = 30 devices given by 

Meeker and Escobar (1998). This data has a bathtub shaped hazard function and are given by: 

2 10 13 23 23 28 30 65 80 88 106 143 147 173 181 212 245 247 261 266 275 293 300 300 

300 300 300 300 300 300. 

Some descriptive statistics of these two data sets are given in Table 1. 

 

Table 1: GEMW Descriptive Statistics of Application Data Sets 

Data n Mean Media

n 

Minimu

m 

Maximu

m 

Varianc

e 

SD 

Aarset 50 45.686 48.5 0.1 86.0 1078.2 32.8352 

Meeke
r 

30 177.03 196.5 2 300 13223 114.991
3 

 

Estimates of the parameters of GEMW distribution (standard error in parentheses), 

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC), 

Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov (KS) statistic are given in 

Table 2 for the first data set and in Table 3 for the second data set. The estimated covariance 

matrix for the GEMW distribution (Aarset Data) is given by 

[
 
 
 
 

208.87 −40.6120
−40.6120 0.08240

0.1575 3.3190 2.3599
−0.00033 −0.00641 −0.00453

0.1575 −0.00033
3.3190
2.3599

−0.00641
−0.00453

0.000237 0.001232 −0.0003
0.001232
−0.00003

0.01139
−0.0006

−0.0006
0.000294 ]
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The 95% asymptotic confidence intervals for the GEMW model (Aarset Data) parameters 

are: α ∈ (0.01279, 0.07463), β ∈ (0.05552, 0.1244), δ ∈ (0.1628, 0.5915), k ∈ (3.9043, 5.0574), 

and λ ∈ (317.7468, 374.2732), respectively. 
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Table 2: GEMW Estimation for Aarset data 

Model α β λ k δ -2 Log Likelihood AIC BIC AICC KS SS 

Exponential 1 0 45.6858 1 1 482.2 484.2 486.1 484.3 0.1911 0.5190 

 - - (6.4609) - -       

Weibull 1 0 44.9125 0.9490 1 482.0 486.0 489.8 486.3 0.1928 0.5289 
 - - (6.9451) (0.1196) -       

EE 0.7798 0 53.4739 1 1 480.0 484.0 487.8 484.2 0.2042 0.5634 
 (10.3680) - (0.1351) - -       

GE 1 0 70.2848 1 1.3798 481.6 485.6 489.4 485.8 0.1981 0.5469 
 - - (40.4183) - (0.5253)       

GEE 0.3148 0 7.0083 1 0.1403 477.2 483.2 488.9 483.7 0.1911 0.4920 
 (0.2004) - (7.8173) - (0.1521)       

GW 1 0 83.0358 1.0597 1.5605 481.5 487.5 493.2 488.0 0.1974 0.5492 
 - - (12.9968) (0.1425) (0.3661)       

EW 0.1275 0 91.0063 5.4117 1 457.0 463.0 468.7 465.3 0.2092 0.5679 
 (0.01843) - (6.5188) (0.1637) -       

MW 1 0.02332 2487.20 0.3548 1 454.3 460.3 466.0 460.8 0.1337 0.2662 
 - (0.002633) (1.107) (0.05343) -       

GEW 0.08204 0 82.8604 5.5040 0.6182 451.8 458.7 466.3 459.6 0.1353 0.2248 
 (0.00714) - (20.5673) (0.1289) (0.0145)       

GMW 1 0.02165 1231.0 0.3955 1.0017 454.5 462.5 470.1 463.4 0.1418 0.2773 
 - (0.003056) (0.000125) (0.1584) (0.4751)       

GEMW 0.04371 0.08996 346.01 4.4809 0.3771 434.3 444.3 453.9 445.7 0.1292 0.1497 
 (0.01539) (0.01714) (14.452) (0.2870) (0.1067)       
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Table 3: GEMW Estimation for Meeker and Escobar data 

Model α β λ k δ -2 Log Likelihood AIC BIC AICC KS SS 

Exponential 1 0 172.75 1 1 356.8 358.8 360.2 359.0 0.2061 0.3184 

 - - (32.0784) - -       

Weibull 1 0 182.77 1.2359 1 355.3 359.3 362.0 359.7 0.2105 0.2937 

 - - (28.5726) (0.2023) -       

EE 1.1280 0 160.55 1 1 356.6 360.6 363.3 361.0 0.2067 0.3055 

 (0.2710) - (36.5670) - -       

GE 1 0 119.99 1 0.7315 356.5 360.5 363.2 361.0 0.2047 0.3015 

 - - (40.4183) - (0.5253)       

GEE 1.1370 0 170.00 1 1.0471 356.6 362.6 366.7 363.5 0.2042 0.2995 

 (0.2004) - (7.8173) - (0.1521)       

GW 1 0 330.00 1.4291 1.7402 354.9 360.9 365.0 361.9 0.2145 0.3033 

 - - (6.8530) (0.4399) (1.4851)       

