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A GENERALIZED CLASS OF EXPONENTIATED MODIFIED
WEIBULL DISTRIBUTION WITH APPLICATIONS

Shusen Put; Broderick O. Oluyede?, Yugi Qiu? and Daniel Linder*

Abstract: In this paper, a new class of five parameter gamma-exponentiated or
generalized modified Weibull (GEMW) distribution which includes
exponential, Rayleigh, Weibull, modified Weibull, exponentiated Weibull,
exponentiated exponential, exponentiated modified Weibull, exponentiated
modified  exponential, gamma-exponentiated  exponential, gamma-
exponentiated Rayleigh, gamma-modified Weibull, gamma-modified
exponential, gamma-Weibull, gamma-Rayleigh and gamma-exponential
distributions as special cases is proposed and studied. Mathematical properties
of this new class of distributions including moments, mean deviations,
Bonferroni and Lorenz curves, distribution of order statistics and Renyi entropy
are presented. Maximum likelihood estimation technique is used to estimate the
model parameters and applications to real data sets presented in order to
illustrate the usefulness of this new class of distributions and its sub-models.

Key words: Modified Weibull distribution; statistical properties; maximum
likelihood; applications.

1. Introduction

Weibull distribution (Weibull, 1951) has exponential and Rayleigh as special sub-models
and it is one of the most popular distributions for modeling lifetime data with monotone
failure rates. However, as for non-monotone failure rates, Weibull distribution does not t very
well. Recently, several modified Weibull distributions with additional parameters have been
proposed and studied as lifetime distributions in reliability and lifetime data analysis.

Recently, several ways of generating new probability distributions from classic ones have
been developed and discussed in the literature on distribution theory and its applications.
Nelson (1982) stated that distributions with bathtub-shaped failure rate are complex and,
therefore, di cult to model. The distribution pro-posed by Hjorth (1980) is an example.
Rajarshi and Rajarshi (1988) presented a revision of these distributions, and Haupt and
Schabe (1992) introduced a new lifetime model with bathtub-shaped failure rates. However,
these models are not sufficient to address the various complex practical situations, so new
classes of distributions were presented based on the modifications of the Weibull distribution
to satisfy non-monotonic failure rate. For a review of these models, the reader can refer to
Pham and Lai (2007), where the authors summarized some generalizations of Weibull
distribution. Jones (2004) studied a family of distributions derived from the distribution of
order statistics, the beta-generated family proposed by Eugene et al. (2002). Other
generalizations include: the exponentiated Weibull (EW) (Gupta and Kundu, 1999), the
modified Weibull (MW) (Lai et al., 2003), the beta exponential (BE) (Nadarajah and Kotz,
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2006). Some re-cent extensions are the generalized modified Weibull (GMW) (Carrasco et
al., 2008), the beta modi ed Weibull (BMW) (Silva et al., 2010), the Weibull-G fam-ily
(Burguignon et al., 2014), the Gamma-exponentiated Weibull distributions (GEW) (Pinho et
al., 2012) and the McDonald exponentiated modified Weibull (McEMW) (Merovci and
Elbatal, 2015).

Ristic and Balakrishnan (2011), provided a new family of distributions whose cumulative
distribution function (cdf) were generated by equation (1). As a natural extension, in this
paper we introduce a new distribution with ve pa-rameters, referred to as the gamma-
exponentiated modi ed Weibull (GEMW) distribution with the aim of attracting wider
application in reliability, biology and other areas of research. This generalization contains as
special sub-models several distributions such as the EW (Gupta and Kundu, 1999), MW,
generalized Rayleigh (GR) (Kundu and Rekab, 2005) and a new sub-model, namely Gamma
modi ed Weibull (GMW) distributions, along with several others. Due to its exibility in
accommodating all the forms of the hazard function, the proposed GEMW distribution seems
to be an important distribution that can be used in various problems in modeling survival data.
The GEMW distribution is not only useful for modeling bathtub-shaped failure rate data but
also suitable for testing goodness-of- t of some special sub-models such as the EW (Gupta
and Kundu, 1999), MW, GMW (new) and GEW distributions.

