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Abstract: In this study, we introduce a new family of models for lifetime data called 

generalized extended Weibull power series family of distributions by compounding 

generalized extended Weibull distributions and power series distributions. The 

compounding procedure follows the same setup carried out by Adamidis (1998). 

The proposed family contains all types of combinations between truncated discrete 

with generalized and non-generalized Weibull distributions. Some existing power 

series and subclasses of mixed lifetime distributions become special cases of the 

proposed family, such as the compound class of extended Weibull power series 

distributions proposed by Silva et al. (2013) and the generalized exponential power 

series distributions introduced by Mahmoudi and Jafari (2012). Some mathematical 

properties of the new class are studied, including the cumulative distribution 

function, density function, survival function, and hazard rate function. The method 

of maximum likelihood is used for obtaining a general setup for estimating the 

parameters of any distribution in this class. An expectation-maximization algorithm 

is introduced for estimating maximum likelihood estimates. Special subclasses and 

applications for some models in a real dataset are introduced to demonstrate the 

flexibility and the benefit of this new family.  

 

Key words: generalized extended Weibull power series distributions, Weibull 

power series distribution, generalized power series distributions 

 

1. Introduction 

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide 

variety of scientific and technological fields, such as public health, actuarial science, biomedical 

studies, demography, and industrial reliability. In risk modeling, the lifetime associated with a 

particular risk is not observable, as only the maximum or the minimum lifetime value among all 

the risks can be observed. In reliability, we observe only the maximum component lifetime of a 

parallel system and the cause of failure. Lifetime data modeling is introduced by compounding 

any continuous distribution and power series distributions. The Weibull distribution is 

exhaustively used for describing hazard rates due to its negatively and positively skewed density 

shapes. Chahkandi and Ganjali (2009) proposed the exponential power series family of 

distributions that generalize into a two-parameter exponential power series called the Weibull 
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power series (WPS) class of distributions by Morais and Barreto-Souza (2011). The WPS 

distributions can have an increasing, decreasing, and upside-down bathtub failure rate function. 

In the same manner, the exponentiated Weibull power series distribution and its applications were 

presented by Mahmoudi and Shiran (2012). Recently, the exponentiated Weibull‒Poisson 

distribution and its applications were introduced by Mahmoudi and Sepahdar (2013). The 

generalized exponential power series (GEPS) distributions were proposed by Mahmoudi and 

Jafari (2012), following the same approach developed by Morais and Barreto-Souza (2011) by 

compounding the generalized exponential and the power series distributions. Leahu et al. (2013) 

proposed the power series distributions in the lifetime as the maximum or minimum of the sample 

with a power series distributed size. The complementary exponential power series distribution 

with increasing failure rate was introduced by Flores et al. (2013) as a complement to the 

exponential power series model proposed by Chahkandy and Ganjali (2009). Silva et al. (2013) 

introduced the power series distributions of the compound class of the extended Weibull 

distribution. Recently, Bourguignon et al. (2014) proposed a new class of fatigue life distribution 

as the Birnbaum –Saunders power series class of distributions. We combine the GEPS 

distributions introduced by Mahmoudi and Jafari (2012) and the compound class of the extended 

Weibull power series distributions (EWPS) proposed by Silva et al. (2013) into a more general 

family called the generalized extended Weibull power series (GEWPS). 

This study aims to generalize the EWPS distributions to obtain a new and more flexible 

family to describe reliability data. The proposed family can be applied to other fields, including 

business, environment, actuarial science, biomedical studies, demography and industrial 

reliability, and many other fields. This family contains several subclasses and lifetime models as 

special cases. In addition, it gives us flexibility of choosing any compound lifetime distribution 

(generalized and not generalized) for modeling any type of lifetime data. 

Consider a system with N components, where N (the number of components) is a discrete 

random variable with support {1,2,...} . The lifetime of the thi (1,2,..., N ) component is the 

nonnegative continuous random variable, say 
iX , the distribution of which belongs to one of 

the lifetime distributions, such as exponential, gamma, Weibull, and Pareto, among others. The 

discrete random variable N can have several distributions, such as zero-truncated Poisson, 

geometric, binomial, logarithmic, and the power series distributions in general. The non-negative 

random variable X denoting the lifetime of such a system is defined by min{ }iX X or

min{ }iX X based on whether the components are series or parallel. By taking a system with 

parallel components in which the random variable N has the power series distributions and the 

random variable 
iX follows the generalized Weibull distribution, we introduce the GEWPS class 

of distributions that contain the GEPS and the EWPS distributions as special cases.  

