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Abstract: This paper aims to propose a suitable statistical model for the age 

distribution of prostate cancer detection. Descriptive studies suggest the onset of 

prostate cancer after 37 years of age with maximum diagnosis age at around 70 

years. The major deficiency of descriptive studies is that the results cannot be 

generalized for all types of populations usually having non-identical environmental 

conditions. The proposition follows by checking the suitability of the model 

through different statistical tools like Akaike Information Criterion, Kolmogorov-

Smirnov distance, Bayesian Information Criterion and  χ2 statistic. The Maximum 

likelihood estimate of the parameters of the proposed model along with their 

asymptotic confidence intervals have been obtained for the considered real data set.  
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1. Introduction 

The prostate is a walnut-sized exocrine gland of the male reproductive system. Prostate 

cancer, also known as carcinoma of the prostate, is the development of cancer in the prostate 

gland. It is a disease of higher ages with incidence rarely before 37 and 67-70 being the highest 

risk age for a male (Li et al (2012); American Cancer Society (2014); Cancer research UK (2015)). 

The incidence of prostate cancer rapidly increases after the age of 55 years (Cancer research UK 

(2015); Ries et al. (2008); Howlader et al. (2014); Grőnberg (2003)). During the past few decades, 

the median age at diagnosis has been steadily decreasing due to the widespread introduction of 

Prostate-Specific Antigen (PSA) screening. In USA (Surveillance Epidemiology and End Result 

(SEER) data), the median age at diagnosis of prostate cancer dropped from 72 years in 1986 to 

66 years in 2011 (Surveillance epidemiology and End Results program (SEER) (2014)). Factors 

that increases the risk of prostate cancer includes: older age, a family history of the disease, race, 

BMI, etc. . In United States, it is more common in the African American population than the 

Caucasian population and is the second leading cause of death among American men, next to 

lung cancer. The estimated new cases of prostate cancer in US in 2014 is 2,33,000, with estimated 

deaths being 29,480. Based on 2009-2011 data, it is concluded that approximately 15.0% of men 
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will be diagnosed with prostate cancer at some point during their lifetime. Prevalence of this 

cancer in 2011, was estimated to be 2,707,821 (National Cancer Institute at the National Institute 

of Health (2014)). The early stages of prostate cancer are devoid of much symptoms. Yet, proper 

surveillance and screening can be of good help for a patients survival as early detection can 

improve life expectancy and quality of life (Moul et al. (2003); American Cancer Society (2014)). 

The most com- mon diagnostic techniques are Urine test, PSA test and prostate biopsy where 

only biopsy confirms prostate cancer with certainty (National Cancer Institute (2015)). The 

overall survival of young adults with respect to older population after intervention was observed 

to be significantly better (Lin et al. (2009)). Also, the disease progression was found to be in- 

hibited due to early diagnosis and subsequent interventions (Moul et al. (2003); Anderson and 

Sternberg (2008)). The patients have better survival rates in absence of metastasis but they still 

remains at risk of death even after 15 years of disease detection (Aprikian et al. (1994)). The 

above studies clearly establishes the impact of age at diagnosis of prostate cancer and the patients 

course of life after detection. Earlier studies were emphasized on the descriptive and non 

parametric analysis of the effect of age on cancer grades and its severity with young age at 

diagnosis. Descriptive work certainly has its place in science but such inferences are (or should 

be thought of as) more shallow and tentative and intends to describe a big hunk of data with 

summary charts and tables only, but do not provide a platform to draw conclusions based on 

small samples about the population from which the samples come. Models play a critical role in 

sta- tistical data analysis since it helps in gaining approximate information speedily, cheaply and 

perhaps with greater accuracy about the population, contrary to de- scriptive studies. Once a 

model is identified, various forms of inferences such as prediction, control, information 

extraction, knowledge discovery, validation, risk evaluation, and decision making can be done 

within the framework of inductive or deductive arguments. In addition to the above qualities, 

models also wards off the requirement of large dataset for sound analysis and inference. Thus, 

the key to solving complex real-world problems lies in the development and construction of a 

suitable model. Keeping these points in mind, the present study is aimed at proposing a statistical 

model for the age distribution of prostate cancer where the random variable can be explained as 

the number of years lived by a male before being diagnosed with prostate cancer and obtain the 

mean and median age at diagnosis of the same for a given stage. Mathematically, if X denotes 

the age at which a patient is diagnosed with prostate cancer, we wish to develop a statistical 

model for X as cumulative distribution function (CDF) F(·) of X where : 

F(x) = P(X < x ) = P(A male is diagnosed with prostate cancer before age x ). 

