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Abstract: Methods used to detect differentially expressed genes in situations with 

one control and one treatment are t-tests. These methods do not per- form well when 

control and treatment variances are different. In situations with a control and more 

than one treatment, it is common to apply analysis of variance followed by a Tukey 

and/or Duncan test to identify which treat- ment caused the difference. We propose 

a Bayesian approach for multiple comparison analysis which is very useful in the 

context of DNA microarray experiments. It uses a priori Dirichlet process and Polya 

urn scheme.  It is  a unified procedure (for cases with one or more treatments) which 

detects differentially expressed genes and identify treatments causing the difference. 

We use simulations to verify the performance of the proposed method and compare 

it with usual methods. In cases with control and one treatment and control and more 

than one treatment followed by Tukey and Duncan tests, the method presents better 

performance when variances are different. The method is applied to two real data 

sets. In these cases, genes not detected by usual methods are identified by the 

proposed method. 
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1. Introduction 

A common interest in gene expression data analysis is to identify genes with different 

expression levels. Identifying these genes allows us to detect relationships between genes and 

between genes and proteins; also, it allows us to identify which genes are involved in the origin 

and/or evolution of diseases with genetic origin,   or which genes react to a drug stimulus (Schena 

et al., 1995; Allison et al., 2006; DeRisi et al., 1997; Arfin et al., 2000; Lonnstedt and Speed, 

2001; Rosenfeld,  2007; Wu, 2001). 

Gene expression data can be analyzed in at least three levels of increasing complexity (Baldi 

and Long, 2001). In the first level, each gene is analyzed separately and the purpose is to verify 

whether the expression levels are different in treatment and control conditions. In the second 
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level, clusters of genes are analyzed in terms of common functionalities and interactions. In the 

third level, the purpose is to understand the relationship between genes and proteins. 

Here we focus on identifying differentially expressed genes. One of the first proposed 

approaches was the fold-change (Schena et al.,  1995;  Allison  et al., 2006), where a gene is 

considered differentially expressed if the average of the logarithm of the observed expression 

levels in treatment and control differ by  more than a cutoff value, Rc, which is previously 

prefixed. 

Another method used for gene expression data analysis is the two-sample t- test (T T ), see 

Baldi and Long (2001) and Hatfield et al. (2003).  A limitation      for applying T T  to gene 

expression data is the usual small sample size,  which  may lead to underestimated variances and 

low power of test. To avoid such limitations, some T T modifications were proposed, such as the 

Cyber-t (CT) proposed by Baldi and Long (2001) and the Bayesian t-test (BTT) proposed by    

Fox and Dimmic (2006). Basically, these methods modify the standard  error estimate of the two 

sample differences found in the denominator of the standard    t statistic. 

These methods can be applied to only two experimental conditions (control and treatment). 

This is a drawback since in many microarray experiments, the gene expression response is 

monitored under M , M > 2, treatment conditions. 

The interest is to consider all M (M − 1)/2 pairwise treatments, (Dudoit et  al., 

2003). 

We propose a hierarchical Bayesian approach with a priori Dirichlet process, which compares 

two or more experimental conditions. The comparison is made using the a posteriori probabilities 

for models in a model selection procedure. The a posteriori  probabilities are calculated using the 

Polya urn scheme (Blackwell  and MacQueen, 1973). 

In order to verify the performance of the proposed method (denoted by PU ), we carried out 

a  simulation  study  with  small  sample  sizes,  which  is  usual  in gene expression data analysis. 

In situations with a control and a treatment, we compared the performance of PU with T T , CT 

and BT T . We also considered situations with a control and two and three treatments. In these 

cases, we com- pared  the  performance  of  PU with  analysis  of  variance  (ANOVA)  followed  

by the Tukey-test (Cox and Reid, 2000) and Duncan-test (Duncan, 1955).  ANOVA  was  applied 

to identify differentially expressed genes.  As it does not discrimi-  nate which treatments differ 

from one another, we applied the Tukey-test and Duncan-test as a post hoc test. 

