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Abstract: In the area of survival analysis the most popular regression model is the 

Cox proportional hazards (PH) model. Unfortunately, in practice not all data sets 

satisfy the PH condition and thus the PH model cannot be used. To overcome the 

problem, the proportional odds (PO) model ( Pettitt 1982 and Bennett 1983a) and 

the generalized proportional odds (GPO) model ( Dabrowska and Doksum, 1988) 

were proposed, which can be considered in some sense generalizations of the PH 

model. However, there are examples indicating that the use of the PO or GPO model 

is not appropriate. As a consequence, a more general model must be considered. In 

this paper, a new model, called the proportional generalized odds (PGO) model, is 

introduced, which covers PO and GPO models as special cases. Estimation of the 

regression parameters as well as the underlying survival function of the GPO model 

is discussed. An application of the model to a data set is presented. 

Key words: Burr distribution; Frailty parameter; Maximum likelihood estimation; 

Censored data. 

1. Introduction 

When lifetime is subject to right censoring one of the commonly used regression models is 

the Cox proportional hazards (PH) model, provided that the data satisfies certain PH 

conditions(Cox 1972). Since it is not uncommon that the PH conditions are violated, different 

regression models need to be constructed to fit the data. One of them is the proportional odds 

(PO) model proposed by Pettitt (1982) and Bennett (1983a, b). Just like the PH model, the PO 

model assumes that the odds, instead of the hazard rates, of the distribution of a lifetime are 

proportional to the odds of a baseline distribution. It should be mentioned that the PO model is 

not a simple generalization of the PH model. Studies on the PO model can be found in Pettitt 

(1984), Bickel (1986), Cheng et al (1995), Cuzik (1988), Dabrowska and Doksum (1988), Shen 

(1995), Wu (1995), and Murphy et al (1997) among others. Most of the studies mainly focus on  
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estimation of the underlying survival function. In addition, for two independent samples with 

right-censored lifetimes, Dauxois and Kirmani (2003) developed a method for testing whether 

the data satisfies the PO assumption. 

Besides the PO model a generalization of it was proposed. For two-sample lifetime data, 

Dabrowska and Doksum (1988) introduced a model, called the generalized proportional odds 

(GPO) model, and developed a testing method for comparison of two survival functions 

satisfying the GPO condition. For more details, one refers to Clayton and Cuzick (1986), 

Dabrowska et al (1989), Banerjee et al (2007) and references therein. 

Although the GPO model is quite general and flexible to fit data, there are still many cases 

where the application of the GPO model is not suitable (See Section 4). To this end, we propose 

a more general model, called proportional generalized odds (PGO) model. The main difference 

between the GPO model and the PGO model is that the former assumes a common frailty factor 

for two groups of survival times under study and the latter allows the two groups to have different 

frailty factors. As will be seen in Section 4, the GPO model does not fit the data, while the 

proposed PGO model fits. The major differences between Bennett (1983a) and the current study 

are that (i) the current PGO model is more general than the PO model and (ii) the current study 

includes regression models but Bennett (1983a) does not. 

The rest of this paper is organized as follows: In Section 2, the PGO model is defined and 

discussions on the relation between it and other related models are presented. Section 3 discusses 

semi-parametric estimation of the PGO model. In Section 4, the PGO model is applied to a data 

set about kidney disease recurrent times. Some discussions are presented in Section 5. 

2. Proportional generalized odds model 

Let T ≥ 0 denote a lifetime and z a vector of covariates. Assume that the survival function 

S(t) = P (T > t) of T is continuous. The ratio [1 − S(t)]/S(t) is called odds, which measures the 

odds of “failure” against “survival” at time t ≥ 0. Pettitt (1982) and Bennett (1983a, b) introduced 

the PO model as follows, 

 
 

in which S0 is a baseline survival function. This model assumes that lifetime T is associated with 

its covariate z only through θ, which is independent of time t. This model actually assumes that 

the odds ratio (against a baseline) at any time t is a constant θ, free of t. This model has been 

applied to various data sets where the use of the PH model is not appropriate. As mentioned in 

Section 1, the PO model is a different model, not an extension of the PH model. In particular, if 

we let λ(t) denote the hazard function corresponding to S(t) then, under the PO model, the hazard 

ratio 
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which it is not a constant unless θ(z) = 1. 