The rest of the paper is organized as follows. In Section 2; we de ne the GEMW
distribution and provide its hazard rate, reverse hazard and quantile functions. Expansions for
its probability density function (pdf) and some special sub-models are presented as well. The
moments, moment generating and characteristic functions are given in section 3: Section 4 is
devoted to mean deviations about the mean and the median, Bonferroni and Lorenz curves.
Section 5 contains results on the distribution of order statistics and Renyi entropy. In section
6; estimation of the parameters of the GEMW distribution via the method of maximum
likelihood is presented. Applications are given in section 7, followed by concluding remarks
in section 8:

2. The Model
2.1 Definition

Based on a continuous cdf F(x) with survival function F(x) and pdf f(x) and the method
proposed by Zografos and Balakrishnan (2009), Ristic and Balakrishnan (2011) proposed an
alternative gamma-generator defined by the cdf and pdf:

() = 1— — /_MHH'F) S-le—tq R 6> 0
Gloe) =1 — —— e, e R4 =0,
I'(3) Jo - @

and

1 S,
glz) = ——[—log F(x)]" = f(x).
I'(a) )
respectively. For § = n € N, equation (2) is the pdf of the n" lower record value of a sequence
of i.i.d. variables from a population with density f(x).
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Consider the exponentiated modified Weibull (EMW) (Carrasco et al., 2008) distribution
with cdf given by
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where x, k, @, A > 0 and $ = 0. By replacing F(x) in (1) by the EMW cdf, we obtain a new
extension of EMW distribution, called the gamma-exponentiated modified Weibull (GEMW)

distribution. Inserting (3) in (1) yields the GEMW cdf (for x > 0)
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Figure 1: Graphs of GEMW pdf with varying values of o and f3; respectively
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Figure 2: Graphs of GEMW pdf with varying values of § and A; respectively

where ,k,a,A >0, = 0and y(§,x) = fox t5-1e~tdt is the incomplete gamma function.

The pdf corresponding to (5) is given by
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forx,k,a,A > 0and f = 0. A random variable X having density (6) is denoted by X~GEM
W(S, a, B, k, ). Several possible shapes of the GEMW pdf are shown in Figure 1, 2 and 3.
Note that the parameters A controls the scale of the distribution, k, « and § controls its shape,

B is a sort of accelerating factor in the imperfection time that works as a factor of fragility in
the survival of the individual as time increases.
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Figure 3: Graph of GEMW pdf when only the parameter k changes

2.2 Hazard rate, reverse hazard and quantile functions

In this section, we provide the hazard rate, reverse hazard and quantile functions of the
GEMW distribution.

2.2.1 Hazard rate and reverse hazard functions

Note that if X is a continuous random variable with cdf G(x); and pdf g(x); then the
failure of hazard rate function (hrf), reverse hazard function (rhf) and mean residual life
functions are given by hg(x) = %;Tc(x) = % ; and 85 (x) = fxoo G(uw)du/G(u),
respectively. The functions hg(x),8;(x), and G(x) are equivalent. (Shaked and
Shanthikumar, 1994). The hazard rate and reverse hazard rate functions of GEMW

distribution are given by
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Figure 4: Graphs of GEMW hazard function

Plots of hrf are presented in Figure 4. These plots show various shapes including
monotonically decreasing, monotonically increasing, unimodal and bathtub shapes for
different combinations of the values of the parameters. This flexibility makes the GEMW hrf
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suitable for monotonic and non-monotonic empirical hazard behaviors which are more likely
to be the case in real life situations.

The density and hazard functions can exhibit different behavior depending on the values
of the parameters when chosen to be positive, as shown in these plots. However, it is hard to
analyze the shape of both the density and hazard function due to their complicated forms.

2.2.2 Quantile function

We can know more about this model by expanding the density function and analyzing the
quantile function. The GEMW quantile function can be obtained by inverting G (x) = 1 — u,
where G(x) = u and

- ek Ar.
o f}-‘{—log_l _ E_—f;) e _Q.Té} )
Glr) = ) . (7)

Let z = 4 1[(1 — u)['(8), 8], then one can get,

log(log(1 — e™ %)) + klog(x) + klog(\) + Bz =0, (8)

and the inverse incomplete gamma function can be implemented by using numerical methods.
Consequently, random number can be generated based on (8).

2.3 Expansion of the GEMW Density Function

i+1 X. x
Consider the series —log(1 —y) = 8°yi+—1 ,Where0 <y <1,andy = e~ @ ™ The
GEMW distribution can be written as
s
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b = (sa0) 1Y [-m.(z +1)— 5} arbs i m (11)

I=1
ad by, = ag' . Now, we can write the GEMW pdf as
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where fiw (x) = f(x; k, B, Ayyy)denotes the pdf of the modified Weibull distribution (Lai et
al., 2003) with Ay = A > 0. To simplify the notation, one can define V =

(r+m+s+68)k
3 . . ( 17l S§-1\(a-1 bsm
{(m,s,7) € Z3} as an index set and the weights w, = "= —— (% )r+m+s+6 forv e
V. Therefore, the GEMW pdf can be written as
g(x) =Y wofuw (). (13)

vel

Equation (13) shows that the GEMW density is indeed a linear combination of modified
Weibull distribution. Hence, most of its mathematical properties can be immediately obtained
from those of the modified Weibull distribution. For the convergence of equations (12) and
(13), as well elsewhere in this paper, note that for > 0;

s 5—1
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is convergent if and only if 0 < (y Z,;'io%)k <1vye(01)since0<y=e @ <

k
1,x>0,24k>0,andB=0. Now ,0<y¥p,>—=— —1, 50 we must have

log(1-y)
y
log(1-y) .
0<_T_1< 1 . This leads to 1 —y > exp(—2y) , and on the other hand

exp(—y) =2,‘;°=0 )' >1—y. Thus , we have the system of inequalities 1—y >

exp(—2y) and exp(—y) > 1 —y, which is statisfied Vy € (0,0.7968).