The comparison among the methods was made in terms of the true positive rate and the false 

discovery rate. The simulation study showed a better perfor- mance for PU , i.e., the greater true 

positive rate and the smaller false discovery rate, for cases with different mean and variance.  We  

also applied these meth-    ods to two real data sets. The first is from an experiment with 

Escherichia coli bacterium with a control and a  treatment  condition  (Arfin  et al.,  2000).  The 

second refers to Plasmodium falciparum protein microarray with a control and   two treatments, 

obtained from the website cybert.ics.uci.edu (Baldi and Long, 2001). 

This paper is structured using the hierarchical Bayesian model for the gene expression data 

analysis, described in Section 2.  The a posteriori  probabilities   are calculated using the Polya 

urn scheme and the Bayes factor in Section 3. In Section 4, we compare the performance of the 
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proposed approach and methods usually considered. Section 5 concludes the paper with final 

remarks. 

2. Bayesian Model 

Consider an experiment with N genes under experimental conditions E1, . . . , EM  and E1 as 

the control.  For each gene g, g = 1, . . . , N , let {y1m, . . . , ynmm}be the set of measurements of 

log-expression levels in experimental condition m, where nm is the sample size, for m = 1, . . . , 

M . Although this is not necessary for the proposed approach, to simplify  notation  we  assume  

a  balanced  design common to all genes so that nm = n, for m = 1, . . . , M . 

Let Y = {Y1, . . . , YM} be the set of all observed expression levels for gene    g, where Ym = 

(y1m, . . . , ynm)  ́ is a n × 1 vector of conditionally independent observations for treatment m. 

Assume Yim ∼ F (θm), where F (θm) is a parametric distribution indexed by unknown parameters 

θm. Denote the parametric space by Θ = {θ = (θ1, . . . , θM ); θm ∈ Rd, where d is the dimension 

of θm, m = 1, . . . , M }. 

Our interest is to verify whether a gene g is differentially expressed in different experimental 

conditions, i.e., we search for a model which best fits the data and meets these conditions.  These 

models can be described as M0  : Θ0  = {θ; θ1   = . . .  =  θM});  M1  :  Θ1  =  {θ; θ1  ≠  θ2, θ2  =  θ3  

=  . . .  =  θM},  or  M2  :  Θ2   = {θ; θ1 = θ2, θ2  ≠ θ3, = θ3 = . . . = θM}, and successively for all 

combinations until MT  : ΘT  = {θ; θ1  ≠ . . . ≠ θM}. 

The equality (or not) of θm’s determines partitions in parameter space Θ, i.e., Θ0, Θ1, . . . , ΘT 

are disjointed and Θ0 ∪ Θ1 ∪ . . . ∪ ΘT = Θ. This allows us to develop a hierarchical Bayesian 

approach using an a priori Dirichlet process (DP ) on θ1, . . . , θM in order to make simultaneous 

comparisons of θm’s (Gopalan and Berry, 1998; Neal, 2000). This exploits the discreteness of the 

Dirichlet process that allows parameters to be coincident with positive probability. 

We assume the following semi-parametric Bayesian model (see Ferguson (1973) and 

Antoniak (1974)), 

 
Integrating tt over its a priori distribution in (1),  θ  follows  the  Polya  urn scheme (Blackwell 

and MacQueen, 1973), and can be written as 
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where θm−1 = (θ1, . . . , θm−1), Iθm (θj ) = 1 if θm  = θj  and Iθm (θj ) = 0 otherwise, for j ∈ {1, . . . , m 

− 1} and m ∈ {2, . . . , M }. 

Note that at each step of the sampling procedure defined in (2), θm replicates one of the previous 

θ j 's, with probability
1

𝑎+𝑚−1
∑ 𝐼𝜃𝑚(𝜃𝑗)𝑚−1

𝑗=1 , or it assumes a new value, generated from the base 

distribution G0, with probability 
1

𝑎+𝑚−1
 Thus, a sample from the joint distribution of θ1, . . . ,  θM 

yields k groups (1 ≦ k  ≦ M) of θm's with distinct values, ∅ 1, . . . ,∅ k, generated from the base 

distribution G0. 

