
Journal of Data Science 14(2016), 393-414 

 

 The exponentiated generalized extended exponential distribution 

 

  

 Thiago A. N. de Andrade1∗, Marcelo Bourguignon2†, Gauss M. Cordeiro3‡ 
1,3Departamento de Estat´ıstica, Universidade Federal de Pernambuco 

2Departamento de Estat´ıstica, Universidade Federal do Rio Grande do Norte 

 

 

 

Abstract: We introduce and study a new four-parameter lifetime model named the 

exponentiated generalized extended exponential distribution. The proposed model 

has the advantage of including as special cases the exponential and exponentiated 

exponential distributions, among others, and its hazard function can take the classic 

shapes: bathtub, inverted bathtub, increasing, decreasing and constant, among 

others. We derive some mathematical properties of the new model such as a 

representation for the density function as a double mixture of Erlang densities, 

explicit expressions for the quantile function, ordinary and incomplete moments, 

mean deviations, Bonferroni and Lorenz curves, generating function, R ényi 

entropy, density of order statistics and reliability. We use the maximum likelihood 

method to estimate the model parameters. Two applications to real data illustrate 

the flexibility of the proposed model. 
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1. Introduction  

The exponential distribution is a very popular statistical model and, probably, is one of the 

parametric models most extensively applied in several fields (Lemonte, 2013). The popularity of 

this distribution can be explained, perhaps, by the simplicity of their cumulative function, which 

involves only one unknown parameter λ > 0 and takes a simple form G(x) = 1 − e−λx, for x > 0, in 

addition to having constant hazard rate function (hrf). Due to its importance, several studies 

introducing and/or studying extensions of the exponential distribution are available in the 

literature. Here, we refer to the following papers: Gupta et al. (1998), Gupta and Kundu (2001), 

Nadarajah and Haghighi (2011) and Lemonte (2013), to mention a few. Recently, Gómez et al. 

(2014) introduced the extended exponential (ƐƐ for short) distribution, whose cumulative 

distribution function (cdf) and probability density function (pdf) (for x > 0) are given by 
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and 

 
respectively, where α > 0 and β ≥ 0. 

We emphasize that the density (2) can be also obtained as a special case of the generalized 

Lindley distribution proposed by Zakerzadeh and Dolati (2009). However, these latter authors do 

not address this particular case in their research. 

Several mathematical properties of the ƐƐ distribution, including expectation, variance, 

moment generating function (mgf), asymmetry and kurtosis coefficients, among others, were 

studied by Gómez et al. (2014). In particular, they proved that the density of the ƐƐ model is a 

mixture of the exponential and gamma densities. We believe that the addition of parameters to 

the ƐƐ model may generate new distributions with great adjustment capability and, for this reason, 

we propose a generalization of it. 

In a recent paper, Cordeiro et al. (2013) proposed a new way of adding two parameters to a 

continuous distribution. For a given continuous baseline cdf  G(x), and x ∈ R, they defined the 

exponentiated generalized (Ɛɡ) class of distributions with two extra shape parameters a > 0 and 

b > 0 and cdf F (x) and pdf f (x) given by 

 

 
and 

 
respectively, in which are implicit the dependence on the parameters of  G(x). 

To illustrate the flexibility of the Ɛɡ model, Cordeiro et al. (2013) applied (3) to extend some 

well-known distributions such as the Fr é chet, normal, gamma and Gumbel distributions. 

Moreover, they presented several properties for the Ɛɡ class, which provide motivations to adopt 

this generator. Next, we discuss some of these motivations. The first important point to note is 

the simplicity of equations (3) and (4). They have no complicated functions and will be always 

tractable when the cdf and pdf of the baseline distribution have simple analytic expressions. It is 

very easy, for example, to obtain the inverse of the cdf (3). Another important feature is that the 

Ɛɡ model contains as especial cases the two classes of Lehmann’s alternatives. In fact, for a = 1, 

(3) reduces to F (x) =  G(x)b and, for b = 1, we obtain F (x) = 1 − [1 − G(x)]a, which correspond 

to the cdf’s of the Lehmann type I and II families (Lehmann, 1953), respectively. For this reason, 

the Ɛɡ model encompasses both Lehmann type I and type II classes. So, the Ɛɡ family can be 

derived from a double transformation using these classes. The two extra parameters a and b in 

the density (4) can control both tail weights, allowing generate flexible distributions, with heavier 

or lighter tails, as appropriate. There is also an attractive physical interpretation of the model (3) 

when a and b are positive integers. This interpretation is described in Cordeiro and Lemonte 

(2014). 