 

2. Data Description 

The data for the present study was obtained from The Surveillance Epidemiology and End 

Result (SEER) program. In this study, we have considered the Black patients diagnosed during 

the year 1988-2003 with Malignant prostate cancer, prostate being the primary site of cancer 

invasion. The different stages of a prostate cancer behaves unlikely to the others and thus the 

stages were tackled separately. The stages are defined as stage I, stage II, stage III, stage IV by 

the SEER modified AJCC stage 3rd edition. The variable of interest is the age at diagnosis of the 
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disease for a patient diagnosed through some standard medical technique. The data is assumed to 

be the complete prostate cancer population of the nine cancer registries of SEER ( SMSA, 

Connecticut, Metropolitan Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah and Metropolitan 

Atlanta). The num- ber of persons diagnosed with prostate cancer in stage I is 7769, 3277 in stage 

II, 2778 in stage III and 4194 in stage IV respectively. 

 

3. Methodology and Estimation 

It has been earlier studied that all the stages if pooled together for the survival analysis of a 

patient for a particular course of treatment yields non-conforming results (Chan and Tsokos 

(2013); Osei et al. (2013) ). These studies suggested stage-wise division as a necessity for any 

trivial analysis of life time data related to Prostate Cancer. Keeping in mind these conclusions of 

the past studies, we have modelled and analysed the age at diagnosis for a prostate cancer patient 

at different stages namely stage I, stage II, stage III and stage IV respectively. The data in hand 

is the number of years of survival of a person before he is diagnosed with Prostate cancer which 

can be considered as disease free life time data. To propose a suitable model for such data, firstly 

we need to identify an appropriate probability density function (PDF) that characterizes the age 

at diagnosis of the disease. Model formulation demands explicit study of the nature of data. The 

data characteristics like the histogram (Silverman (1986)), Empirical cumulative distribution 

function(ECDF), five point summary measures, quantile-quantile plot (Wilk and Gnanadesikan 

(1968) ), empirical hazard rate (Kapur and Lamberson (1977) ) were studied, although the initial 

guess of a suitable model rested solely on the nature of observed hazard. Histogram is very 

powerful exploratory technique for empiri- cal study, but the choice of the class intervals plays 

crucial role in determining the nature of data. Often, the empirical hazard fails to clearly 

distinguish between a non-decreasing and a non-increasing hazard. We obtained the Nelson-

Aalen estimate (Lawless (2011); Nelson (1972) ) at each age (commonly known as the 

Cumulative hazard function) for a given stage since it clearly discerns the nature of hazard of a 

dataset. 

The cumulative hazard rate in figure 1 indicates data to be of Increasing Failure Rate (IFR) 

with respect to age which implies with increasing age,the detection of prostate cancer increases 

or succinctly the chance of prostate cancer in a male increases. With this information, several 

IFR models namely Weibull, Gamma, Exponentiated exponential (Gupta and Kundu (2001)), 

Lindley (Ghitany et al. (2008) ), Generalized exponential distribution (Gupta and Kundu (1999) ), 

etc. were narrowed down from literature . All of the afore mentioned distributions exhibits IFR 

nature for shape parameter greater than one. However, in accordance with the phenomenon, the 

onset age of prostate cancer plays a vital role. Due to this age lag, a displaced model shall render 

a better explanation of the event (upta and Kundu (1999)) where the lowest age at diagnosis is 

the assumed displacement factor in each stage. Our objective now is to obtain the model of best 

fit among the class of all considered IFR distributions. Thus, our testing criterion leads to the 

following null and alternative hypotheses : 

H0 : The data is governed by the assumed distribution ; 
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H1 : The data is governed by some other distribution. 