2.1  A priori Dirichlet process via latent variables 

Consider the latent variables c = (c1, . . . , cM ) in a way that cm = j indicates  that  θm   =  

φj ,  φj   ∼  G0  for  m  =  1, . . . , M  and  j  =  1, . . . , k.    c  classifies the observed data y  =  

(y1, . . . , yM ) in k groups,  {D1, . . . , Dk},  where Dj = {ym; cm = j} with ⋃ 𝐷𝑗 = 𝑦𝑘
𝑗=1 .  

The likelihood function for c is 

L(c|y) =∏ 𝑃 (𝐷𝑗 )
𝑘
𝑗=1                                                      (3) 

 

 

 

 

and πG0 (·) is the density of the base distribution  G0. 

Letting nj  be the number of observations in Dj  given the configuration cm−1 = (c1, . . . , 

cm−1), the Polya urn scheme in (2) can be described by 

 

 

 

 

 

3. Multiple comparison 
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Updating the a priori  probabilities in (5) and (6) via the likelihood function    in (3), we 

obtain the conditional a posteriori probabilities 

where b is the normalizing constant and P (·) is given by (4). 

In order to specify the mass parameter α, from (5) and (6), we define 

 

 

 

 

 

 

See Gopalan and Berry (1998).  Setting P (M0)/P (MT ) = 1, we  obtain 

 

 

 

3.1 Particular cases 

Now we show some particular cases of (7) and (8). 

3.1.1 Control and one treatment 

In this case, we have M = 2, y = (y1, y2) and α = 1.  Initialize with c1 = 1   and D1 = 

{y1}. 

Thus, from (7) and (8), we  have 
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Let B21 = 
𝑃(𝐷1)𝑃(𝑦2)

𝑃(𝐷1∪𝑦2)
 be the Bayes factor (Kass and Raftery, 1995). Compare models with 

the first assuming Y1 ∼ F (φ1) and Y2 ∼ F (φ2), for φ1 ≠φ2, and  the second assuming Y1, Y2 ∼ 

F (φ1). Thus 

P (c2 = 1|c1 = 1, y) =
1

1+𝛼𝐵21
 and P (c  = 2|c  = 1, y) =

𝛼𝐵21

1+𝛼𝐵21
 

If P (c2 = 2|c1 = 1, y) > P (c2 = 1|c1 = 1, y) do c2 = 2. In this case, there is evidence for a 

difference between the control and the treatment. Otherwise, do c2 = c1 = 1 considering that there 

is not enough evidence for the difference. 

3.1.2 Control and two treatment 

 

We  now have  M = 3,  y = (y1, y2, y3) and α = √2.  Apply  the procedure in 3.1.1 to classify 

treatment 1 and define c2, then do the following procedure. 

(i)If   c2  = c1  = 1, i.e., treatment 1 does not differ in relation to the control,do D1 = {y1, y2}.  

 The a posteriori probabilities for c3 are given  by  

 

P (c3 = j | c2, y) = {

2

2+𝛼𝐵31
 ,   𝑓𝑜𝑟 𝑗 = 1

𝛼𝐵31

2+𝛼𝐵31
 ,   𝑓𝑜𝑟 𝑗 = 2

 

and B31 = 
𝑃(𝐷1)𝑃(𝑦3)

𝑃(𝐷1∪𝑦3)
 , where c2 = (c1 = 1,c2 = 1). 

If  P(c3 = 2 | c2 , y) > P(c3 = 1 | c2 , y) do c3 = 2 , otherwise do c3 =1. 

(ii) If c2 ≠ c1 (c1 = 1 and c2 = 2) then D1  = {y1} and D2  = {y2}.   

The a  posteriori probabilities for c3 are 

 

 

 

 

 

 

 

Do c3 = (P (c3 =  j| ·))𝑗=1,2,3
argmax

. 