The above properties and many others have been discussed and explored in recent works for 

the Ɛɡ class. Here, we refer to the papers: Cordeiro et al. (2014), Cordeiro and Lemonte (2014), 

Elbatal and Muhammed (2014), Oguntunde et al. (2014) and da Silva et al. (2015), which used 
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the Ɛɡ class to extend the Burr III, Birnbaum-Saunders, inverse Weibull, inverted exponential 

and generalized gamma distributions, respectively. 

In this paper, we define the exponentiated generalized extended exponential (ƐɡƐƐ) 

distribution by inserting (1) in equation (3). The EGEE model includes as special cases the 

exponential, Lindley and exponentiated exponential distributions, among others, which are very 

important statistical models, specially for applied works. The new density function is a double 

linear mixture of Erlang densities, and thus several properties of the ƐɡƐƐ model can be simplified 

from this relationship. Moreover, the proposed model has monotonic and non-monotonic hrf’s. 

We hope that the new distribution can be widely used for data modeling in areas such as 

economics, finance, reliability, biology and medicine, among others. 

The rest of the paper is organized as follows. In Section 2, we give the density and hazard 

functions of the ƐɡƐƐ model and corresponding plots for selected parameter values. We provide 

expressions for the cumulative and reversed hazard functions. In Section 3, we investigate the 

shapes of the ƐɡƐƐ density function. In Section 4, we derive several mathematical properties of 

the proposed model, including mixture representations for the density and cumulative functions, 

explicit expressions for the quantile and generating functions, ordinary and incomplete moments, 

among others. Estimation and inference by maximum likelihood are discussed in Section 5. Two 

applied results are presented in Section 6. Section 7 provides concluding remarks. 

 

2. The ƐɡƐƐ distribution 

The cdf and pdf of the ƐɡƐƐ distribution (by omitting the dependence on the parameters a > 

0, b > 0, α > 0 and β ≥ 0), for x > 0, are given by 

 

 
and 

 
 

respectively. Henceforth, a continuous random variable having pdf (6) is denoted by X ∼ ƐɡƐƐ 

(a, b, α, β). 

Several distributions are special cases of the ƐɡƐƐ model. Here, we mention some of them. 

Clearly, the ƐƐ distribution is a basic exemplar when a = b = 1. The exponential and Lindley 

distributions are obtained from (6) by setting β = 0 and β = 1, respectively, in addition to a = b 

= 1. The exponentiated generalized exponential (ƐɡƐ) model comes from (6) by setting β = 0 and 

the exponentiated generalized Lindley (ƐɡL) distribution follows when β = 1. The ƐɡƐƐ model 

also includes the Lehmann type I and type II transformations of the ƐƐ, exponential and Lindley 

distributions. For example, the well-known exponentiated exponential distribution (Gupta et al., 

1998), also referred in the literature as the generalized exponential distribution, follows when β 

= 0 and a = 1. For a brief discussion and some properties of the exponentiated exponential 
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distribution, see a recent paper by Lemonte (2013). The exponentiated Lindley (ƐL) model by 

Nadarajah et al. (2011) (they called the generalized Lindley distribution, but here we adopt the 

EL terminology) comes when a = β = 1. 

The hrf and reversed hazard rate function (rhrf) of X are given by 

 

 
and 

 
respectively. 

Plots of the ƐɡƐƐ density for selected parameter values are displayed in Figure 1. Figure 2 

provides some possible shapes of the ƐɡƐƐ hazard function for appropriate parameter values, 

including bathtub, inverted bathtub, increasing, decreasing and constant shapes. These plots 

indicate that the ƐɡƐƐ model is fairly flexible and can be used to fit several types of positive data 
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Figure 1: Plots of the ƐɡƐƐ density function for some parameter values. 

