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Abstract: This paper introduces a new four parameters model called the Weibull 

Generalized Flexible Weibull extension (WGFWE) distribution which exhibits 

bathtub-shaped hazard rate. Some of it’s statistical properties are obtained including 

ordinary and incomplete moments, quantile and generating functions, reliability and 

order statistics. The method of maximum likelihood is used for estimating the 

model parameters and the observed Fisher’s information matrix is derived. We 

illustrate the usefulness of the proposed model by applications to real data. 
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1. Introduction 

The Weibull distribution is a highly known distribution due to its utility in modelling lifetime 

data where the hazard rate function is monotone Weibull (1951). In recent years new classes of 

distributions were proposed based on modifications of the Weibull distribution to cope with 

bathtub hazard failure rate Xie and Lai (1995). Exponentiated modified Weibull extension 

distribution by Sarhan and Apaloo (2013) are few among others. 

 

Exponentiated Weibull family, Mudholkar and Srivastava (1993), Modified Weibull 

distribution, Lai et al. (2003) and Sarhan and Zaindin (2009), Beta Weibull distribution, Famoye 

et al. (2005), A flexible Weibull extension, Beb bington et al. (2007), Extended flexible Weibull, 

Bebbington et al. (2007), Generalized modified Weibull distribution, Carrasco et al. (2008), 

Kumaraswamy Weibull distribution, Cordeiro et al. (2010), Beta modified Weibull distribution, 

  

Silva et al. (2010) and Nadarajah et al. (2011), Beta generalized Weibull distribution, Singla 

et al. (2012) and a new modified Weibull distribution, Almalki and Yuan (2013). A good review 

of these models is presented in Pham and Lai (2007) and Murthy et al. (2003). 

The Flexible Weibull Extension (FWE) distribution has a wide range of applications 

including life testing experiments, reliability analysis, applied statistics and clinical studies, 

Bebbington et al. (2007) and Singh et al. (2013, 2015). The origin and other aspects of this 

distribution can be found in Bebbington et al. (2007). A random variable X is said to have the 

Flexible Weibull Extension (FWE) distribution with parameters α, β > 0 if it’s probability density 

function (pdf) is given by 
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while the cumulative distribution function (cdf) is given by 

 
The survival function is given by the equation 

 
and the hazard function is 

 
Weibull distribution introduced by Weibull (1951), is a popular distribution for modeling 

phenomenon with monotonic failure rates. But this distribution does not provide a good fit to 

data sets with bathtub shaped or upside-down bathtub shaped (unimodal) failure rates, often 

encountered in reliability, engineering and biological studies. Hence a number of new 

distributions modeling the data in a better way have been constructed in literature as ramifications 

of Weibull distribution. Marcelo et al. (2014) introduced and studied generality a family of 

univariate distributions with two additional parameters, similarly as the extended Weibull, 

Gurvich et al. (1998) and Gamma-families, Zografos and Balakrshnan (2009), using the Weibull 

generator applied to the odds ratio 
𝐺(𝑥)

1−𝐺(𝑥)
. If G(x) is the baseline cumulative distribution function 

(cdf) of a random variable, with probability density function (pdf) g(x) and the Weibull 

cumulative distribution function is 

 
with parameters a and b are  positive. Based on this density, by replacing x with ratio 

𝐺(𝑥)

1−𝐺(𝑥)
.The cdf of Weibull- generalized distribution, say Weibull-G distribution with two extra 

parameters a and b, is defined by Marcelo et al. (2014)  

 
where G(x; θ) is a baseline cdf, which depends on a parameters vector θ. The corresponding 

family pdf becomes 
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A random variable X with pdf (7) is denoted by X distributed Weibll-G(a, b, θ), x ∈ R, a, b 

> 0. The additional parameters induced by the Weibull generator are sought as a manner to furnish 

a more flexible distribution. If b = 1, it corresponds to the exponential- generator. An 

interpretation of the Weibull-G family of distributions can by given as follows (Corollary, Cooray 

(2006)) is a similar context. Let Y be a lifetime random variable having a certain continuous G 

distribution. The odds ratio that an individual (or component) following the lifetime Y will die 

(failure) at time x is  
𝐺(𝑥)

1−𝐺(𝑥)
. Consider that the variability of this odds of death is represented by 

the random variable X and assume that it follows the Weibull model with scale a and shape b. 