In Appendix 1 of the additional matter (AM), we present a posteriori probabilities for the 

case with a control and three treatments. 

3.1.3 Algorithm for the general case 

The proposed method can be expressed as: 

(i) Initialize with c1 = 1, D1 = {y1}, k = 1 and fix α according to (9); 

(ii) For m = 2, . . . , M do 

(a) Calculate P (Dj ), P (Dj ∪ ym) and P (ym) according to (4), for j = 

1, . . . , k; 
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(b) Calculate P(cm = j|cm-1 , y) ∝  
𝑛𝑗

𝛼+𝑚−1

𝑃(𝐷𝑗∪𝑦𝑚)

𝑃(𝐷𝑗)
 , as in (7); P(cm = k+1|cm-1 , 

y) ∝  
𝑛𝑗

𝛼+𝑚−1
 𝑃(𝑌𝑚) , as in (8); 

(c) If P(cm = j| ‧) = max
𝑗=1,..,𝑘

(P(cm =  𝑗|‧) , P(cm = k+1| ‧) ), for j ∈ 

{1,…k }, do Dj = Dj ∪ ym and nj +1 . Else do Dk+1 = {ym} , nk+1 = 1 and k = 

k+1; 

Given the configuration  c =  (c1 . . . , cM ),  if cm  =  1 for all  m =  1, . . . , M , we select 

model M0, otherwise, if at least one cm ≠ 1, we select another model.Choosing M0 means no 

differentially expressed gene for all treatments while in  any other model it would imply at least 

one treatment with a differentially expressed gene. 
 

4. Data Analysis  

We observed the performance of PU and compared it with standard methods using the 

simulation. 

Gene expression levels in control and treatments are generated from normal distribution,  

Yim|µm, σ2   ∼ N (µm, σ2 ),  for  i =  1, . . . , n and  m =  1, . . . , M .The normal assumption for 

expression data (log-transformed) is usual in gene expression data analysis, see for example Baldi 

and Long (2001); Hatfield et al.(2003); Fox and Dimmic (2006); Saraiva and Milan (2012); 

Louzada et al. (2014). 

Assume that 

 

 

 

 

for m = 1, . . . , M ,  where µ0, λ,  τ  and β are known hyperparameters and IG(·)  is the inverse 

gamma distribution with mean β/(τ − 2), see Escobar and   West (1995) and Casella et al., (2000). 

Thus, from (4) 
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Consider (a, b) as roughly the interval which would include all observations produced by the 

experiment.  We  defined the a priori  distributions choosing  τ and β such that E[𝜎𝑚
2 ] =

𝛽

𝜏−2
= R , 

where R is range of the interval R = b-a.Thus , we obtain β=(τ-2) ‧R and we set τ =3. The 

hyperparameter µ0 was chosen to be the middle point of the interval µ0 = (a+b) /2 .We also set 

λ=0.01. 

 

4.1  Control and one treatment 

For this case, we compared the performance of PU with T T , CT (Baldi and Long, 2001) and 

the BT T (Fox and Dimmic, 2006). 

 

4.1.1 Simulated data sets 
 

We  used µ1 = −14 and σ1
2 = 0.8 to simulate the data sets.These values are the mean and 

variance of the expression levels (log transformed) from the control group of the Escherichia coli  

bacterium data set.  The sample sizes used are 4 and 8. 

To verify how the method performs when treatment parameters θ2 = (µ2, σ2
2) move  away  

from the control parameters θ1  =  (µ1, σ1
2), we  simulate this  using µ2 = µ1 ± δσ1 and σ2 = γσ1, 

for δ ∈ {0.0, 0.5, 1.0, 1.5, 2, 2.5, 3} and γ ∈ {1, 2, 3}. 

Data sets were generated to mimic a mix of both differentially and non- differentially 

expressed genes where the proportion  of  differentially  expressed genes is small. We fixed the 

proportion of differentially expressed genes at 5%, being 3% and 2% for situations over and 

under expressed, respectively. 