 

3. Shapes 

The first derivative of log{f (x)} for the ƐɡƐƐ model is given by  
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Figure 2: Plots of the ƐɡƐƐ hazard function for some parameter values. 
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where z(x) = β + α + αβx. 

Thus, the critical values of f (x) are the roots of the equation: 

 

 
 

If the point x = x0 is a root of (7), then we can classify it as local maximum, local 

minimum or inflection point when λ(x0) < 0, λ(x0) > 0 and λ(x0) = 0, respectively, 

where λ(x) = d2 log{f (x)}/dx2 is given by 

 

 
 

4. Properties 

In this section, we study some structural properties of the ƐɡƐƐ distribution. 

 

4.1 A useful representation 

First, we derive simple representations for the density and cumulative functions of the ƐɡƐƐ 

distribution. The starting point of our approach is the class of exponentiated distributions, which 

has been widely explored in recent works. A comprehensive review of these publications can be 

found in a recent paper by Tahir and Nadarajah (2015). For an arbitrary continuous baseline cdf 

G(x), a random variable Y is said to have the exponentiated-ɡ (“exp-ɡ” for short) distribution with 

power parameter a > 0, say Y ∼ exp-ɡ (a), if its cdf and pdf are Ha(x) = G(x)a and ha(x) = a 

g(x)G(x)a−1, respectively. Thus, “exp-ɡ” denotes the Lehmann type I transformation of G(x). 

Based on some results in Cordeiro and Lemonte (2014), we can express the Ɛɡ cdf (3) as 

 

 
 

where is the exp- ɡ cdf with power 

parameter j + 1. By differentiating (8), we obtain a similar mixture representation for f (x) as 

 

 
where hj+1(x) = dHj+1(x)=dx. 
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By using (8) and (9) for the ƐƐ distribution (1), hj+1(x) becomes the exp-ƐƐ pdf with power 

parameter j + 1 (for j ≥ 0) given by 

 
Combining equations (9) and (10) we have an important result: the ƐɡƐƐ density function is 

a linear mixture of exp-ƐƐ densities. This result can be used to derive some mathematical 

properties of X. 

Next, we apply the binomial expansion in equation (10) in order to obtain a simple 

representation for the exp-ƐƐ density. We have  

 

 
 

By interchanging in the last equation, where 

 

 
 

and, after a simple algebraic manipulation, we obtain 

 
where 

 
Here, π(x; i+1, (k+1)α) denotes the pdf of the Erlang distribution with shape parameter i+1 

(for i ≥ 0) and scale parameter (k+1)α. If Z is the Erlang random variable with shape parameter s 

(= 1, 2, 3, . . .) and scale parameter λ > 0, its pdf is given by π(z; s, λ) = λs zs−1 e−λz/(s − 1)!. 

Second, combining equations (9) and (11) and changing 

the density function of the ƐɡƐƐ model reduces to 

 

 
 

where  

Equation (13) is the main result of this section. It gives the density function of X as a double 

linear mixture of Erlang densities. This result is important to obtain some mathematical properties 

of X such as the ordinary and incomplete moments, generating function and mean deviations 

from those of the Erlang distribution. We can take the upper limit of k to be equal 20 in equation 

(13) for most practical purposes. 
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4.2 Quantile function 

For many applications it is important to determine the quantile function (qf) of X. Based on 

this function, we can, for example, generate variates and obtain the median of the ƐɡƐƐ 

distribution. By inverting (5), the qf of X can be expressed as 

 

 
 

where 0 < u < 1 and W(·) denotes the Lambert W-function. 

In a recent paper, Nadarajah et al. (2011) used the Lambert W-function to derive the qf of 

the ƐL distribution. For any complex t, the Lambert W-function is defined as the inverse of the 

function g(t) =tet. For more details, see http://mathworld.wolfram.com/LambertW-Function.html. 