We can write 

 
Which is given by Eq. (6). The survival function of the Weibull-G family is given by 

 
and hazard rate function of the Weibull-G family is given by 

 

where h(x; θ) =  
𝐺(𝑥;𝛳)

1−𝐺(𝑥;𝛳)
 . The multiplying quantity 

𝑎𝑏∙𝑔(𝑥;𝜃)[𝐺(𝑥;𝜃)]𝑏−1

[1−𝐺(𝑥;𝜃)]𝑏  works as a corrected 

factor for the hazard rate function of the baseline model (6) can deal with general situation in 

modeling survival data with various shapes of the hazard rate function. By using the power series 

for the exponential function, we obtain 

 
substituting from Eq.(10) into Eq. (7), we get 

 
Using the generalized binomial theorem we have 
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Inserting Eq. (12) in Eq. (11), the Weibull-G family density function is 

 
This paper is organized as follows, we define the cumulative, density and hazard functions 

of the Weibull-G Flexible Weibull Extension (WGFWE) distribution in Section 2. In Sections 3 

and 4, we introduced the statistical properties include, quantile function skewness and kurtosis, 

rth moments and moment generating function. The distribution of the order statistics is 

expressed in Section 5. The maximum likelihood estimation of the parameters is determined in 

Section 6. Real data sets are analyzed in Section 7 and the results are compared with existing 

distributions. Finally, Section 8 concludes. 

 

2. The Weibull-G Flexible Weibull Extension Distribution 

In this section we studied the four parameters Weibull-G Flexible Weibull Extension 

(WGFWE) distribution. Using G(x) and g(x) in Eq. (13) to be the cdf and pdf of Eq. (6) and Eq. 

(7). The cumulative distribution function cdf of the Weibull-G Flexible Weibull Extension 

distribution (WGFWE) is given by  

 
The pdf corresponding to Eq. (14) is given by 

 
where x > 0 and , α, β > 0 are two  additional shape parameters. 

The survival function S(x), hazard rate function h(x), reversed- hazard rate function r(x) and 

cumulative hazard rate function H(x) of X ∼ WGFWE(a, b, α, β)are given by 
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respectively, x > 0 and a, b, α, β > 0. 

Figures (1–5) display the cdf, pdf, survival, hazard rate and reversed hazard rate function of 

the WGFWE(a, b, α, β) distribution for some parameter values. 

 
Figure 1:The cdf for different values of parameters. 

 
Figure 2:The pdf for different values of parameters 
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Figure 3:The survival function for different values of parameters 

 

 

 

 

 

 

 

 
Figure 4:The hazard rate function for different values of parameters 
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Figure 5:The reversed hazard rate function for different values of parameters. 

 

From Figures 1–5, the WGFWE distribution is unimodal distribution, the hazard rate is 

decreasing, increasing and constant, decreasing reversed hazard rate and survival function. 

 

3. Statistical Properties 

In this section, we study the statistical properties for the WGFWE distribution, specially 

quantile function and simulation median, skewness, kurtosis and moments. 

 

3.1 Quantile and simulation 

The quantile 𝑥𝑞 of the WGFWE(a, b, α, β) random variable is given by. 

 
Using the distribution function of WGFWE, from (14), we have 

 
Where 

 
So, the simulation of the WGFWE random variable is straightforward. Let U be a uniform 

variate on the unit interval (0, 1). Thus, by means of the inverse transformation method, we 

consider the random variable X given by 
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Since the median is 50% quantile, we obtain the median M of X by setting q = 0.5 in Eq. 

(21). 

 

3.2 The Skewness and Kurtosis 

The analysis of the variability Skewness and Kurtosis on the shape parameters α, β can be 

investigated based on quantile measures. The short comings of the classical Kurtosis measure are 

well-known. The Bowely’s skewness based on quartiles is given by, Kenney and Keeping (1962). 

 
and the Moors Kurtosis based on quantiles, Moors (1998) 

 
where q(.) represents quantile function. 

 

3.3 The Moment 

In this subsection we discuss the rth moment for WGFWE distribution. Moments are 

important in any statistical analysis, especially in applications. It can. be used to study the most 

important features and characteristics of a distribution (e.g. tendency, dispersion, skewness and 

kurtosis). 

Theorem 1. If X has WGFWE (a, b, α, β) distribution, then the rth moments of random 

variable X, is given by the following 

 
Proof. We start with the well known distribution of the rth moment of the random variable 

X with probability density function f (x) given by 

 
 



 
 A. Mustafa, B. S. El-Desouky, S. AL-Garash                                       461 

Substituting from Eq. (1) and Eq.  (2) into Eq. (13) we get 

 

since 0 < 1-𝑒−𝑒
𝛼𝑥−

𝛽
𝑥
 <1 ,for x > 0, the binomial series expansion of [1 − 𝑒−𝑒

𝛼𝑥−
𝛽
𝑥 ]𝑏(𝑖+1)+𝑗−1 

yields 

 
Then we get 

 

Using series expansion of 𝑒−(𝑘+1)𝑒
𝛼𝑥−

𝛽
𝑥
 , 

 
We obtain 

 

Using series expansion of 𝑒−(𝑛+1)
𝛽

𝑥 , 
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We obtain

 
By using the the definition of gamma function in the form, Zwillinger (2014), 

 
Finally, we obtain the rth moment of WGFWE distribution in the form 

 
This completes the proof. 