2.4 Some Sub-models

In this section, some sub-models of the GEMW distribution are presented. The GEMW
distribution contains several special sub-models that are well known distributions. When 8 =
0, we obtain

. _ ee NO-L /L L ok
g(x) = /\P?d)(—log_l — e_[TJk]Q) (%) e_'w]k[l —E_'{\A]A]Q_l!

which is the gamma-exponentiated Weibull (GEW) distribution, given by Pinho et al. (2012).
The GEW distribution has several special cases as its sub-models. For instance, = 1 leads to
the exponentiated Weibull (EW) distribution (Gupta and Kundu, 2001), with a pdf:
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When a = k = 1, EW distribution has the exponential distribution (Gupta and Kundu, 2001)
as a sub-model with a pdf

By setting k = 1; EW distribution leads to the exponentiated exponential (EE) with a pdf

glx) = %E_%(l — e_%)a_l,

Let @ = 1, from EW distribution we can also obtain Weibull distribution (Weibull, 1951)

whose pdf is given by
k(x k-l Tk
N — —(3)
r)=—| — e Al
g(x) A(A)

Whenf =0,a=1andf =0,a =k =1, the gamma-Weibull (GW) (Pinho et al., 2012)

with a pdf
k T k—1 (£} _(zyk 5—1
g(l)_ )\F(t’j) (X) e \x/ (—10g[1_€ Ly ])

and gamma-exponential (GE) (Pinho et al., 2012) distributions with a pdf

are obtained, respectively. The gamma-exponentiated exponential (GEE) distri-bution
follows from § = 0 and k = 1, whose pdf is given by

o _ PR = R e
g(r) = }\P(é)(_lﬁg'l_ﬁ by ) e X1 —e X"

Moreover, when 8 =0,k =2and f =0,k =2,a = 1we obtain gamma-exponentiated
Rayleigh (GER) (Ristic and Balakrishnan, 2011) distribution with a pdf

2ra® _(z2 L (Z)270— Lz -1
glz) = AQF{CF]E ()71 — e (37 l(—log[l—e (X) ])

and gamma-Rayleigh (GR) distribution (Ristic and Balakrishnan, 2011) with a pdf

2 _(EN2 _yzy2) 0—1
g(i) = )\Q]._(C;)E [)'J (_]'Og[l — € ') ])

respectively.
Wheng # 0, by setting « = § = 1, we obtain the modified Weibull distribution (MW)

(Lai et al., 2003), whose pdf is given by
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Fork=0,a=1and k=0,6= a=1, GEMW gives gamma-extreme value (GEV)
(Coles, 2001) and extreme value (EV) (Coles, 2001) distributions, with pdfs

N ,13 _E:'l_r'_|_j*‘,1 _e;"i_r d—1
g{‘Lj - 1—‘[:5]6 ( ]‘Og[]‘ € ])

and

efr 1 3y

g(x) = e

respectively. One can also obtain gamma-modified Weibull (GMW) distribution by letting
a =1 in GEMW distribution, the corresponding pdf of GMW is:

ke O—1 AR
( — log[1 — e (3)"e ]) (k + Bx) (i) e~ (X)Fem+Bx

9(*) = 3T5)
which is a new distribution.

3. Moments, moment generating and characteristic functions

In this section, the moments, moment generating function and characteristic function of
the GEMW distribution are presented. Let Z be a random variable with a density function
g(2), as in equation (6) and X be a random variable with modified Weibull density function

fuw ().
3.1 Moments
As mention earlier in section 2.3, the GEMW distribution is a linear combination of

modified Weibull distribution. Recall the general results for the beta-modi ed Weibull (BMW)
distribution given by Nadarajah et al. (2011). Let Y~BMW (a, b, a, y, A1) with pdf

ay’ (v + Ay)et
B(a,b)

[1 _ €—ay“e"-"'a—1€—bay*e*-‘"!y ~ 0

fly) =

where a,b,a > 0 and y,A > 0 . Note that fj;,,(x) is a sub-model of BMW distribution
(Silva et al., 2010) with the parameters:

=4 = s a
a:b:L,‘:,IL)\:j‘Q: T +?H)\-:ﬁ‘+

Using the moments of BMW distribution, the moments of the MW distribution (Nadarajah et
al., 2011) are as follow:

B(XY) = 3 wili (5,1, (14)
=0
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)] 15)
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wj = , —, 16)
ST )+ 50 (
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—1)iHLa—2g1-1
o= T (17)

G-DR-T
respectively.