This paper is organized as follows. In Section 2, we define the class of Weibull and 

generalized Weibull distributions, and demonstrate the many existing models that can be deduced 

as special cases of the proposed unified model. In Section 3, we define the GEWPS class of 

distributions in terms of distribution functions and special cases of some existing classes. In 

Section 4, we provide the general properties of the GEWPS class, including the densities and the 
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survival and hazard rate functions. Quantiles, moment generating function, and order statistics of 

GEWPS are discussed in Section 5. The estimation of the GEWPS parameters is investigated in 

Section 6 using the maximum likelihood method with expectation-maximization (EM) algorithm 

and a large sample inference. In Section 7, special subclasses and some special distributions are 

introduced along with the flexible mathematical forms of their properties. In Section 8, two 

models are presented and applied to illustrate how to use the proposed family. Finally, some 

concluding remarks are addressed in Section 9. 

 

2. The class of Weibull and Generalized Weibull distribution 

company promises to pay claims to the insureds if some defined events (injury, accident, 

death, etc.) occur. However in many  cases, claims originating  in a  particular year  are  often  

settled  with  a  time  delay  of years  or  perhaps  decades. Therefore, a method to estimate the 

expected liability is needed so that the insurer can calculate the profit of written policies, and 

allocate reserved assets to ensure liquidity. Since loss reserves generally represent by far the 

largest liability, and the greatest source of financial uncertainty in an insurance company, an 

appropriate valuation of insurance liabilities including risk margin is one of the most important 

issues for a general insurer. Risk margin is the component of the value of claims liability that 

relates to the inherent uncertainty. 

 

Weibull distribution is one of the most widely used lifetime distributions in terms of 

reliability. A large number of modifications have been suggested for the Weibull distribution to 

improve the shape of the hazard rate function. Peng and Yan (2014) presented many references 

on this matter. The class of extended Weibull distributions (EW) was proposed by Gurvich et al. 

(1997). This class is illustrated by the following definition. 

Definition 1: A random variable 
iX is a member of the Weibull class of distribution if its 

cumulative distribution function (cdf) is given by 

 

             
- ( ; )( ; , ) ( ) 1- ; , 0,H x

W WG x G x e x                                      (1)  

 

where
 
H( ; ) H(x)x   is a non-negative monotonically increasing function that depends on the 

parameter vector 0 . The corresponding probability density function (pdf) becomes 

 
( )( ; , ) ( ) ( ) ;  , 0,H x

W Wg x g x h x e x                                 (2)  

 

where h(x) h( ; )x  is the first derivative of H( )x . The distributions of most Weibull types 

can be re-written in form (1) depending on the choice of the function H( )x . Silva et al. (2013) 

https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#br000005
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and Gurvich et al. (1997) listed some examples for this class. By using the idea of Gupta and 

Cundu (1999), the generalized exponential of this class can be modified as follows: 

Definition 2: A random variable 
iX belongs to the generalized extended Weibull distribution 

class if its cdf is given by 

 

             
- (x)( ; , , ) ( ) (1- ) ;  , , 0,HG x G x e x                               (3)  

 

where H( )x  is a non-negative monotonically increasing function that depends on a parameter 

vector     The corresponding pdf becomes 

 

 
( ) - ( ) 1( ; , , ) ( ) ( ) (1- ) ; , , 0,H x H xg x g x h x e e x                      (4)  

 

where h( )x is the first derivative of H( )x . One can see that ( ) ( ( ))WG x G x  , and thus 

1( ) ( ( )) ( ).W Wg x G x g x   The distributions of most Weibull and exponentiated Weibull 

types can be written in form (3) depending on the choice of the function H( ) and x  . Table 1 

displays useful ( )H x  and corresponding parameter vectors for some existing distributions. 

Table 1:Special distributions and the corresponding H( ; )x  and vector  . 