The data sets were simulated following the steps. For g = 1, . . . , N , N = 1000, simulate ug 

∼ U (0, 1): 

(i) If ug ≤ 0.95 fix µ2 = µ1  and  σ2  =  σ1. Let  the  index  variable  IIg  =  0  to indicate 

that case g is generated under M0; 

(ii) If 0 .95 < ug  ≤ 0.98 fix µ2 = µ1 + δσ1  and σ2 = γσ1.  Set IIg  = 1 to indicate  that 

case g is generated under M1; 

(iii) If  ug  > 0.98  fix  µ2  = µ1 − δσ1  and  σ2  = γσ1.  Set  IIg  = 1  to  indicate  that case g is 

generated under M1; 

(iv) Simulate  Yim ∼ N (µm, σm
2 ), for m = 1, 2 and i = 1, . . . , n. 

After generating the data sets, we apply PU and t-tests to identify the cases with a difference. 

To record cases identified with a difference by PU , we consider an index variable IP U  = 1 if P 

(c2  = 2|c1  = 1, y) > 0.5 and IP U  = 0 otherwise.Similarly, for T T , CT and BT T , we consider 

Imethod  = 1 (where the method is TT or CT or BTT ) for cases with p − value < 0.05 and IIg
method 

= 0 otherwise. 

We define as performance indicators the true positive rate, TPr, and the false discovery rate, 

FDr, as  



 
 Erlandson F. Saraiva, Lu´ıs A. Milan                                                     499 

 

 

When δ = 0 and γ = 1 no case is generated under the alternative model, for this case T Pr
method 

= 0.  

We generate L = 100 different artificial data sets for each pair  (δ, γ),  as described  above.  

The  average  values  of  TPr and  FDr, denoted  by  𝑇𝑃𝑟
method

 and 𝐹𝐷𝑟
method

, for n = 4, are 

presented in Figure 1.  Figure 1 in Appendix 2 of     the additional matter (AM) shows the 𝑇𝑃𝑟 

and 𝐹𝐷𝑟 for n =  8. 

Average true positive curves are presented in Figure 1-a,c,e. As can be ob- served in Figure 

1-a, the performance is similar for n = 4 and all values of δ. For 

sample size n = 8 (Figure 1-a of AM), equal variance, γ = 1, and small changes in mean (0.5 

≤ δ ≤ 2.0), T T , CT and BT T show a better performance than PU, while for δ ≥ 2.5 all methods 

are similar. 

As the difference in variance increases, γ = 2 and γ = 3, PU performs better than all methods 

tested, and the performance improves as the difference increases, as can be observed in Figures 

1-c and 1-e. 

Figure 1-b,d,f shows the average false positive (also see Figure 1-b,d,f of the AM). 

Considering the condition of equal variances, Figure 1-b, all methods are similar for equal means 

and as the difference between the means increases, the performance of PU improves more rapidly 

than in the other methods. For dif- ferent variances, Figures 1-d and 1-f, PU is better in all tested 

situations. This  good performance of PU for small differences in means and large differences in 

variance is especially interesting for detecting differentially expressed genes. 
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Figure 1:  Average of true positive and false discovery rate for M =  2. 
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4.1.2 Escherichia coli bacterium data  set. 

Now consider the gene expression data for the Escherichia Coli bacterium described in Arfin 

et al. (2000), which presents N = 4, 290 and n = 4. 

Figure 2-a,b show the observed control means and variances versus observed treatment 

means and variances for all genes of this dataset. Figure 2-c,d highlight the cases identified with 

a difference by PU .  Cases identified with a difference    by TT , CT and BTT are presented in 

Figure 3. 