An implementation in R software is available through the LambertW package. See http://cran.r-

project.org/web/packages/LambertW/LambertW.pdf. 

Using the Lagrange inversion theorem, the power series for the W-function holds: 

 

 
 

By applying (15) in equation (14), we have 

 

 
 

One of the important applications of equation (14) is to determine the median of the ƐɡƐƐ 

distribution. The median of X, say M, is obtained by M = Q(1/2). 

 

4.3 Moments 

The nth moment of X can be derived using the fact that the ƐɡƐƐ density function is a double 

linear mixture of Erlang densities. Thus, based on (13), the nth moment of X is given by 

 

 
 

Further, we have 

 

 

http://mathworld.wolfram.com/LambertW-
http://cran.r-project.org/web/packages/LambertW/LambertW.pdf
http://cran.r-project.org/web/packages/LambertW/LambertW.pdf
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4.4 Moments 

The incomplete moments of a distribution play an important role in applications. The nth 

incomplete moment of X is given by and using equation (13), we can 

write 

 
Thus, we can write Tn(z) as 

 

 
 

where is the gamma function and denotes 

the upper incomplete gamma function. 

The first incomplete moment of X is important to determine the mean deviations, which can 

be used to measure the amount of scatter in a population, and the Bonferroni and Lorenz curves, 

which are useful for applications in areas such as economics, reliability, demography and many 

others. Setting n = 1 in equation (16) gives 

 

 
 

The mean deviations of X about the mean 𝜇 = E(X) and about the median M are given by 

respectively, where f(x) is the pdf (6). 

Using equation (17), these measures follow as 

 

 
 

where F(M) is the cdf (5) evaluated at M and T1(z) is given by (17). 

Equation (17) can also be used to obtain the Bonferroni and Lorenz curves of X given by B(p) 

= T1(q)/(p 𝜇) and L(p) = T1(q)/ 𝜇, respectively, where q = Q(p) is determined by (14) for a 

specified probability p. 

 

4.5 Generating function 

The mgf of X can be determined from (13) as 

 

 



 
 Thiago A. N. de Andrade1∗, Marcelo Bourguignon2†, Gauss M. Cordeiro3‡                    403 

 

 

Then, for all t < (k + 1)𝛼, we have 

 

 
4.6 R�́�nyi entropy 

The entropy of X is a measure of variation of the uncertainty. There are many entropy 

measures studied and discussed in the literature, but the Rényi entropy is perhaps one of the most 

popular. The R_enyi entropy of X with density (6) is given by 

 

 
 

where p > 0 and p ≠ 1. 

Now, we consider the generalized binomial expansion 

 

 
 

which holds for any real non-integer b and ｜z｜ < 1. Using (19) twice in equation (4), we can 

write 

 

 
 

Inserting (1) and (2) in equation (20) and applying the binomial expansion twice from  

, we obtain 

 

 
 

Further, by inserting (21) in equation (18), the Rényi entropy reduces to 
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Where  is the exponential integral function. 

 

4.7 Order statistics 

The density function fi:n(x) of the ith order statistic, say Xi:n, for i = 1,…,n, from a random 

sample X1,…,Xn having the Ɛɡ distribution can be expressed as 

 

 
 

where f(x) is the pdf (4) and F(x) is the cdf (3). 

Applying the binomial expansion in the last equation, we have 

 

 
 

Substituting (3) and (4) in equation (22) and applying the generalized binomial expansion 

(19), we can write 

 

 
 

Then, after a simple algebraic manipulation, we have 

 

 
 

where  is given by 

 
 

and  denotes the exp- ɡ density function with power parameter  
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Equation (23) reveals that the density function of the Ɛɡ order statistic is a linear mixture of 

exp-ɡ densities. We emphasize that this result is not new and has already been presented by 
Cordeiro et al. (2013). However, we now give an alternative way of expressing the weights that 
compose this linear combination. 

By combining equations (11) and (23) and after some algebra, we obtain 

 

 
is given by (12) and 𝜋(x; s + 1; (m + 1)𝛼) where the quantity 

denotes the Erlang density with shape parameter s + 1 and scale parameter (m + 1) 𝛼.  