Distribution ( )H x        Reference 

Exponential x    1 - Johnson et al. (1994) 

Exponential power ( ) 1xe
 

   1 [ , ]   Smith and Bain (1975) 

Burr XII ( 0)x   log(1 )cx    1 c Rodriguez (1977) 

Weibull ( 0)x   x 
   1   Johnson et al. (1994) 

Modified Weibull xx e 
   1 [ , ]   Lai et al. (2003) 

Weibull extension ( / )[ 1]xe
     1 [ , ]   Xie et al. (2002) 

Exponential power exp[( ) ] 1x      1 [ , ]   Smith and Bain (1975) 

Pareto ( )x k  log( / )x k    1 k Johnson et al. (1994) 

Generalized exponential x      - Gupta and Kundu (2000) 

Exponentiated Weibull 1x  
       Nassar and Eissa (2003) 

Exp. Mod. Weibull ext. ( / )[1 ]xe
       [ , ]   Sarhan and Apaloo (2013) 

Exponentiated Rayleigh 2x      - Surles and Padgett  (2001) 

 

3. The GEWPS family 
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In this section, we derive the family of GEWPS distributions by compounding the 

generalized extended Weibull class and power series distributions. 

Let ,N  be a zero truncated discrete random variable having a power series distribution with 

the following probability mass function: 

( ) ,   1,2,...,
( )

n

n
n

a
p p N n n

c




                                         (5) 

where 0na   depends only on 
1

,  ( ) ,n

nn
n c a 




  and (0, )s   is chosen in such a 

way that ( )c   is finite. Given ,N  let 
1, , NX X be independent and identically distributed (iid) 

random variables following (3). Let
( ) 1max{ }N

n i iX X  . Then, the cdf of 
( )nX N n is given 

by  
- ( )

X( )
(x) [1- ] ,   x 0, n 1.H x n

n N n
G e  


    

That is, 
( )nX N n has a generalized extended Weibull class of distribution with 

parameters , ,  and     based on the same function H( )x . The generalized power series 

distribution denoted by GEWPS with an increasing failure rate is defined by the marginal 

distribution (cdf) of
( )nX : 

( )

- ( )
- ( )

1

( (1- ) )
( ) (1- ) ,   x 0,

( ) ( )n

n H x
H x nn

X

n

a c e
F x e

c c

 
  

 





  
 

              (6)  

which can be written as  

( )

1

( ( ))
( ) ( ( )) ,   x 0.

( )n

n

X n

n

c G x
F x p G x

c









                              (7) 

Note that if H( ) xx  , the model is reduced to the GEPS introduced by Mahmoudi and 

Jafari (2012).  

 

Remarks. Let
(1) 1min{ }N

i iX X  , then  

(1) The cdf of 
(1)X   is 

(1)

( ( )) ( (1 ( )))
( ) 1 1 .

( ) ( )
X

c G x c G x
F x

c c

  

 

 
                                (8) 

Note that if 1  , then the  

cdf of
 (1)  is:X  

(1)

- ( )( (1 ( ))) ( )
( ) 1 1 ,

( ) ( )

H x

W
X

c G x c e
F x

c c

 

 


     

which is called the EWPS proposed by Silva et al. (2013). 
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If 1 and if ( )H x x   , then the cdf of 
(1)X  becomes 

(1)

( )
 ( ) 1 ,

( )

x

X

c e
F x

c







   

which is the exponential power series distributions developed by Chahkandi 

and Ganjali (2009) that include the lifetime distributions class proposed by 

Adamidis and Lukas (1998), Kus (2007), Tahmasbi and Rezaei (2008). 

(2) Let 
1(1 ( ))Y G G X  , where 

1G 
 is the inverse function of ,G then Y

has a GEWPS distribution as  

(1)

1 1

1

( ) ( ) ( (1 ( )) ) ( (1 ( )))

( ( ))
1 ( (1 ( ))) .

( )

Y

X

F y P Y y P G G X y P X G G y

c G y
F G G y

c





 



       

   
 

Based on the choice of , ( ), (x) and na c H    with form (6), this class covers the entire 

compound truncated discrete distributions with all of the continuous lifetime distributions in the 

literature. 

 

4. Density, survival, and hazard functions 

The probability density functions associated with (7) and (8), respectively, are given by 

             

( )

' - ( )
( ) - ( ) 1

( G(x))
( ) g(x)

( )

( (1- ) )
             = ( ) (1- )

( )

nX

H x
H x H x

c
f x

c

c e
h x e e

c

 
  













 



                  (9) 

and  

          

(1)

'

' - ( )
( ) - ( ) 1

( (1 ( )))
( ) g(x)

( )

( (1 (1- ) ))
             = ( ) (1- ) .

( )

X

H x
H x H x

c G x
f x

c

c e
h x e e

c

 
  











 





           (10) 

The survival functions are given by 

          
( )

- ( )( ( )) ( (1- ) )
( ) 1 1

( ) ( )n

H x

X

c G x c e
s x

c c

  

 
                             (11) 

And  

(1)

- ( )( (1 ( )) ( (1 (1- ) ))
( ) .