There is also another relatively simpler form of the tth moment by using the Lambert W

(.) function. We can get the following equation for I, (j, t),
(s ]

Il(j=tJ=f(—i~')tZ( e 1) ('”_iﬂ)r(ﬁﬂ). (18)

?]1’1ln[r+n;+s+<5(l_|_j)] k

n=1

Substituting equation (18) in (14) gives a representation for moments of the MW (Lai et al.,
2003) distribution in a relatively concise form with only a doubly infinite series. Thus, the
moments of GEMW can be obtained from the moments above. Let Z~GEMW (4,6, a, B, k) ,

then E(Z') can be expressed in terms of the t" moments of the same baseline MW distribution,
which is

E(Z) =3 w,B(X"),

velV

where E(Xt) is defined by equation (14), and by substituting I, (j, t) from equation (18), one
can also get another form of moments for GEMW distribution.

Conditional expectations are very useful for lifetime models, so it is very important to know
E(Xt|X > x), which is given by:

ING)
E(X'|X >x)= e —— Zu- Iy(j.t), (19)

where

r+m+s+46 R i
.JT f} - Z Z a??‘ll - avnu [T(l_'_j)} ke
my=1 my=1
xf‘(mhL"'ert 41 r+m+s+4

- ), (20)
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and w; and a; are given by (16), (17) and I'(a,x) = [ y*le 7 dy.
Similarly, a relatively simpler representation for E(X*|X > x) can be obtained from
equation (18),

. (=B)"n"tn—-1)---(n—t+1)
2.0 = Z nlkn [ (1 4 )]E
xr(i+ W(Hﬁf)_ (21)

3.2 Moment generating and characteristic functions

Let X~GEMW (4, 6, a, B, k), the moment generating function and characteristic function
of X are given by M(t) = E(e™) and ¢(¢t) = E(e"t") respectively, where i = v/—1. Note
that M(t) and ¢(t) can be express as M(t) = Y5 0FE(X") and ¢(t) = Y- O(It) EX"),

where E (X*) is the given by equation (14). Nothing that, g(x) can be expressed as an infinite
weighted sum, we have

M(t) =) w,Myw(t), (22)
veV
Where My, (t) is the moment generating function of the MW distribution, which is,

oo oo 1, _ n—1
Myw (t) = —tk ZZ —D)"w 313 tk) ]._(% + 1).

=0 n0 k" r**““”(lﬂ)'k

The corresponding characteristic function is

with

, . = L (=1)" ;,;j(-n-ﬁ’—tk]”_l n
Buw () = =itk 33 nlkn [P0 (1 4 )] F(E +1)

where w; is given by equation (16).

4. Mean deviations, Bonferroni and Lorenz curves

In this section, mean deviations about the mean and the median, Bonferroni and Lorenz
curves of the GEMW distribution are represented.

4.1 Mean deviations

Let X~GEMW (6, a, B, k, A), the mean deviation about the mean and the mean deviation
about the median are defined by &,(X) = ["lx —ulg(x)dx , and &,(X) = ["|x —
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M|g(x)dx, respectively, where u = E(X) and M = Median(X) denotes the median. The
measures &, (X) and &, (X) can be calculated using the relationships

51(X) = QHGW)—2ﬁ+2jmi@@ﬁﬁ= (23)
I
and

0a(X) = 2/ rg(z)dr — p. (24)
AT
Recall that g(x) =Y,ey @ufuw(x) , so that f:o xg(x)dx =Y,ey w,ls and
foo xg(x)dx =Y, ey wyls , Where

) 5 _ - 1 y
=33 wiam] ) R R )]
j=0m=1 -

=SS wyan] (I ] Er (T, T ),

j=0m=1
and w; and a; are given by equation (16) and (17), respectively. It follows that
S1(X) =2uG(p) —2n+2 Y wols, and 8(X) =2 w,ly—
veV veV

4.2 Bonferroni and Lorenz Curves

In this section, some inequality measures, namely Bonferroni and Lorenz curves are
presented. These quantities have been applied to a wide variety of fields, such as studying of
income and property in economics, reliability, demography, insurance and medicine.

For X~GEMW (8, @, B, k, A), they are defined by
1 q

&m=aiomchmdmm=iAﬂmm@; (25)

respectively, where u = E(X) and g = G~1(p) is obtained from equation (8).
Using similar methods in deriving the moments, we can show that

] (x)de =) Zuw Ix(j

vel =0

where

= T+ 4] _m
IG) = 3 an [ 2 (14 )] Fy (41, (14 5)a),

m=1
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and w; and a; are given by equation (16) and (17), respectively. We can reduce the curves in
equation (25) to

B(p ZZU‘. wils(7) and L(p) ZZI[LWJIV

1L1 4=0 LLL 7=0

respectively.