Figure 2: Control and treatment observed means and variances for PU 

 

PU identifies 327 genes as differentially expressed while TT identifies 287, CT 219 and BTT 

288 genes. Out of 287 genes identified by TT , 159 (55.40%) were also identified by PU ; out of 
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219 identified by CT , 141 (64.38%) were identified by PU and out of 288 identified by BTT , 

164 (56, 94%) were also identified by PU . 133 genes were identified by all four methods. 
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Figure 3: Cases identified by TT , CT and BTT 

For this example, 152 genes identified by PU are not detected by the other methods. These 

cases are shown in Figure 2 in Appendix 3 of the  AM. 

Note that genes with means well apart from eachother are better   identified by PU than by t-

tests. Examples are genes 2766 (b1326(f262)) and 3668 (pnuC), which are highlighted in Figure 

2(c,d), and have P (c2 = 2|c1 = 1, y) equal to 0.81 and 0.53, respectively. These two genes are 

not identified by t-tests.  For  gene  2766, the p-values obtained by  TT ,  CT and BTT  are,  

respectively,  0.81,  0.86 and 0.87; and for gene 3668 are 0.53, 0.72 and 0.80.  The reason for 

this error     is the low performance of t-tests in situations with differences between means    and 

variances, as observed in the simulations. Genes with similar variances and different means are 

well identified by t-tests. An example is the gene 4015 (yehP) which has p-value=0.01 for TT , 

CT and BTT  and P (c2  = 2|c1  = 1, y) = 0.90 for PU 

4.2   Control and two treatments 

For  this  case,  we  compare  the  performance  of  PU with  ANOVA  followed by the Tukey-

test (denoted by AT ) and Duncan-test (denoted by AD) with a significance level of 0.05. 

The  five  models  written  in  terms  of  latent  variables  are:   M0  :  c0  =  (c1  = c2  =  c3)  

versus  Mt:  for  one  of  ct’s:  c1  =  (c1  =  c2  ≠  c3),  c2  =  (c1  =  c3  ≠ c2), c3 = (c1 ≠ c2 = c3) and 

c4 = (c1 ≠ c2 ≠ c3). 

4.2.1  Simulated data sets 

In order to generate the data sets, we fix control parameters as µ1 = −14 and σ1
2= 0.8 and set 

the proportion of cases generated from each model to 0.80  for M0 and 0.05 for Mt, for t = 1, . . . , 

4. 

The values of the parameters for each configuration are 

−  (µ3, σ3) = (µ2, σ2) = (µ1, σ1) for c0; 

−  (µ2, σ2) = (µ1, σ1) and (µ3, σ3) = (µ1 + δσ1, γσ1) for c1; 

−  (µ3, σ3) = (µ1, σ1) and (µ2, σ2) = (µ1 + δσ1, γσ1) for c2; 



 

504                 A Bayesian multiple comparison approach for gene expression data analysis 

 

−  (µ2, σ2) = (µ1 + δσ1, γσ1) and (µ3, σ3) = (µ2, σ2) for c3; 

−  (µ2, σ2) = (µ1 + δσ1, γσ1) and (µ3, σ3) = (µ2 + δσ2, γσ2) for c4,  

for δ ∈ {0, 0.50, 1, 1.50, 2, 2.50, 3, 3.50, 4} and γ ∈ {1, 2, 3}. 

The generation of a simulated data set is as follows. For g = 1, . . . , N , generate ug from  

U ∼ U (0, 1);  

(i) If   ug  ≤ 0.80, fix parameters values according to c0.  Let the index   vector 

Gg  = (1, 1, 1) to indicate that case g is generated from  M0; 

(ii) If 0 .80 < ug  ≤ 0.85,  fix parameters values  according to c1  and set Gg  =   (1, 1, 2); 

(iii) If 0 .85 < ug  ≤ 0.90,  fix parameters values  according to c2  and set Gg  =   (1, 2, 1); 

(iv) If 0 .90 < ug  ≤ 0.95,  fix parameters values  according to c3  and set Gg  =   (1, 2, 2); 

(v) If ug > 0.95, fix parameters values according to c4 and set Gg = (1, 2, 3);  

(vi)Generate Yim ∼ N (µm, σm
2 ), for m = 1, 2, 3 and i = 1, . . . , n. 