( ) ( )

H x

X

c G x c e
s x

c c

  

 

 
                          (12) 

The corresponding hazard rate functions are 
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( )

( )

( )

- ( )
( ) - ( ) 1

- ( )

(x) ( ( ))
( ) ( )

( ) ( ) ( ( ))

( (1- ) )
              = ( ) (1- )

( ) ( (1- ) )

n

n

n

X

X

X

H x
H x H x

H x

f c G x
x g x

s x c c G x

c e
h x e e

c c e

 
  

 


 

 




 




 

 




          (13) 

and  

           

(1)

(1)

(1)

'

- ( )
( ) - ( ) 1

- ( )

(x) ( (1 ( )))
( ) g(x)

( ) ( (1 ( )))

( (1 (1- ) ))
             = ( ) (1- ) .

( (1 (1- ) ))

X

X

X

H x
H x H x

H x

f c G x
x

s x c G x

c e
h x e e

c e

 
  

 


 









 


 







           (14) 

The limiting distribution of the GPS when 
  is  

( )

1

0 0 0

1

1

0

1

- ( )

( ( ))
( ( ))

lim ( ) lim lim
( )

( ( )) ( ( ))

lim

( ( )) (1- )

n

n n

n

n
X

n

n

n

c n c n

c n

n c

n c

c n

n c

c H x c

a G x
c G x

F x
c

a

a G x a G x

a a

G x e  











  








  






 


 

 

 







 








 

where min{n 0}nc a     

The densities of GEWPS can be expressed as an infinite number of linear combinations of 

densities of the order statistics. Given that 
1

1

( ) ,n

n

n

c na 


 



  therefore, 

( ) ( )

'

1

( (x))
( ) g(x) (N n)g ( ; )

( )n nX Y

n

c G
f x p x n

c










   , 

where 
( )

g ( ; )
nY x n is the density function of 

( ) 1max( ,..., ),n nY Y Y  given by 

 

( )

1 ( ) - ( ) 1g ( ; ) ( )( ( )) ( ; ) (1- )
n

n H x H x n

Y x n ng x G x n h x e e       . 

 

Moreover, 

(1) (1)

'

1

( (x))
( ) g(x) (N n)g ( ; )

( )
X Y

n

c G
f x p x n

c

 









   , 



 

422                         Generalized extended Weibull power series family of distributions 

 

where 
(1)

g ( ; )Y x n is the density function of 
(1) 1min( ,..., ),nY Y Y  given by 

 

(1)

1 ( 1) ( ) - ( ) 1( ; ) ( )(1 ( )) ( ) (1- )n n H x H x

Xg x n ng x G x n h x e e        .

 
 

5. Quantiles, moments, and order statistics 

Let X be a random variable with cdf as in (7). The quantile function, i.e., ( )
nXQ p , is 

defined by 
( ) ( )

( (p)) p, p (0,1)
n nX XF Q   . Therefore, 

(n)

1
1

1 1 ((p ( ))
( ) 1 1 ,X

c c
Q p H og



 




  
              

 

with the cdf as in (8) 

(1)

1
1

1 1 ((1 ) ( ))
( ) 1 1 1 ,X

c p c
Q p H og



 




  
               

 

where , 0, (0,1)p     . 

The moment generating function is obtained as follows:  

( ) ( ) ( )

10 0

( ) ( )

1 10

( ) ( ) ( ) ( )

( ) ( ) ( ) (Y ),

n

tx tx

X X n X n

n

tx k

X n n

n n

M t e f x dx e P N n g x dx

P N n e g x dx P N n E

  



 

 

  

   

 

 

 

which can be obtained in the function H( )x . Similarly, 

(1) (1) (1) (1)

1 10 0

( ) ( ) ( ) ( ) ( ) (Y ).tx tx k

X X X

n n

M t e f x dx P N n e g x dx P N n E

  

 

        

Order statistics is among the most fundamental tools in non-parametric statistics 

and inference. It enters estimation problems and hypothesis tests in many ways. The 

probability distribution function of the ith order statistics from a random sample 

1,..., mX X  with density function (8) is given by 

 

( )

( )

1

:

( ( )) ( ( ))
( ) ( 1 ,

( 1) ) ( ) ( )

n

n

i m i

X

i m X

m c G x c G x
f x f x x

i m i c c

 

 

 

   
      

       
  
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Using the binomial expansion, the above formula can be written as follows:  

 

( )

( )

1

0

:

! ( ( ))
( ) ( 1) , 0.