5. Order Statistics and Renyi Entropy

In this section, the distribution of the ith order statistic and Renyi entropy for the GEMW
distribution are presented.

5.1 Order Statistics

Consider Xy, ....., X, i.i.d random variables distributed according to (2). The pdf of the
ith order statistic, sayX;.,, is given by

nlg(x) = i Yal iRy
gim () = (5—1)!(11_@)1[6 )" = G(x)]

Using the binomial theorem, the pdf of i" order statistic can be written as

(i — (n Z(— JJ( ){ = 309(1;) 4] }?’H-J 1.

Applying the power series (see Gradshteyn and Ryzhik, 2000)

Gi:n (Ir) =

o &) — = (=1)mgm e

y(r,d0) = mzz:ﬂm!

we have
i—1 . _1]3' _( -
e T sy nti—i o (Y] 84T —i)
ginl) = (3_1 {ﬂ —1) 13=Zo( J ) (8)]+i- - [~ log F'(x)]"" ™
JL (_Um[_ IOEF(;::)]T” n+j—i
X {Z (m + &)m! } X

m=I()

Letc,, = ('(1)+5) and use the result on a power series raised to a positive integer, as in

section 2.3, to write
o

oo n+j—i
{ Y eml- 1ogF(-.L-)jm} = dmpntjil-log F(z)]™,

m=0 m=>0
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where  donyji=cg 0 0 and  dppejo; = (meg) P ER[(n 4 — D —

l] c;dm—1n+j-i- Replacing g(x) by the right hand side of (2), we obtain

Qi:n('-r} - (i — 1)[ 77— Q)T{Z Z ( )

=0 m=0

(—1) dmnyji o .

F(O)r:ﬁ;—j_ 1I ]-—('5[:?1 +7—1t+ 1) + m‘)g{ff\n—j—i—lj—m(f) : (Qb)
where gsm+j-i+1)+m(x) denotes the GEMW with 8, =8(n+j—i+1)+m>0.
Consequently, g;.,(x) is a linear combination of modified Weibull densities. This is very

useful result since we can derive properties of the order statistics of the GEMW distribution
from those of modified Weibull distribution. For instance, we can obtain

l 1 oo oo 1
t Werm,n— j—i
P = e o e Y () e

veV j=0 m=0 =0
x T@m+j—i+1)+m)i(l,1), (27)

X

where I, (1, t) is given by equation (15). These moments are used in areas such as quality
control, reliability and insurance, for prediction of future failure times from a set of past
failures.

5.2 Renyi Entropy

Renyi entropy is defined by
In(v) = (1=v)"log | [

of — O

o0

g"(x)dz|.

where v > 0 and v # 1. Raising equation (6) to the power and using the similar expansion
in section 2, we obtain

I AR = (CES VAW CES VAN
[g()] = NT) > ( m )( r )(f)

m,s,rli=0

(y _ 1)1' . .{v—l][!.‘—l]+f—1'
7! dv+mts+r

1 T k—1 ) e
> A** (‘)\‘N‘) E-‘j.l'[:k ‘|‘,Bli'-j€ Faw e !

) (_l)l“bSIﬂLﬂ?f—ikv—f—l

(28)
m > 0 and b, is given by equation (11). Consequently Renyi

entropy for the GEMW distribution reduces to:

where A,, =
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Ip(v) = (l—v)_llog[ a_&}) Z Z( _1)“)((@;1)1!)(1/;1)

ATV (S
( m,s,r,l,i,j=0n=1

(—1)"wibsm|(v — 1)(k — 1) + 1+ 'i],B'!Hk”“‘lF(% N 1)
(v — 1)i(—k) =Dk D+l (_ynpn—{e=D0=D+4 (1) (n— ¢ 4 “]
n.!?-.-ﬂ“*“)%””(l +5)]F

X

(v +m + s+ )i
(29)

where w; and a; are given by equation (16) and (17), and I'(a) = fowya‘le‘y dy.

6. Estimation of Parameters

Let X~GEMW (8, a,B,k,A) and A = (5, a, 8, k,A)T be the parameter vector. The log-

likelihood for a single observation x of X is given by
£=0A) = (5—1)log(—alog(l — e~ X)*™)) _1og[['(8)] + log(k + Bz)