 

4. The Moment Generating Function 

The moment generating function (mgf) MX (t) of a random variable X pro- vides the basis 

of an alternative route to analytic results compared with working directly with the pdf and cdf of 

X. 

Theorem 2. The moment generating function (mgf) of WGFWE distribution is given by

 
Proof. We start with the well known distribution of the moment generating function of the 

random variable X with probability density function f (x) given by 

 
Substituting from Eq. (1) and Eq. (2) into Eq. (13) we get 
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since 0 < 1-𝑒−𝑒
𝛼𝑥−

𝛽
𝑥
<1 for x > 0, the binomial series expansion of [1 − 𝑒−𝑒

∝𝑥−
𝛽
𝑥 ]𝑏(𝑖+1)+𝑗−1 

yields 

 

 
 

Then we get 

 

 
 

Using series expansion of 𝑒−(𝑘+1)𝑒
𝛼𝑥−

𝛽
𝑥
, 

 

 
We obtain 

 

 
 

Using series expansion of 𝑒−(𝑛+1)
𝛽

𝑥 and 𝑒𝑡𝑥, 
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We obtain

 
By using the the definition of gamma function in the form, Zwillinger (2014), 

 
Finally, we obtain the moment generating function of WGFWE distribution in the form

 
This completes the proof. 

 

5. Order Statistics 

In this section, we derive closed form expressions for the probability density function of the 

rth order statistic of the WGFWE distribution. Let 𝑋1:𝑛, 𝑋2:𝑛…, 𝑋𝑛:𝑛denote the order statistics 

obtained from a random sample 𝑋1, 𝑋2, · · · , 𝑋𝑛 which taken from a continuous population with 

cumulative distribution function cdf F (x;𝜑) and probability density function pdf f (x; φ),then the 

probability density function of 𝑋𝑟:𝑛 is given by 

 
where f (x; φ), F (x;𝜑)are the pdf and cdf of WGFWE(φ) distribution given by Eq. (15) and 

Eq. (14) respectively, φ  = (a, b, α, β)  and  B(., .) is the Beta function, also we define first order  
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statistics 𝑋1:𝑛 =  min(𝑋1, 𝑋2, · · · , 𝑋𝑛), and the last order statistics as  𝑋𝑛:𝑛 = max(𝑋1, 𝑋2, · · · , 

𝑋𝑛). Since  0 < F (x; φ)  < 1 for x > 0, we can use the binomial expansion of [1 −  𝐹 (𝑥;  𝜑)]𝑛−𝑟 

given as follows 

 
Substituting from Eq. (30) into Eq. (29), we obtain 

 
Substituting from Eq. (14) and Eq. (15) into Eq. (31), we obtain 

 
Relation (32) shows that fr:n(x; ϕ) is the weighted average of the Weibull-G Flexible 

Weibull Extension distribution withe different shape parameters. 

 

6. Parameters Estimation 

In this section, point and interval estimation of the unknown parameters of the WGFWE 

distribution are derived by using the method of maximum likelihood based on a complete sample. 

 

6.1 Maximum likelihood estimation 

Let  𝑥1 , 𝑥2, … , 𝑥𝑛denote a random sample of complete data from the WGFWE distribution. 

The Likelihood function is given as 

 
substituting from (15) into (33), we have 

 
The log-likelihood function is 
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The maximum likelihood estimation of the parameters are obtained by differentiating the log-

likelihood function L with respect to the parameters a, b, α and β and setting the result to zero, 

we have the following normal equations. 

 

 

 

where D𝑖 = exp{α𝑥𝑖 −
𝛽

𝑥𝑖
+ 𝑒

𝛼𝑥𝑖−
𝛽

𝑥𝑖}. The MLEs can be obtained by solving the nonlinear 

equations previous, (35)-(38), numerically for a, b, α and β. 

 

6.2 Asymptotic confidence bounds 

In this section, we derive the asymptotic confidence intervals when a, b, α > 0 and β > 0 as 

the MLEs of the unknown parameters a, b, α > 0 and β > 0 can not be obtained in closed forms, 

by using variance covariance matrix 𝐼−1see Lawless (2003), where 𝐼−1  is the inverse of the 

observed information matrix which defined as follows  
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The second partial derivatives included in I are given as follows. 
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Where 

 

 
We can derive the (1 − δ)100% confidence intervals of the parameters a, b, α and β, by using 

variance matrix as in the following forms 

 

where 𝑍𝛿

2

 is the upper ( 
𝛿

2
 )-th percentile of the standard normal distribution. 