Thus, based on (24), we obtain an important result that gives the density of Xi:n as a double 

linear mixture of Erlang densities. Undoubtedly, there are many applications for equation (24), 

but the most important is to calculate the moments and the mgf of the ith order statistic. The rth 

moment of Xi:n is given by 

 
 

Based on the results presented in Section 4.3, the last equation reduces to 

 

 
 

Next, the mgf of Xi:n is given by 

 

 
 

Based on the results in Section 4.5, the last equation can be rewritten as 

 

 
 

for all t < (m + 1)𝛼. 
 

4.8 Reliability 

Here, we derive the reliability, say R, for the ƐɡƐƐ model when X1 ~ ƐɡƐƐ(a1, b1, 𝛼, 𝛽 ) and 

X2 ~ ƐɡƐƐ(a2, b2, 𝛼, 𝛽 ) are two independent random variables with the same baseline parameters 

𝛼 and 𝛽. Let f1(x) denote the pdf of X1 and F2(x) denote the cdf of X2. The reliability can be 

expressed as  and using equations (8) and (9) gives 
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where  

Thus, the reliability of X reduces to 

 

 
 

5. Estimation and Inference 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used when constructing confidence 

intervals and regions and also in test statistics. The normal approximation for these estimators in 

large sample distribution theory is easily handled either analytically or numerically. So, we 

consider the estimation of the unknown parameters a, b, α and β of the ƐɡƐƐ distribution from 

complete samples only by maximum likelihood. Let x1,…, xn be a random sample of size n from 

the ƐɡƐƐ distribution. The log-likelihood function for the vector of parameters θ = (a, b, α, β)T, 
say  can be expressed as 

 

 
 

where  

Equation (25) can be maximized either directly by using the Ox program (sub-routine 

MaxBFGS), R (optim function) and SAS (PROC NLMIXED), or by solving the nonlinear 

likelihood equations obtained by differentiating . The elements of the score vector are 

given by 
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The MLE 𝜃 of 𝜃 can be obtained numerically. For interval estimation and hypothesis tests 

on the parameters a, b, α and β, we determine the 4 × 4 observed information matrix given by 

J( 𝜃) = {-Urs}, whose elements   can be obtained 

from the authors upon request. 

 

6. Applications to real data 

Here, we present two applications to real data to illustrate the potentiality of the new 

distribution. First, in addition to the ƐɡƐƐ model, we consider the three-parameter ƐɡƐƐ( a, b, α, 

0) and ƐɡƐƐ (a, b, α, 1) sub-models. Also, the three-parameter beta-Lindley (BL) distribution, 

proposed by Merovci and Sharma (2014), is compared with the ƐɡƐƐ distribution and its 

submodels. All computations are performed using the SAS subroutine NLMixed. 

The BL density is given by 

 

 
 

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. 

First, we consider the number of failures for the air conditioning system of jet airplanes. 

These data were reported by Cordeiro and Lemonte (2011) and Huang and Oluyede (2014): 194, 

413, 90, 74, 55, 23, 97, 50, 359, 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 

493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 

283, 7, 61, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 

39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 

1, 79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 

20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 

139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 

16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71. Some descriptive 

statistics for these data are given below. The smallest and the largest values are 1 and 603, 

respectively. Further, the mean, median and variance are 92.07, 54.00 and 11645.93, respectively. 
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Table 1 lists the MLEs of the model parameters (with the corresponding standard errors in 

parentheses) for all fitted models and also the values of the Akaike information criterion (AIC), 

Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) 

statistics. In general, it is considered that the lower values of these criteria indicates the better fit 

to the data. The figures in Table 1 revels that the ƐɡƐƐ model has the lowest AIC and BIC values 

among all fitted models. Thus, the proposed ƐɡƐƐ distribution is the best model to explain these 

data. 

 

Table 1: The MLEs (and their standard errors in parentheses), AIC, BIC and CAIC statistics for the 

number of successive failures for the air conditioning system. 