+log(a) — Elog(A) + (kK — 1) log(x) + Bx

—(g)keﬁf +(a—1)log (1 — e~ (3™, (30)
The first derivative of the log-likelihood function with respect to the parameters
A= (5 apB kAT are given by
E = i—l—log[l—e ($)ke -u] (31)
Ja
of B (6 — 1)z .(x)ke—(ﬁ}keﬂr—l—ﬁa: . .
a8 (log{l—e (X)ke® ){l—e ke 3Jn) k+ Bx
: —(zykehr 1 By
_ o\k g, w(o — 1) (%) kebre(3) :
tr— (X) Hrr + 2 : (32)
L e ) S e U
OA  (log(l— e @)1 — e @) A
krkeBe Ela—1)z ko Br—(5% ol 23
N+l + )\'!H'l(l— —(£)ke ._jr) d ( )
or (6 —1)(5)*1og($) 1 .
ok (log(1 — 6_{§Jkgﬁxn(l _ o (B)ke -11) + k + Bz — log(A) + log(x)
x| fx\Fk .1 g (@—1)(5)Flog (§)e —(§)*ePr+pz '
g (3)(5) [ros ()] + () (34
— &

and
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o _ N ALC)
o I'(9)
The total log-likelihood function based on a random sample of n
observations:{xy, x5, ... ... X, } drawn from the GEMW distribution is given by £* = L(A) =
* 1 2:(A), where £;(A),i = 1,2, ...... ,n is given by equation (30). The equations obtained
by setting the above partial derivatives to zero are not in closed form and the values of the
parameters a, 3, 6, A, 6 must be found by using iterative methods. The maximum likelihood
estimates of the parameters, denoted by A is obtained by solving the nonlinear equation
ae* oL* aL* aLr oL . .
(E' ﬁ'ﬁ'ﬁ'%f = 0, using a numerical method such as Newton-Raphson procedure.
We maximize the likelihood function using NLmixed in SAS as well as the function nim
in R (2011). These functions were applied and executed for wide range of initial values. This
process often results or lead to more than one maximum, however, in these cases, we take the
MLEs corresponding to the largest value of the maxima. In a few cases, no maximum was
identified for the selected initial values. In these cases, a new initial value was tried in order
to obtain a maximum.
The issues dealing with the existence and uniqueness of the MLEs are theo-retical interest
and has been studied by several authors for di erent distributions including Seregin (2010),
Santos Silva and Tenreyro (2010), Zhou (2009), and Xia et al. (2009). We hope to investigate
this problem or issue for the GEMW distribution in the future.
Let A = (& B,k A, 8) be the maximum likelihood estimate of A = (a, B,k, A, 8) Under
the usual regularity conditions and that the parameters are in the inte-rior of the parameter
space, but not on the boundary, (Ferguson, 1996) we have:

Vn(A - 4) g N5(0,171(A)), where I(A) is the expected Fisher information matrix. The
asymptotic behavior is still valid if I(A) is replaced by the observed information matrix
evaluated at A , that is J(A). Elements of the observed information matrix are given in the
Appendix. The multivariate normal distribution N (0, J(A)~1), where the mean vector 0 = (0,
0, 0,0, 0)T , can be used to construct confidence intervals and confidence regions for the
individual model parameters and for the survival and hazard rate functions. That is, the
approximate 100(1 —n)% two-sided confidence intervals for a, B, k A, and & are given by:

log(—alog(l —e i (35)

— —_—

a+Zg\/Iad(A), B+Zg\/IgH(A), k+Za\/IgH(A), X=Za/Il(A),

and § + Zn flggl(ﬁ), respectively, where I (R), Iz5 (B), I (D), I (B) and I55 (A) are the
2
~ ~ . th .
diagonal elements of I;l(A) = (nI(A))71, and Zx is the upper”T percentile od a standard
2

normal distribution.

The maximum likelihood estimates (MLEs) of the GEMW parameters a, B8, 6, A, and &
are computed by maximizing the objective function via the subroutine NLmixed in SAS. The
estimated values of the parameters (standard error in parenthesis), -2log-likelihood statistic,
Akaike Information Criterion, AIC = 2p— 2 In(L), Bayesian Information Criterion, BIC = p

In(n) — 2 In(L), and Consistent Akaike Information Criterion, AICC = AIC +2 % , Where

L = L(A) is the value of the likelihood function evaluated at the parameter estimates, n is the



Shusen Pu?; Broderick O. Oluyede?, Yugi Qiu® and Daniel Linder*

601

number of observations, and p is the number of estimated parameters, and Kolmogorov-
Smirnov (KS) statistic are presented in Tables 2 and 3.

In order to compare the models, we use the criteria stated above. Note that for the value
of the log-likelihood function at its maximum (L(A )), larger value is good and preferred, and
for the Kolmogorov-Smirnov test statistic (K-S), smaller value is preferred. GEMW
distribution is fitted to the data sets and these fits are compared to the fits using the
Exponential, Weibull, EE, GE, GEE, GW, EW, MW, GEW and GMW distributions.

We can use the likelihood ratio (LR) test to compare the fit of the GEMW distribution
with its sub-models for a given data set. For example, to test 2 = 6 = 1, the LR statistic is

w = 2[In (L(c?, B, k.. 8)) — In(L(&, 8, k,1,1))], where &, B, k. A and §, are the unrestricted

estimates, and &, 8, and k are the restricted estimates. The LR test rejects the null hypothesis
ifw > x2, where xZ denote the upper 100s% point of the y? distribution with 2 degrees of
freedom.