 

7. Application 

In this section we perform an application to two examples of real data to illustrate that the 

WGFWE (a, b, α, β) can be a good lifetime model, compering with many known distributions. 

By using some statistics, Kolmogorov Smirnov (K-S) statistic, as well as Akaike information 

criterion (AIC), Akaike (1974), Akaike Information Citerion with correction (AICC), Bayesian 

information criterion (BIC), Hannan-Quinn information criterion (HQIC) and Schwarz 

information criterion (SIC) values, Schwarz (1978).  

 

Exapmle 7.1: 

Consider the data have been obtained from Aarset (1987), and widely reported in 

many literatures. It represents the lifetimes of 50 devices, and also, possess a bathtub-

shaped failure rate property, Table1. 
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Table 2 gives MLEs of parameters of the WGFWE distribution and K-S Statistics. The values 

of the log-likelihood functions, AIC, AICC, BIC and HQIC are in Table 3. 

 

 

 
 

We find that the WGFWE distribution with four parameters provides a better fit than the 

previous models flexible Weibull (FW), Weibull (W), linear failure rate (LFR), exponentiated 
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Weibull (EW), generalized linear failure rate (GLFR) and exponentiated flexible Weibull (EFW). 

It has the largest likelihood, and the smallest K-S, AIC, AICC, BIC and HQIC values among 

those considered in this paper. 

Substituting the MLE’s of the unknown parameters a, b, α, β into (39), we get estimation of 

the variance covariance matrix as the following 

 
 

 

 

The approximate 95% two sided confidence intervals of the unknown parameters a, b, α and 

β are [0, 0.467], [0, 1.018], [0, 0.048] and [0, 5.727], respectively. 

The nonparametric estimate of the survival function using the Kaplan-Meier method and its 

fitted parametric estimations when the distribution is assumed to be WGFWE, FW , W , LFR, 

EW , GLFR and EFW are computed and plotted in Figure 6. 

 
Figure 6: The Kaplan-Meier estimate of the survival function for the data 
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Exapmle 7.2: 

The data have been obtained from Salman et al. (1999), it is for the time between failures 

(thousands of hours) of secondary reactor pumps, Table4 

 

 

 
 

Table 5 gives MLEs of parameters of the WGFWE and K-S Statistics. 

 
 

The values of the log-likelihood functions, AIC, AICC, BIC, HQIC, and SIC are in Table6. 

 
 

We find that the WGFWE distribution with the four-number of parameters provides a better 

fit than the previous models such as a Flexible Weibull (FW), Weibull (W), modified Weibull 

(MW), Reduced Additive Weibull (RAW) and Extended Weibull (EW) distributions, 
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respectively. It has the largest likelihood, and the smallest K-S, AIC, AICC and BIC values 

among those considered in this paper. 

Substituting the MLE’s of the unknown parameters a, b, α, β into (39), we get estimation of 

the variance covariance matrix as the following 

 
 

 

 

The approximate 95% two sided confidence intervals of the unknown parameters a, b, α 

and β are [0, 1.666], [0, 2.205], [0, 0.498] and [0, 1.612], respectively. 

To show that the likelihood equation have unique solution, we plot the profiles of the log-

likelihood function of a, b, α and β in Figures 7 and 8. 

 

 

 

 

 
Figure 7: The profile of the log-likelihood function of a, b. 
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Figure 8: The profile of the log-likelihood function of α, β. 

 

 

 

The nonparametric estimate of the survival function using the Kaplan-Meier method and its 

fitted parametric estimations when the distribution is assumed to be WGFWE, FW, W, MW, 

RAW and EW are computed and plotted in Figure 9. 

 

 

 

 
Figure 9: The Kaplan-Meier estimate of the survival function for the data. 
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Figures 10 and 11 give the form of the hazard rate and CDF for the WGFWE, FW, W, MW, 

RAW and EW which are used to fit the data after replacing the unknown parameters included in 

each distribution by their MLE. 

 
Figure 10: The Fitted hazard rate function for the data. 

 

 
Figure 11:The Fitted cumulative distribution function for the data. 
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8. Summary 

A new distribution, based on Weibull- G Family distributions, has been pro- posed and its 

properties are studied. The idea is to add parameter to a flexible Weibull extension distribution, 

so that the hazard function is either increasing or more importantly, bathtub shaped. Using 

Weibull generator component, the distribution has flexibility to model the second peak in a 

distribution. We have shown that the Weibull-G flexible Weibull extension distribution fits 

certain well- known data sets better than existing modifications of the Weibull-G family of 

probability distribution.  
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