EW 0.1286 0 325.36 6.8594 1 341.7 347.7 351.8 348.7 0.2199 0.2807 

 (0.01843) - (6.5188) (0.1637) -       

MW 1 0.006861 5055.05 0.4662 1 343.9 349.9 354.0 350.8 0.1766 0.1989 

 - (0.001021) (0.00001) (0.09065) -       

GEW 0.1025 0 329.47 7.1874 0.8469 340.9 348.9 354.3 350.5 0.1784 0.1752 

 (0.04242) - (10.3241) (0.4325) (0.2146)       

GMW 1 0.005980 1786.00 0.5343 0.9143 344.1 352.1 357.6 353.8 0.1860 0.2054 

 - (0.003056) (0.000125) (0.1584) (0.4751)       

GEMW 0.04764 0.03328 1567.01 5.5337 0.4426 330.1 340.1 346.9 342.7 0.1587 0.1446 

 (0.02313) (0.002379) (0.000066) (0.1088) (0.1846)       
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Figure 5: Fitted pdf and observed probabilities for Aarset data 

The estimated covariance matrix for the GEMW distribution (Meeker and Escobar Data) 

is given by 

[
 
 
 
 
4.3338𝐸 − 9 7.134 − 6 −1.9𝐸 − 7 −1.37𝐸 − 6 5.384𝐸 − 8
7.134𝐸 − 6 0.01184 −0.00012 −0.00029 0.000069
−1.9𝐸 − 7
−1.37𝐸 − 6
5.384𝐸 − 8

−0.00012
−0.00029
0.000069

0.000535
0.000069
−0.00004

0.003490
0.03409

−0.00036

−0.00004
−0.00036
5.657𝐸 − 6 ]

 
 
 
 

 

 

The 95% asymptotic confidence intervals for the GEMW model (Meeker and Escobar Data) 

parameters are: α ∈ (0.000328, 0.09495), β ∈ (0.02917, 0.03890), δ ∈ (0.06499, 0.8203), k ∈ 

(5.3111, 5.7562), and λ ∈ (1567.009871, 1567.010129), respectively. 

Plots of the fitted densities, the histogram of these data and probability plots are presented 

in Figure 5 and Figure 6. For the probability plot, we plotted G𝐺𝐸𝑀𝑊(𝑥(𝐽); (�̂�, �̂�, �̂�. �̂�. 𝛿)) 

against 
𝑗−0.375

𝑛+0.25
, 𝑗 = 1,2, … , 𝑛, where 𝑥(𝐽) are the ordered values of the observed data. 

For the Aarset data, the LR test statistic of the hypotheses H0: GEW against Ha: GEMW 

and H0: GMW against Ha: GEMW are ω1 = 17.5 with p-value= 2.87 × 10−5 and ω2 = 20.2 

with p-value= 6.98 × 10−6. Therefore, we reject H0 in favor of Ha and conclude that the 

GEMW distribution is a significant better than the GEW and GMW distributions. Moreover, 

the values of the statistics AIC, AICC, BIC and KS show that model GEMW is a “better” fit 

for this data. Also, the value of SS for the GEMW distribution is the smallest. 

Similarly, we can also conduct the LR test for the Meeker and Escobar data 
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Figure 6: Fitted pdf and observed probabilities for Meeker and Escobar data 

 

for the hypotheses H0: GEW against Ha: GEMW and H0: GMW against Ha: GEMW. The LR 

test statistic of these hypothesis are ω3 = 10.8 with p-value= 0.001 and ω4 = 14 with p-value= 

1.83 × 10−4, which implies that we should reject H0 in favor of Ha and conclude that the 

GEMW distribution is a significant better fit for the Meeker and Escobar data. In addition, 

the values of the statistics AIC, AICC, BIC and KS clearly show that model GEMW is a 

“better” fit for this data. Furthermore, the value of SS for the GEMW distribution is the 

smallest. 

8. Concluding Remarks 

A new class of distributions called the gamma-exponentiated or generalized modified 

Weibull (GEMW) distribution is proposed and studied. The GEMW distribution has several 

sub-models such as the GEW, EW, EE, GW, GE, GEE, GER, GR, MW, GEV, EV, GMW, 

Weibull, Rayleigh and exponential distributions as special cases. The density of this new 

class of distributions can be expressed as a linear combination of MW density functions. The 

GEMW distribution possesses hazard function with flexible behavior. We also obtain closed 

form expressions for the moments, distribution of order statistics and entropy. Maximum 

likelihood estimation technique is used to estimate the model parameters. Finally, the GEMW 

model is fitted to real data sets to illustrate the usefulness, flexibility and applicability of this 

class of distributions. 
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APPENDIX 
 

Elements of the observed information matrix can be readily obtained from the second and 

mixed partial derivative given below: 

 

 

 



 

Shusen Pu1; Broderick O. Oluyede2, Yuqi Qiu3 and Daniel Linder4                                  611 

 

 

 
where 

 
where 

 
where 
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