7. Applications

In this section, we present two examples to illustrate the flexibility of the GEMW
distribution and its sub-models for data modeling.

The first data consists of the lifetimes of n = 50 devices given by Aarset (1987). It is
known to have a bathtub-shaped hazard function thus been widely studied. The dataset are:
0.10210101.01.01.02.03.06.07.011.012.018.0 18.0 18.0 18.0 18.0 21.0 32.0 36.0
40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0 67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0
83.0 84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0.

The second data gives failure and running times of a sample of n = 30 devices given by
Meeker and Escobar (1998). This data has a bathtub shaped hazard function and are given by:
2 1013 23 23 28 30 65 80 88 106 143 147 173 181 212 245 247 261 266 275 293 300 300
300 300 300 300 300 300.

Some descriptive statistics of these two data sets are given in Table 1.

Table 1: GEMW Descriptive Statistics of Application Data Sets

Data n Mean Media Minimu Maximu Varianc SD
Aarset 50 45.686 48.5 0.1 86.0 1078.2 32.8352
Meeke 30 177.03 196.5 2 300 13223 114.991

Estimates of the parameters of GEMW distribution (standard error in parentheses),
Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC),
Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov (KS) statistic are given in
Table 2 for the first data set and in Table 3 for the second data set. The estimated covariance
matrix for the GEMW distribution (Aarset Data) is given by

[ 208.87 —40.6120 0.1575 3.3190 2.3599 ]
|—40.6120 0.08240 —0.00033 —0.00641 —0.00453I
I I
|

0.1575 -—0.00033 0.000237 0.001232 —0.0003
3.3190 —-0.00641 0.001232 0.01139 —0.0006

2.3599 -0.00453 —0.00003 —0.0006 0.000294J
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The 95% asymptotic confidence intervals for the GEMW model (Aarset Data) parameters

are: o € (0.01279, 0.07463), 5 €(0.05552, 0.1244), ¢ € (0.1628, 0.5915), k € (3.9043, 5.0574),
and A € (317.7468, 374.2732), respectively.
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Table 2: GEMW Estimation for Aarset data
Model I f i k i -2 Log Likelihood ~ AIC BIC AICC KS  S§
Exponential 1 0 45,6858 1 1 4822 4842 4861 484.3 01911 05190
: N 71 E
Weibull 1 0 49125 09490 1 482.0 486.0 489.8 486.3 0.1928 0.5289
: . (695 () -
EE 0.77% 0 534739 1 1 480.0 1840 4878 484.2 02042 05634
0% - 4B - -
GE l 0 70.2848 L 137198 4816 4856 4894 4858 0.1981 0.5469
: CAsy) - (05
GEE 0.3148 0 1.0083 101403 4172 4832 4889 4837 01911 04920
0a) - (8 - (015
GW l 0 83.0358  1.0597 15605 4815 4875 4932 488.0 01974 0549
: (129968 (014) (03660)
EW 01275 0 910063 54117 1 457.0 4630 4687 4653 02002 (0.5679
08 - (65188 (. -
MW l 008332 2487120 03548 1 454.3 4603 4660 460.8 0.1337 0.2662
0003 (L) (00 -
GEW 00604 0 828604 55040 0.6182 4518 1587 4663 459.6 0.1353 0.2248
007 - (05T (18 (00145)
GMW 1 002165 12310  0.3%%5 1.0017 4545 4625 4101 4634 01418 027713
(0003056) (0000125 (0584) (04750)
GEMW 004311 0069%  346.01  4.4809 03771 4343 M43 4539 4457 01292 01497

005%) (0T (14452 (870) (0.1067)
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Table 3: GEMW Estimation for Meeker and Escobar data

Model i f /1 k 0 -2LogLikelood  AIC BIC AICC KS SS
Exponential 1 0 17215 1 1 356.8 3588 3602 359.0 02061 03184
(078 -
Weibull 1 0 8.1 1.2359 1 355.3 3593 3620 359.7 02105 02937
(85728 (0.2023)
EE 1.1280 0 160.55 1 1 356.6 3606 3633 3610 02067 0.3055
(02710) (36.5670) :
GE 1 0 119.99 1 0.7315 356.5 3605 3632 3610 02047 03015
(40.4183) (0525))
GEE 11370 0 170.00 1 10471 356.6 3626 3667 3635 02042 0299
(0.2004) (18173) (0.152)
GW 1 0 330.00 14291 17402 354.9 3609 3650 3619 02145 03033
(68530)  (043%9) (L4851)
EW 0.1286 0 325.36 6.8594 1 AL7 7.7 318 3487 0219 02807
(001843 (65188)  (0.1637)
MW 1 0006861  5055.056  0.4662 1 3439 349.9 3540 3508 0.766 0.1989
- (00002) (0.00001)  (0.09065)
GEW 0.1025 0 32041 71874 0.8469 340.9 3489 3543 P05 0.1784 01752
(0.04242) (103241) (04325 (02146)
GMW 1 0005080 178600 05343 09143 344.1 3521 376 3H38 01860 0.2054
C (00 (00001) (0.1584) (0475
GEMW  0.04764 003328  1567.01 55337  0.4426 330.1 340.1 3469 3427 0.587 0.1446
00319 (000379 (0.000066) (01088) (0.1846)
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Figure 5: Fitted pdf and observed probabilities for Aarset data
The estimated covariance matrix for the GEMW distribution (Meeker and Escobar Data)
is given by