 

Among the competing models mentioned above, there are copious techniques for 

discriminating the best suited model for the above discussed phenomenon. To mention a few, 

based on which this study has been organized are Akaike Information Criterion (AIC), 

Kolmogorov-Smirnov distance (KS dist.), Bayesian Information Criterion (BIC) and the  χ2 

statistic. AIC and BIC quantifies the information loss due to the use of the assumed model with 

only difference between these being the strictness of BIC which penalizes the likelihood strongly 

due to additional parameters as compared to AIC (Akaike (1974); Schwarz et al. (1978)). This 

Rigorous nature of BIC always leads to greater information loss as compared to AIC for a given 

model and its corresponding estimates and that can also be verified from our results in tables 1. 

The KS distance measures the maximum deviation between the observed and assumed 

distribution function (Gun et al. (2010); Clauset et al. (2009)). If an assumed statistical 

distribution function is able to cover the maximum information in the data, accordingly, the KS 

distance shall be small in magnitude and vice-versa. The  χ2 statistic is a well-known technique 

used for verifying goodness of fit between the estimated and observed density functions. The two 

best competing models in light of the above discussion are 2P-Gamma and 3P-Weibull 

distributions with lowest AIC, BIC,  χ2 and KS values as given in table 1. The mathematical 

forms of these models are explained below where µ denotes the minimum age at diagnosis or the 

location factor and p and θ are the unknown shape and scale parameters respectively. 

 

Model 1 : Displaced 3P Weibull distribution 

The PDF, theoretical mean, distribution function, likelihood function and normal equations 

are given in equation 1-6. 
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Model 1 : Displaced 3P Gamma distribution  
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The PDF, theoretical mean, distribution function, likelihood function and normal equations 

are given in equation 7-12. 
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On substituting µ = 0 in the above equations, we obtain the standard 2 parametric counterparts 

of the same models. The normal equations in all the above cases do not admit explicit solution 

and solutions have been evaluated numerically to estimate the parameters (using R software). 

From table 2, it is apparent that the minimum AIC and BIC along with  χ2 statistic and KS 

distance for stage I are observed for the 3P-Weibull distribution. Consequently, in the remaining 

stages the 3P-Weibull outperforms the others except in stage III where we obtained the lowest 

AIC and BIC value for 3P-Weibull but the  χ2 and KS value is slightly higher in comparison to 

2P-Gamma distribution. 

Although, all the above criterion are not comparable in absolute sense but with modesty, we 

choose that distribution which provides minimum information loss and explains the maximum 

possible variation in the data thereby incorporating the basic demand of the situation, which in 

this study is the onset age of Prostate Cancer in an African American. The phenomenon 

eventually rules out the preference of 2P-Gamma model with respect to a shifted Weibull model. 

Requirement of a displaced model to draw inferences about such population is justified by 

the quantile-quantile or the Q-Q plot in figure 2 where the observed data has been plotted after 

displacing each observation of a stage by an appropriate value from the origin for that particular 

stage. 

A Q-Q plot is used to plot theoretical quantiles on one axis and observed data quantiles on 

the other. The hypothesis is plausible if the observed data quantiles and the theoretical quantiles 

are reasonably well approximated by a straight line, while marked deviations from linearity 

provide evidence against this hypothesis (Wilk and Gnanadesikan (1968); Gibbons and 

Chakraborti (2014) ). In this study, we noted linear relation between the two with slope of the 

line being the estimated scale parameter θˆ and the plotted line met ordinate at a point away from 

the origin which was found to be equivalent to the location factor considered for a given stage. 
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Thus, evidently in all the stages, 3P-Weibull distribution may be considered as a suited model 

for further analysis. The maximum likelihood estimates for the shape and scale parameters with 

reference to eq. 3-5 is summarized in table 2 for each stage accompanied by the 95% asymptotic 

confidence interval which can be expressed as  

C. I. = Θ̂ ± 1.96√𝑉𝑎𝑟(Θ̂) ;       Θ̂ = (�̂�, �̂�) 

where Var(Θ) = I(Θ)-1 and I(Θ) = −E(
𝛿2

𝛿Θ
2 𝐿𝑜𝑔𝐿(𝑝, 𝜇, 𝜃 |𝑥)). 