For each pair (δ, γ), we generate L =  100 data sets according to steps (i)  to  (vi) described 

above and the results are presented using 𝑇𝑃𝑟 and 𝐹𝐷𝑟, see Appendix 4 of AM. 

Figure 4-a,c,e shows the true positive rate, 𝑇𝑃𝑟.  For  equal variance, γ = 1,  and n = 4, Figure 

4-a,  the  performance  of  PU is  similar  to  AT  and  slightly worse than AD. Increasing the 

sample size, n = 8 (Figure 3-a in Appendix 5 of AM),  AD is  better  than  PU and  AT .  For  

different  variances,  Figures  4-c  and 4-e (Figures 3-c and 3-e in Appendix 5 of AM), PU is 

better than both AT and    AD. 

The  graphs  in  Figure  4-b,d,f  (Figure  3-b,d,f  in  Appendix  5  of  AM)  show the false 

discovery rate. In all tested situations, PU presented better results, especially in cases where the 

variances are different, as shown in Figures 4-d and 4-f (Figures 3-d,f of AM), with the 

performance increasing as the difference in variance increases and for a small difference in means. 

Appendix 6 of AM shows a comparison of performance of the methods for 

M = 4.  For this case, the PU also presents higher 𝑇𝑃𝑟 and smaller  𝐹𝐷𝑟. 

4.2.2  Proteomics data set 

Consider the shotgun proteomics microarray data set, taken from the website http:// 

cybert.ics.uci.edu (Baldi and Long, 2001).  The data set consists of N = 1, 088 proteins, with a 

control and two treatments and sample size n = 5. 
Table 1 shows the number of cases identified for each model by each method. means. 
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Figure 4:  Average of true positive and false discovery rate for M =  3. 
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Out of the 140 rejected null models by AT , 105 (75%) were also rejected by PU ; out of the 

46 cases identified by AT as M1, 15 (32.61%) were also identified  by PU ; all 27 cases identified 

as M2 by AT , were also identified by PU ; and out of the 67 cases identified under M3 by AT , 

17 (25.37%) were also identified   by PU . 

Out of the 156 rejected null models by  AD, 112 (71.79%) were also rejected  by PU ; out of 

the 32 cases identified by AD as M1,  15  (46.88%)  were  also identified by PU ; out of the 69 

cases identified as M2 by AD, 49 (71.01%) were also identified by PU ; out of the 53 cases 

identified as M3 by AD, 18 (33.96%)  were also identified by PU ; and the two cases identified 

as M4  by AD (proteins   60 and 649) were not identified by PU as M4, but as  M1. 

Tables 2 and 3 in Appendix 7 of AM show the ten most evident cases identified by PU and 

AT -AD, respectively. 

For this proteomics data, 51 null hypothesis rejected by PU were not rejected  by any of the other 

methods.  These cases are shown in Table 4 in Appendix 8 of  the AM. 

5. Discussion 

Results from simulations showed a better performance for PU than TT , CT and BTT , for 

experiments with control and one treatment.  This  was clearer   in situations with different 

variances. For experiments with control and two or three treatments, we compared the 

performance of PU with ANOVA followed by the Tukey-test (AT ) or Duncan-test (AD). Once 

more, PU presented a better performance than AT and AD emphasizing itself in cases with 

different variances. Methods were also applied to real data sets with control and one treatment       

and control and two treatments. In both cases, PU showed a better performance. From a biological 

point of view, the main interest is that PU brings to light    genes that are not identified when 

using the other methods considered in compar- isons, (TT , AT and AD), AT or AD. This suggests 

an eventual complementarity 

of the methods. 

Additional points in favour  of  PU  are:  (1)  It  is  easier  to  use,  especially when M > 2 

and  (2)  it  performs  well  in  situations  with  small  sample  sizes which are common in gene 

expression data analysis.  Besides this, the PU can be easily implemented in usual software such 

as the software R. The code used    for computing is in the R language and can be obtained by e-

mail from the first author. 
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