A more general model was introduced by Dabrowska and Doksum (1988) as follows. First, 

they extended the odds to generalized odds defined as 

 

 
 

Obviously, it reduces to the usual odds when r = 1. Then they proposed the following GPO model 

 

 
 

where S1 and S2 are, respectively, survival functions of two independent samples, and r is a (frailty) 

parameter. Since it is shown that the generalized odds converge to the cumulative hazard − log 

S(t) as r → ∞ , the GPO model becomes the PH model as r → ∞ . That is, the GPO model covers 

the PH and PO models as special cases. Studies of the GPO model focus on testing for the 

hypothesis of equality of S1 and S2 when they satisfy the GPO condition, and the model has been 

studied extensively in the past two decades. Recently, we tried to apply the model to a data but 

found that the data does not satisfy the GPO assumption. For this reason, we extend the GPO 

model by allowing different r for different sample. In particular, we propose the following 

proportional generalized odds (PGO) model,  

 

 
 

where S0 denotes a baseline survival function, r > 0 and θ > 0 are parameters. To compare it with 

the GPO model, let us consider two independent samples. Let Si denote the survival function of 

sample i, i = 1, 2. Then it is seen that 

 

 
 

So the PGO model is a generalization of the GPO model. It can be verified that Burr distribution 

(Burr, 1942) with different scale parameters (See Section 3 below) satisfies the PGO condition 

but not the PO condition. 

In addition to the natural extension, the PGO model can also be obtained from an engineering 

point of view. Let X1, · · · , Xn, · · · be a random sample of observations with distribution function 

F and survival function S = 1 − F , and let N be a random variable having a geometric distribution 

with probability of “success” θ ∈ (0, 1). Then Kirmani and Gupta (2001) showed that the 

distribution of lifetime Y= min
1≤𝑖≤𝑁

 Xi of a ”series” system satisfies the PO equation 
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and the distribution of the lifetime Z＝max
1≤𝑖≤𝑁

 Xi of a “parallel” system satisfies the PO equation 

 

 
 

These two equations provide a physical support to the PO model. In a similar manner, the 

following is for the PGO model in (2.1). 

 

Proposition 1 Suppose that N follows a negative binomial distribution with parameters (r,θ). 
Then, for all t ≥ 0, 

 

 

Proof For any t, the survival function 

 

Thus, we have 
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Likewise, the distribution function 

 

 

and thus 

 

for any t. 

 

3. Estimation 

A nonnegative random variable X is said to follow a Burr distribution (Burr, 1942), denoted 

as X ∼ Bur(α, σ, r), if it has the survival function 

 
where the shape parameter α, the scale parameter σ and the frailty parameter r are all positive. 

Bur(1, 1, r) is called the standard Burr distribution. 

Proposition 2 below shows that Burr distribution satisfies the PGO condition. Since it is 

straightforward, we state it without proof. 

Proposition 2 Suppose Xi ∼ Bur(α, σi, ri), i = 1, 2. Then, for all t ≥ 0, 

 

where θ = σ1/σ2 > 0. 

It is easy to verify that PGO equation (2.2) is invariant under positive increasing 

transformations. That is, if X1 and X2 satisfy (2.2), then so do h(X1) and h(X2) for any increasing 

function h. Proposition 3 below tells that any two random variables satisfying (2.2) may be 

regarded as increasing transformations of two Burr random variables with a common shape 

parameter. 
 

Proposition 3 Suppose X2 and X1 satisfy the PGO model 

 

Then, the transform 
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gives rise to h(X2) ∼ Bur(1, 1, r2) and h(X1) ∼ Bur(1, θ, r1). 

Proof Note that S2(X2) has the standard uniform distribution, we have, for any t ≥ 0, 

 

That is, h(X2) ∼ Bur(1, 1, r2), the standard Burr distribution. And in a similar manner it also 

holds that, for any t ≥ 0, 

 

That is, h(X1) ∼ Bur(1, θ, r1). 