 
 

Further, we consider the formal goodness-of-fit tests based on the Cramér-von Mises (W∗) 

and Anderson-Darling (A∗) test statistics in order to verify which distribution fits better the 

current data. The W ∗ and A∗ statistics are described in Chen and Balakrishnan (1995). In general, 

the lower values of these statistics indicate the better fit to the data. Table 2 gives the values of 

the W∗ and A∗ statistics for all fitted models. Based on the figures in this table, we conclude that 

the ƐɡƐƐ distribution provides a better fit to these data than its sub-models and the BL distribution. 

 
Table 2: Goodness-of-fit tests for the number of successive failures for the air conditioning 

system. 
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Plots of the estimated pdf and cdf of the ƐɡƐƐ distribution and the histogram of the data are 

displayed in Figure 3. These plots clearly reveal that the ƐɡƐƐ model fits the data adequately and 

then it can be chosen for modeling these data. 

Second, we consider the data presented by Murthy et al. (2004) on the failure times (in weeks) 

of 50 components. The data are: 0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 

0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 

5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 9.388, 

10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 32.795, 

48.105. Some descriptive statistics of these data are presented below. The minimum observed 

value is 0.013, while the maximum value is 48.105. The mean, median and variance are 7.821, 

5.320 and 84.76, respectively. 

For Murthy et al. (2004)’s data, we compare the ƐɡƐƐ model with the EE (Gómez et al., 2014) 

and Lindley sub-models and other commonly used models in survival analysis, namely the 

 

 

 
Figure 3: Plots of the estimated pdf and cdf of the ƐɡƐƐ model for the number of successive 

failures for the air conditioning system. 

 

log-logistic, Fréchet and Birnbaum-Saunders (BS) distributions. The densities of these models are 

given in the Wolfram alpha website (https://www.wolframalpha.com). Table 3 gives the MLEs of the 

fitted models to the current data with their corresponding standard errors, in addition to the AIC, BIC 

and CAIC statistics. Table 4 lists the values of the A∗ and W∗ statistics. 

 

Table 3: The MLEs (and their standard errors in parentheses), AIC, BIC and CAIC statistics 

for the failure times of 50 components. 
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Table 4: Goodness-of-_t tests for the failure times of 50 components. 

 
 

The figures in Tables 3 and 4 suggest at least two important conclusions. The first one is that 

the proposed model ƐɡƐƐ has the lowest values for the AIC, CAIC, A∗ and W∗ statistics, and 

therefore, may be chosen as the best model to analyze the current data. Moreover, these results 

confirm what has already been demonstrated in the recent statistical literature: generalized 

models, as the proposed in this paper, usually have superior performance in terms of adjustment 

when compared to non-generalized models. These conclusions emphasize the importance of the 

proposed model. 
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Finally, Figure 4 displays the estimated pdf and cdf of the ƐɡƐƐ model and the histogram of 

the data. These plots reveal that the proposed model is quite suitable for these data. 

 

 
Figure 4: Plots of the estimated pdf and cdf of the ƐɡƐƐ model for the failure times of 50 

components. 

 

7. Conclusions 

Recently, Cordeiro et al. (2013) introduced the exponentiated generalized (Ɛɡ) class of 

continuous distributions with two extra shape parameters. In this paper, we consider the Ɛɡ class 

to generalize the extended exponential (ƐƐ) distribution. We define a new four-parameter lifetime 

model called the exponentiated generalized extended exponential (ƐɡƐƐ ) distribution, which 

includes as special cases the exponential, Lindley and exponentiated exponential distributions, 

among others. The hazard function of the new model can take the classic bathtub, inverted 

bathtub, increasing, decreasing and constant shapes. We demonstrate that the ƐɡƐƐ density can 

be expressed as a double linear mixture of Erlang densities. Further, we derive several basic 

mathematical properties of the ƐɡƐƐ model, including explicit expressions for the quantile 

function, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, 

generating function, Rényi entropy, density of the order statistics and reliability. We discuss the 

estimation of the model parameters by maximum likelihood. We conduct two applications to real 

data to illustrate the flexibility of the new model. 
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