( 1)!( )! ( )
( )

n

n

m j
m i

j

X

X

i

j

m

m i
f x

j

m c G x
f x x

i m i c





 




 
   

   

 
 
 

  

 

For the density function in (9), 

 

(1)

(1)

1

:

( ( )) ( ( ))
( ) ( 1 ,

( 1) ) ( ) ( )

i m i

X

i m X

m c G x c G x
f x f x x

i m i c c

 

 

 

   
      

       
  

 

This expression can be written as 

 

1)

(1)

(:

1
1

0

! ( ( ))
( ) ( 1) , 0.

( 1)!( )! ( )

1
( )

m j
i

j

X

X

i

j

m

i
f x

j

m c G x
f x x

i m i c





 




 
   

   

 
 
 

  

 

6. Estimation and inference 

Let 
1,..., nX X  be a random sample, with the observed values 

1,..., nx x  obtained from the 

GEWPS with parameters , ,  and     . Let ( , , , )     be the 1p  parameter vector. 

The log likelihood function is given by 

( )

1 1

( )

1

ln [log log log log(c( ))] ( ) ( 1) log(1 )

log(c ( (1 ) ))

i

i

n n
H x

i

i i

n
H x

i

n H x e

e



 

     





 





       

 

 



  

( ; )
Consider 1 . Then the score function is given byiH x

ip e
 

 

( ) ( ln/ , ln/ , ln/ , ln/ )T

nU             .  
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


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  
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

1
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) ( ) 1 ( )
[1 ( 1) (1 ) ].

( )

n n
i i i i

i i

i ik k i i

H x p c p
p p

p c p


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


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



 

  
    

  
 

 

  

The maximum likelihood estimation (MLE) of  say   is obtained by solving the nonlinear 

system
 

(x; ) 0nU   . This nonlinear system of equations does not have a closed form. For the 

interval estimation and hypothesis tests on the model parameters, we require the following 

observed information matrix:  

( )

T

T

T
n

I I I I

I I I I

I I I I I

I I I I

   

   

   

  

 
 

 
    
 
     

  







   

 , 

where the elements of  nI   are the second partial derivatives of ( )nU  . Under the 

standard regular conditions for the large sample approximation (Cox and Hinkley, 1974) fulfilled 

for the proposed model, the distribution of  is approximately 1( , ( ) ),p nN J    where

( ) E[I ( )].n nJ    Whenever the parameters are in the interior of the parameter space but not 

on the boundary, the asymptotic distribution of ( )n  is 1(0, ( ) ),pN J  where 

1 1( ) lim ( )n
n

J n I 


   is the unit information matrix and p is the number of parameters of the 

distribution. The asymptotic multivariate normal 
1( , ( ) )p nN I    distribution of  can be used 

to approximate the confidence interval for the parameters, the hazard rate, and the survival 

functions. An 100(1 )  asymptotic confidence interval for parameter 
i  is given by  

2 2

( , ),ii ii
i iZ I Z I      

where 
iiI  is the ( , )i i  diagonal element of 

1( )nI   for 1,...,i p  and 

2

Z 
is the quantile 

1 / 2  of the standard normal distribution. 
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6.1. EM algorithm 

An insurance company promises to pay claims to the insureds if some defined events (injury, 

accident, death, etc.) occur. However in many  cases, claims originating  in a  particular year  are  

often  settled  with  a  time  delay  of years  or  perhaps  decades. Therefore, a method to estimate 

the expected liability is needed so that the insurer can calculate the profit of written policies, and 

allocate reserved assets to ensure liquidity. Since loss reserves generally represent by far the 

largest liability, and the greatest source of financial uncertainty in an insurance company, an 

appropriate valuation of insurance liabilities including risk margin is one of the most important 

issues for a general insurer. Risk margin is the component of the value of claims liability that 

relates to the inherent uncertainty. 