We now discuss the PGO regression model. Assume that in model (2.1) survival function S 

is affected by covariates z only through θ. Specifically, model (2.1) becomes 

 

where θ(z) = exp{β′z}, 

 

Let T1 ∼ S1 and T2 ∼ S2 be two independent lifetimes satisfying the PGO model 
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Apparently it is a semi-parametric model. We now use the likelihood principle to estimate the 

baseline S0, parameters β and ri, and survival functions Si(t; z), i = 1, 2, based on censored data. 

This can be considered as a two-sample problem with covariates. The same method can be used 

for three or more samples. Define 

 

Then, by Proposition 3, Yi follows a Burr distribution with survival function 

 

 
 

Since both samples share the same baseline S0, we combine two samples into one in order to 

construct a pooled estimate of S0. For simplicity let to denote the distinct observed lifetimes from 

the combined sample, of which some are from sample 1 and the others are from sample 2. Further, 

we let 𝑡𝑗
𝑐 , j = 1, 2, . . . denote censored lifetimes from the combined sample. In addition, we use 

𝑦(𝑖)
𝑜  and 𝑦𝑗

𝑐, respectively, to denote the corresponding transformed values of 𝑡(𝑖)
𝑜 and 𝑡𝑗

𝑐, . Note that 

although it is not clearly labeled (for simplicity purpose), it is clear to us as for which sample an 

observation belongs to. Still for simplicity, we are going to use r for both r1 and r2, Q for both Q1 and 

Q2 and the density function of Q 

 

for q1 and q2, the density functions of Q1 and Q2. With these notations, the likelihood function in 

terms of Y takes the form of 

 
 

where Oi is the set of subscripts of observed lifetimes tied at t(i), Cj is that of right-censored 

lifetimes in [t(j), t(j+1)), and the derivative is Jacobian due to the transformation. Notice that y’s as 

a function of S0 are also unknown parameters. To obtain the likelihood estimates of all parameters, 

following two approximations are used, which are similar to Bennett (1983a). First we replace 

the derivative by its approximation 
𝑦(𝑗)− 𝑦(𝑗+1)

𝑡(𝑗)− 𝑡(𝑗+1)
 ; second, we replace Q(𝑦𝑗

𝑐,z) by Q(𝑦(𝑗)
′ ,z )where 

𝑦(𝑗)
′  is the largest observed lifetime before 𝑦𝑗

𝑐 from the same sample. Then the above likelihood 

function is approximated by 
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Once the likelihood (3.4) is maximized with respect to parameters β, r1, r2, and 𝑦(𝑖)
𝑜  i =1, 

2, . . . , k, the baseline survival function S0(t) can be estimated by 

 

 

4. An application 

This section applies the proposed PGO model to a data set about kidney patients recurrent times. 

The data in Table 1 contains 38 kidney patients’ second recurrent times to infection at point 

of insertion of the catheter for kidney patients using portable dialysis equipment, the risk 

variables are age, sex and type of disease coded as 0 = glomerulo nephritis (GN), 1 = acute 

nephritis (AN), 2 = polycystic kidney disease (PKD), 3 = other; in the event column, 1 denotes 

that time to infection was observed and 0 denotes that it was censored. The original data 

containing the first two consecutive recurrent times and sex had been studied by McGilchrist and 

Aisbett (1991) using a frailty model and by McGilchrist (1993) and Lam (1994) using the 

proportional hazards model. They all found that “sex” was not significant. 

As an illustration we divide the data into two groups: AN and PKD in one group and GN and 

Other in another group. To see whether the Cox’s PH model, the PO model or the GPO model is 

suitable for the data, we ignore covariates “age” and “sex” and then for each of the groups we 

obtained the estimate of the survival function using three different methods: Kaplan- Meier (KM) 

estimate, the PO model, and the GPO model. If, for example, the PO model fits the data, then 

there will be some θ > 0 such that 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

Xiaohu Li, Linxiong Li∗, Rui Fang †                                                          579 

 

 

Table 1: Kidney patients’ second recurrent times 

 

patient 

No. 