[43338E—-9 7.134—-6 —-19E-7 —137E—-6 O5.384E — 8]
7134E—-6 0.01184 —0.00012 —0.00029 0.000069 ‘

—-19E -7 —0.00012 0.000535 0.003490 —0.00004

—137E—-6 —0.00029 0.000069 0.03409 —0.00036
l 5.384F —8 0.000069 —0.00004 —0.00036 5.657E —6 J

The 95% asymptotic confidence intervals for the GEMW model (Meeker and Escobar Data)
parameters are: a € (0.000328, 0.09495), € (0.02917, 0.03890), ¢ € (0.06499, 0.8203), k €
(5.3111, 5.7562), and A € (1567.009871, 1567.010129), respectively.

Plots of the fitted densities, the histogram of these data and probability plots are presented

in Figure 5 and Figure 6. For the probability plot, we plotted Ggepw (x(); (& B8, k. 1.6))

against j_°'375,j = 1,2, ...,n, wWhere x, are the ordered values of the observed data.
n+0.25 o)

For the Aarset data, the LR test statistic of the hypotheses Ho: GEW against H.: GEMW
and Ho: GMW against Ha: GEMW are o; = 17.5 with p-value= 2.87 x 107° and w, = 20.2
with p-value= 6.98 x 10°°. Therefore, we reject Ho in favor of Ha and conclude that the
GEMW distribution is a significant better than the GEW and GMW distributions. Moreover,
the values of the statistics AIC, AICC, BIC and KS show that model GEMW is a “better” fit
for this data. Also, the value of SS for the GEMW distribution is the smallest.

Similarly, we can also conduct the LR test for the Meeker and Escobar data
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Figure 6: Fitted pdf and observed probabilities for Meeker and Escobar data

for the hypotheses Ho: GEW against Ha: GEMW and Ho: GMW against Ha: GEMW. The LR
test statistic of these hypothesis are mz = 10.8 with p-value= 0.001 and w4 = 14 with p-value=
1.83 x 10°%, which implies that we should reject Ho in favor of Ha and conclude that the
GEMW distribution is a significant better fit for the Meeker and Escobar data. In addition,
the values of the statistics AIC, AICC, BIC and KS clearly show that model GEMW is a
“better” fit for this data. Furthermore, the value of SS for the GEMW distribution is the
smallest.

8. Concluding Remarks

A new class of distributions called the gamma-exponentiated or generalized modified
Weibull (GEMW) distribution is proposed and studied. The GEMW distribution has several
sub-models such as the GEW, EW, EE, GW, GE, GEE, GER, GR, MW, GEV, EV, GMW,
Weibull, Rayleigh and exponential distributions as special cases. The density of this new
class of distributions can be expressed as a linear combination of MW density functions. The
GEMW distribution possesses hazard function with flexible behavior. We also obtain closed
form expressions for the moments, distribution of order statistics and entropy. Maximum
likelihood estimation technique is used to estimate the model parameters. Finally, the GEMW
model is fitted to real data sets to illustrate the usefulness, flexibility and applicability of this
class of distributions.
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APPENDIX

Elements of the observed information matrix can be readily obtained from the second and
mixed partial derivative given below:

T :Iizﬂdz

oL 2 2(5)eF e FT)
8 ~ k+pnE T EL2 o (36)
(o — lj[f}'_ﬁmzﬁx—ii]kﬂs: 25— 1}%}2::‘?2_.3;
[1- E'i%‘-]kﬂsr:lz (1— el ®" " )2(log [l - ﬂ___,_.;,h-ﬂf]:l»_a
s

- 3. T+ BT . ;xR _BE
(6 — lﬁ[fjkt—'d:f_l —el®ET 4 {i}kf.‘"gz"'""-" o })
(1— et E*"")2(log [1 —f.-'_"ijk”'ﬂz]}g .

2 x k __.‘3:.
EE‘ £ _ ﬂ;[i:l e an
Af0a  F)EFT _
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