The estimated PDF and Survival function plots shown in figure 3 reveals a closeness between 

the estimated model with the empirical one, yet statistically it is not justified to claim that the 

assumed model is suitable for the phenomenon, since in all the cases, the  χ2 statistic is rejected 

at 5% as well 1% level of significance. One of the reason of rejection on the basis of  χ2 may be 

due to large data. Authors in (Kunte and Gore (1992) ) have discussed the effect of large sample 

on  χ2 statistic. Here it becomes a necessity to discuss certain fallacies of large sample in 

statistical theories. Firstly, defining a sample as “small ” or “large ” has not been rigorously 

penned in statistical literature. Referring to the suggestion by (Kunte and Gore (1992) ) sample 

sizes of order higher than 102 can be regarded as a “large ” sample. Owing to large sample size 

in each stage, it is not justified to reject a model based on  χ2 statistic since with a large data set, 

the goodness-of-fit test becomes sensitive to even very small, inconsequential departures from a 

distribution.  

This occurs due to uncontrolled probability of type-II error (β) which approaches zero with 

increasing sample size, for a fixed type-I error (α =0.5, say) which is in contrary to the criterion 

led down for a good statistical test. Sensitivity of  χ2 test has been demonstrated by (Kunte and 

Gore (1992) ) through an example of sex ratio study in samples of small and large sizes 

respectively. The inferential problem for large data also persists in p-value interpretation. Several 

authors have criticized the dependency of p-value on sample size and its inconsistency pertaining 

to a large sample (Lin et al. (2013); Berkson (1938) ). Theoretically, when the null hypothesis is 

true, an increase in sample size should result in a p-value close to 0 but the magnitude of p-value 

in such cases should be very carefully interpreted as it fails to vehemently portray evidence in 

support of the alternative hypothesis and merely expresses the consistency of the data with the 

null hypothesis. 

Hence, rejecting the null hypothesis solely relying on the p-value of  χ2 statistic shall render 

false conclusions about the observed phenomenon. 

Another reason of disagreement of the null hypothesis for the proposed model might be due 

to the effect of “registry” data (Psoter and Rosenfeld (2013) ). The problem at hand is possibly a 

victim of the large sample size and heterogeneity among the people reporting a registry. 

 

4. Discussion on sub-sample 

To tackle the problem of large data, a number of techniques has been elicited by (Lin et al. 

(2013) ). The simplest and general way is to draw sub-samples from the above population and 

check the goodness of fit on the basis of the sub-samples. A question that may arise at this stage 

would be “what should be the size of the sub sample?” There are a number of ways to choose the 
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sample size. The simplest way of deciding the minimum sub-sample size is based on specifying 

the margin of error and confidence level for the confidence interval. Here we have considered 

5% margin of error and 95% confidence interval. The minimum sample size based on the above 

criterion was obtained as 367 in stage I, 344 in stage II, 338 in stage III and 352 in stage IV 

respectively. Hereafter the study was conducted seriatim for 100 samples of sizes 400, 500, 600, 

700, 800, 1000 and 2000 each at every stages and it was noted that with increase in the sample 

size, rejection goodness of fit with reference to  χ2 statistic escalated significantly. This 

corroborate the drawback of  χ2 goodness-of-fit test as pointed out by (Kunte and Gore (1992) ). 

The approximate rejection rate of the null hypothesis in terms of  χ2 values for different sample 

sizes is summarized in table 3. 