recurrent time event sex age disease type 

1 16 1 1 28 3 

2 13 0 2 48 0 

3 28 1 1 32 3 

4 318 1 2 31.5 3 

5 12 1 1 10 3 

6 245 1 2 16.5 3 

7 9 1 1 51 0 

8 30 1 2 55.5 0 

9 196 1 2 69 1 

10 154 1 1 51.5 0 

11 333 1 1 44 1 

12 8 0 2 34 3 

13 38 1 2 35 1 

14 70 0 2 42 1 

15 25 0 2 17 3 

16 4 0 1 60 1 

17 177 1 2 60 3 

18 114 1 2 43.5 3 

19 159 0 2 53 0 

20 108 0 2 44 3 

21 562 1 1 46.5 2 

22 24 0 2 30 3 

23 66 1 2 62.5 1 

24 46 0 2 42.5 1 

25 40 1 1 43 1 

26 201 1 2 57.5 1 

27 156 1 2 10 0 

28 30 1 2 52 1 

29 25 1 1 53 0 

30 26 1 2 54 0 

31 58 1 2 56 1 

32 43 1 2 50.5 1 

33 30 1 2 57 2 

34 5 0 2 44.5 0 

35 8 1 2 22 3 

36 16 0 2 42 3 

37 78 1 2 52 2 

38 8 0 1 60 2 
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(a)Log hazard, PH model                                               (b) Log odds, PO  model 

 

(c) Log generalized odds, GPO model (d) Log generalized odds, PGO model 

Figure 1:  Log odds and log generalized odds 

 

For the PH model, replace the numerator 1−S(t) in the above equation with its density 

function f(t) 

. In other words, when taking log on both sides of the above equation, the two log(odds) 

curves (vs. time t) should be parallel if the model works. However, as is seen in Figure 1, the two 

log(hazard) curves based on the estimated hazard functions are not parallel (Fig 1(a)); the two 

log(odds) curves based on PO or GPO are not parallel either (Fig 1(b), 1(c)). By contrast, 

the two curves based on the PGO model are nearly parallel (Fig 1(d)). This is evidence that 

the PGO model is more appropriate to fit this data than the other three models. In addition, 

goodness-of-fit tests for the hypothesis that the two groups (AN and PKD vs. GN and Other) 

satisfy the PO model using Neyman’s smooth test and Kolmogorov-Smirnov test (see Kraus, 

2009) have p-values of 0.014 and 0.094, respectively. This confirms our observation in Figure 

1. By the way, if the data is divided into four groups, AN, PKD, GN, and Other, then the PH 

assumption is satisfied (p-value=0.503); however, when the data is divided into two groups as 
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described above, besides Figure 1(a), we performed a test and the result shows that the PH 

assumption is not satisfied (p-value=0.01329), which is consistent with Figure 1(a). 

We fit the PGO model to this data using likelihood (3.4). The genetic algorithm was 

employed for the computation. The maximum likelihood estimates of parameters r1, r2, and the 

coefficients of “age” and “sex” are, respectively, e5.5, e7.7, 0.006 and -1.29. A likelihood ratio test 

was performed for “age” and “sex” and found that none of them is significant (p-value=0.82 for 

“age” and 0.17 for “sex”). 

 

5. Discussions 

This paper proposes a model which generalizes existing PH, PO and GPO models. The 

example in Section 4 supports the proposed model. Although the proposed PGO model is more 

flexible than the existing models, it remains to be done to develop a method to verify whether a 

data satisfies the PGO condition. We believe that it is not an easy but a ‘must’ task. One of the 

most amazing part of the PH model is the partial likelihood estimate of the model parameters. 

Unfortunately, we are not able to construct a similar estimator for the proposed PGO model. So, 

large sample properties of our maximum likelihood estimators are not discussed. In addition, still 

because of the lack of partial likelihood function, estimations of the baseline survival function 

and other parameters are obtained in one step, instead of two steps like the PH model. This one 

step calculation involves heavier computation and more computer time. For our data in Section 

4 Newton-Raphson algorithm was used first but it failed to converge; then we employed the 

genetic algorithm which worked very well. Without theoretical results, simulation studies are 

usually desired in order to investigate the performance of a proposed model. Unfortunately 

simulations are not done in this paper due to technical difficulties but we decided to conduct a 

thorough simulation study in the future. To summarize, this paper is a preliminary study of the 

problem; the above mentioned issues need to be studied in order to make the proposed model 

useful in practice. 
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