Based on the underline distribution, the MLE of the parameters can be found analytically 

using the EM algorithm. The Newton–Raphson algorithm is one of the standard methods to 

determine the MLEs of the parameters. To use the algorithm, the second derivatives of the log-

likelihood are required for all iterations. The EM algorithm is a very powerful tool for handling 

the incomplete data problem (Dempster et al., 1977; McLachlan and Krishnan, 1983). It is an 

iterative method that repeatedly replaces missing data with estimated values and updates the 

parameter estimates. It is especially useful if the complete dataset is easy to analyze. As pointed 

out by Little and Rubin (1983), the EM algorithm converge reliably but rather slowly, compared 

with the Newton–Raphson method, when the amount of information in the missing data is 

relatively large. Recently, EM algorithm has been used by such researchers as Adamidis and 

Loukas (1998), Adamidis (1999), Ng et al. (2002), Karlis (2003), and Adamidis et al. (2005). 

In estimating , the EM algorithm is a recurrent method in which each step consists of an 

estimate of the expected value of a hypothetical random variable and later maximizes the log-

likelihood of the complete data. Let the complete data be 
1, , nX X , with the observed values 

1, , nx x  and the hypothetical random variable 
1, , nN N . The joint probability function is 

such that the marginal density of 
1, , nX X  is the likelihood of interest. Then, we define a 

hypothetical complete data distribution for each ( , ) , 1, ,m,T

i iX N i   with a joint probability 

function in the form of 

  ( ) - ( )

X

1

,N ( )f x,z; (1- ) ,
( )

z
H x H x zza

z h x e e
c

  




    

where ,? ,x    R  and z N . Therefore, it is straightforward to verify that the 

E-step of an EM cycle requires the computation of the conditional expectation of 

 ( )Z|X; r , where (( ) ( ) ) ( ) ( )( , , ,? rr r r r     is the current estimate (in the rth iteration) 

of  Θ . Then, the EM cycle is completed with the M-step, which is complete data 

maximum likelihood over    , with the missing Z’s replaced by their conditional 

expectations  Z|X;E   (Adamidis and Loukas, 1998), where  
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and since 
2 1

1

( ) ( ) z

z

z

c c z a  






     its expected value is 

 

 
1 2 - ( )

2 - ( )

' - ( ) ' - ( )

' - ( ) - ( ) - ( )

' - (

1

1 1

)

(1- )
[ (1- )

( (1- ) ) ( (1- ) )

( (1- ) ) (1- ) (1- ) )

( (1- ) )

(1

1
|

-

]
z H x z

H xz
zH x H x

H x H x H

H

z

z z

x

x

a z e
z a e

c e c e

c e e c e

c e

e

E Z X
  

 

   

     

 




 

  





 




 



 





 

 

- ( ) - ( )

' - ( )

) (1- ) )

( (1- )
.

)

H x H x

H x

c e

c e

   

 







 

 

7. Special subclasses 

In this section, we present four special subclasses of the GEWPS family of distributions. We 

provide the forms of the cumulative, density survival, and hazard rate functions for 
(1)X  and 

(n)X . 

7.1 A compound class of the Poisson and lifetime distributions 

The compound class of the Poisson distribution (CP) (Alkarni and Oraby, 2012) is a 

subclass of the GEWPS family of distribution, with 1
, ( ) 1, ( 0)na c e

n

      


. We 

assume that 
1,..., NX X  are identically independent random variables with a distribution 

function as in (3) and with N following a truncated Poisson distribution at zero. Table 

2 shows the necessary functions for this class. 

 
Table 2: Cdf, pdf, survival, and hazard rate functions for the CL class 

(1) 1min( ,..., )NX X X   
(n) 1max( ,..., )NX X X  

G(x)1
( )
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e
F x

e








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7.2 A compound class of logarithmic and lifetimes distributions  

The compound class of logarithmic distribution (CL) (Alkarni, 2012) is a subclass of the 

GEWPS family of distribution, with 1, ( ) log(1 ), (0,1)na c        . We assume that 

1,..., NX X  are identically independent random variables with a distribution function as in (3) 

and with N following a truncated logarithmic distribution at zero. Table 3 shows the necessary 

functions for this class. 

 

Table 3: Cdf, pdf, survival, and hazard rate functions for the CL class 

(1) 1min( ,..., )NX X X   
(n) 1max( ,..., )NX X X  

log(1 (1 ( )))
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7.3 A compound class of geometric and lifetime distributions 

The compound class of geometric distribution (CG) (Alkarni, 2013) is a subclass of the 

GEWPS family of distribution, with 11, ( ) (1 )na c      
,
 (0,1).  We assume that 

1,..., NX X are identically independent random variables with a distribution function as in (3) 

and with N following a truncated geometric distribution at zero. Table 4 shows the necessary 

functions for this class 

 

Table 4: Cdf, pdf, survival, and hazard rate functions for the CG class 
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   (1) 1min( ,..., )NX X X
 (n) 1max( ,..., )NX X X
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7.4 A compound class of binomial and lifetime distributions 

The compound class of binomial distribution (CB) (Alkarni, 2013) is a subclass of the 

GEWPS family of distributions with ( ) ( 1) 1mc     . We assume that 
1,..., NX X  are 

identically independent random variables with a distribution function as in (3) and with N

following a truncated binomial distribution at zero. Table 5 shows the necessary functions for 

this class. 