We observed that the rejection rate of sub-samples based on  χ2 statistic remained fairly 

constant for 400-600 sized samples. Thus, our preferred sample size is 600, based on which we 

draw further inferences. It is worthwhile to mention here that graphical study also revealed that 

with increase in the sample size, the discrepancy between assumed model and observed values 

increases. Based on sub-samples, the average estimates of shape, scale, their corresponding 

confidence intervals and mean square errors (MSE) are summarized in table 4. The estimated 

probability density plot for all the stages are presented in figure 4. The MSE of the estimates in 

table 4 was computed by assuming the estimates obtained in table 2 as the true value of the 

parameters. It is quite clear that the estimates obtained from a sub-sample of 600 in table 4 is 

justly equivalent to the estimates of the initial sample in table 2 with a small MSE in all the cases. 

The above techniques were also implemented on single registries. In terms of  χ2 goodness of fit 

test a similar trend was observed in rejection of the proposed model. The Connecticut registry 

reported 695 and Seattle (Puget Sound) reported 296 prostate cancer patients in stage I and the  

χ2 goodness of fit test failed to reject the null hypothesis of Weibull distribution governing the 

age distribution of prostate cancer detection among African American males both at 4% and 6% 

level of significance subsequently. In other registries of higher sample sizes Weibull distribution 

was found unsuitable for modelling the age distribution of prostate cancer detection with regards 

to  χ2 test. This oddity in the behaviour of the  χ2 statistic is evidently a result of large samples 

as well as increased heterogeneity in the “registry” due to large number of reporting. In either 

situations, the sample size is the key factor in deciding the rejection-non rejection of the null 

hypothesis under  χ2 goodness of fit test. Thus, inferring on the basis of sub-sample for the whole 

African American residents of these above mentioned places shall not yield a larger type I error 

for the hypothesis under examination. 

 

5. Result and Conclusion  

In this study we proposed a suitable model governing the age at diagnosis of prostate cancer. 

3P-Weibull distribution was zeroed onto to be the best model in each of the stages. The Maximum 

Likelihood Estimation technique was opted for the parametric estimation in which the location 

parameter was assumed to be the lowest age at diagnosis leaving the other two unknown 

parameters free for estimation. Even though graphically the Weibull distribution was good 

enough for the situation under study, yet the model lacked the statistical properties of a good 
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proposition in the sense that all the model fitting criterion were nullified by the Weibull density. 

Literature referred to such anomalies as the “Large sample paradox”. Also, due to heterogeneity 

amongst and within registries the model failed to explain the phenomenon for larger sample sizes. 

The estimation procedure was repeated for smaller samples and single registries with 

optimum sample size and the subsequent estimates obtained from the above re-sampling 

technique was close to the estimates obtained from complete sample and also complied with the  

χ2 test for goodness of fit. Thus, for further inferences, the average estimates and corresponding 

average asymptotic confidence interval based on the sub-sample has been considered which is 

presented in table 4. The mean age at cancer detection using eq.8 was estimated to be 67.6824, 

65.5237, 64.4222, 69.1231 years and median age using eq. 9 being 68.0569, 65.5782, 64.2331, 

71.2589 years respectively for stage I, stage II, stage III and stage IV. This study accomplishes 

one of the major benefits of statistical modelling of failure time data, that is, small samples being 

much effective in analysing and inferring about a much larger population only through such life 

time models. This model well depicts high risk ages along with the mean and median age at 

diagnosis and accordingly, the policies should be framed to aim surveillance and screening of 

males at these particular ages regularly. The suitability of the model rested solely on the 

phenomenon and we believe the model to perform best in situations considered in this study. 

 
Figure 1: Cumulative Hazard for all stages 

 

 

Figure 2: Q-Q plot of all the stages 
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Figure 3: The estimated density function and survival function with reference to observed histogram and 

ECDF. 

 

Figure 4: The estimated density function of sub-sample of size 600 with reference to observed 

histogram. 

Table 1: AIC, BIC,  χ2 and KS distance for all stages 
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Table 2 : Estimates and Confidence Intervals of 3P-Weibull 

 
Table 3: rejection rate (in%) of null hypothesis with respect to  χ2 statistic 

 
Table 4: Average estimates and confidence interval of 3P-Weibull distribution based on sample 

size 600 
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