 

Table 5: Cdf, pdf, survival, and hazard rate functions for the CB class 

(1) 1min( ,..., )NX X X   
(n) 1max( ,..., )NX X X  
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Table 6 illustrates examples of some existing distributions with ( )H x  and ( )c  . The other 

functions can be obtained directly from the previous tables.  



 
 

Table 6: Special distributions with cdf and the corresponding ( )H x  and ( )c   

 

Distribution ( )H x    na  ( )c   
( )

( )
nXF x  Reference 

Generalized geometric exponential x    1 
1




 

(1 )(1 )

1 ((1 )

x

x

e

e

 

 









 

 
 Mahmoudi and Jafari (2012) 

Exponentiated Weibull-geometric ( )x     1 
1




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(1 )(1 )

1 ((1 )

x
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e

e





 
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







 
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1

n
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  
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 Mahmoudi and Jafari (2012) 
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1

n
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1

xe e

e
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
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 Mahmoudi and Sepahdar (2013) 

Generalized binomial exponential x    
m

n

 
 
 

 ( 1) 1m    
( (1 ) 1) 1

( 1) 1

x m

m

e  


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 
 Mahmoudi and Jafari (2012) 

Generalized logarithmic exponential x    
1

n
 log(1 )   

log(1 (1 ) )

log(1 )

xe  



 


 Mahmoudi and Jafari (2012) 

Exponentiated Weibull-logarithmic ( )x     
1

n
 log(1 )   

( )log(1 (1 ) )

log(1 )
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 
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 


 Mahmoudi et al. (2014) 

Pareto Poisson log( / )x k  1 1 1e   

( / ) 1
1 ;

1

k xe
x k

e
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


  
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 Silva et al. (2013) 

Poisson-Lomax (1 )x    1 1 1e   

(1 ) 1

1

xe

e

 



 


 Al-Zahrani and Sagor (2014) 
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8. Submodels and applications 

In this section, two models are discussed with real data as examples of the GEWPS family. 

Geometric exponential distribution (GE) and generalized exponential geometric (GEG) 

distribution are fitted for real data. By substituting directly in the forms found in Table 4 from 

Section 6 for 
( ) 1max{ }N

n i iX X   , we obtain the following pdfs and hazard functions: 

2

1

2

1

(1 )
( ; , ) ; , 0; (0,1),

[1 (1 )]

(1 )
( ; , ) ; , 0; (0,1),

1 (1 )

(1 ) (1 )
( ; , , ) ; , , 0; (0,1),

[1 (1 ) ]

(1 ) (1 )
( ; , , )

(1

x

GE x

GE x

x x

GEG x

x x

GEG

e
f x x

e

x x
e

e e
f x x

e

e e
x







  

 

  

 
   



 
    



 
     



 
   







  



  


  

 


  

 

 
  

 

 



; , , 0; (0,1).

(1 ) )(1 (1 ) )x x
x

e e   
  

  
 

  

 

Figs. 1 and 2 show the densities and hazard functions of the GE and GEG distributions for 

the selected parameter values.  
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Fig. 1. : Plots of the density and hazard rate function of the GE for different values of  and   . 
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Fig. 2. : Plots of the density and hazard rate function of the GEG for 1  and different values  and  . 

 

Both models are fitted for two real data sets. The first set was introduced by Birnbaum and 

Saunders (1969) on the fatigue life of 6061-T6 aluminum coupons cut parallel with the direction 

of rolling and oscillated at 18 cycles per second. The data are listed in Table 7, which consists of 

101 observations.  

Table 7   Fatigue life of 6061-T6 aluminum coupons 
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 70     90      96     97     99    100   103   104   104   105   107   108   108   108    109 

109    112   112  113   114   114    114   116   119   120   120   120   121   121    123 

124    124   124  124   124   128    128   129   129   130   130   130   131   131    131 

131    131   132  132   132   133    134   134   134   134   134   136   136   137    138 

138    138   139  139   141   141    142   142   142   142   142   142   144   144    145 

146    148   148  149   151   151    152   155   156   157   157   157   157   158    159 

162    163   163  164   166   166    168   170   174   196   212 

 

The EM algorithm is used to estimate the model parameters. The MLEs of the parameters, 

the maximized log likelihood, the Kolmogorov‒Smirnov statistics with its respective p-value and 

the Akaike Information Criterion (AIC) for the GE and GEG models are given in Table 8. The 

K-S test is valid to test the fit of underlying distribution to the failure data (Bagheri et al. 2016). 

The fitted densities and the empirical distribution versus the fitted cdfs of the GE and GEG 

models of this data are shown in Fig. 3. They indicate that the GEG distribution fits the data better 

than the GE distribution. The KS test statistic takes the smallest value with the largest value of 

its corresponding p-value for the GEG distribution. Moreover, this conclusion is confirmed from 

the log likelihood and the AIC for the fitted models given in Table 8. Their densities and 

cumulative distributions are plotted in Fig. 4. 

Table 8: Parameter estimates, KS statistic, P-value, log likelihood and AIC of the Birnbaum and Saunders 

data. 

Dist.      MLE(std.)                 K-S              p-value             -log(L)              AIC              

GE     
ˆ 0.9999

ˆ 0.0695








                  0.076             0.6041              457.1             918.3         

    

GEG    

ˆ 0.9884

ˆ 0.0795

ˆ 464.085













              0.0492             0.9673             455.2              916.4           
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Fig. 3. : Plots of fitted GEG and GE of the Birnbaum and Saunders data. 

 

The second data set represent the fatigue life for 67 specimens of Alloy T7987 that failed 

before having accumulated 300 thousand cycles of testing. This data was recently analyzed by 

Mahmoudi and Jafari (2012). The data are listed in Table 9. 

 

Table 9: Fatigue life of 6061-T6 aluminum coupons 
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  94     96      99     99      104    108    112   114   117   117   118   121   121   123   129    

 131    133    135   136    139    139    140   141   141   143   144   149   149   152   153     

 159    159    159   159    162    168    168   169   170   170   171   172   173   176   177    

 180    180    184   187    188    189    190   196   197   203   205   211   213   224   226     

 227    256    257   269    271    274    291  

 

The EM algorithm is used to estimate the model parameters. The MLEs of the parameters, 

the maximized log likelihood, the Kolmogorov‒Smirnov statistics with its respective p-value and 

the Akaike Information Criterion (AIC) for the GE and GEG models are given in Table 10. The 

fitted densities and the empirical distribution versus the fitted cdfs of the GE and GEG models of 

this data are shown in Fig. 4. They indicate that the GEG distribution fits the data better than the 

GE distribution. The KS test statistic takes the smallest value with the largest value of its 

corresponding p-value for the GEG distribution. Moreover, this conclusion is confirmed from the 

log likelihood and the AIC for the fitted models given in Table 8. Their densities and cumulative 

distributions are plotted in Fig. 4.  

Table 10: Parameter estimates, KS statistics, P-value, log likelihood and AIC for Fatigue Life Data for Alloy 

T7987. 

Dist.      MLE(std.)                    K-S                 p-value             -log(L)              AIC              

GE     
ˆ

ˆ

0.9979

0.0381








                    0.0673               0.9222             351.9              707.4         

    

GEG    

ˆ 0.2873

ˆ 0.0286

ˆ 50.4547













               0.0585                0.9757             347.8              701.6          

 

 



 

436    Adapting The Extended Neyman’s Smooth Test to Be Used in Accelerated Failure Time Models 

 
 

 

 

Fig. 4. : Plots of fitted GEG and GE of Fatigue Life Data for Alloy T7987. 

 

9. Concluding remarks  

We define a new family of lifetime distributions called the GEWPS family of distributions, 

which generalizes the extended Weibull power series class and the generalized power series 

exponential distributions introduced by Silva et al. (2013) and Mahmoudi and Jafari (2012), 

respectively. The GEWPS class contains many lifetime subclasses and distributions. Various 

standard mathematical properties were derived, such as density and survival, and hazard 

functions were introduced in flexible and useful forms. Parameter estimation using the EM 

https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#br000005
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algorithm was conducted using the maximum likelihood method. Finally, we fitted some of the 

GEWPS models to real data sets to show the flexibility and the benefits of the proposed class. 
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