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Abstract: In this paper we introduce bivariate Weibull distributions derived from 

copula functions in presence of cure fraction, censored data and covariates. Two 

copula functions are explored: the FGM (Farlie - Gumbel Morgenstern) copula 

and the Gumbel copula. Inferences for the proposed models are obtained under the 

Bayesian approach, using standard MCMC (Markov Chain Monte Carlo) methods. 

An illustration of the proposed methodology is given considering a medical data 

set. 
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1. Introduction 

A long-term survivor mixture model, also known as standard cure rate model, assumes that 

the studied population is a mixture of susceptible individuals, who experience the event of 

interest and non susceptible individuals that will never experience it. These individuals are not 

at risk with respect to the event of interest and are considered immune, non susceptible or cured 

Maller and Zhou (1996). Different approaches, parametric and non-parametric, have been 

considered to model the proportion of immunes and interested readers can refer, for example, to 

Boag (1949), Berkson (1952), Haybittle (1965), Farewell (1982, 1986), Meeker (1987), 

Dunsmuir et al., (1989), Taylor, (1995), Gamel et al. (1990, 1999), Ghitany and Maller (1992), 

Yamaguchi, (1992), Copas and Heydary (1997), Ng and McLachlan (1998), De Angelis et al. 

(1999), Peng and Dear (2000), Sy and Taylor (2000), Cancho and Bolfarine, (2001), Yu et al. 

(2004), Kannan et al., (2010). 

Cure models for paired and clustered survival data have been considered by a number of authors, 

Wienke et al. (2003,2006) introduced a model for a cure fraction in bivariate time-to-event data 

motivated by the article of Chatterjee and Shih (2001). Chatterjee and Shih (2003) used a 

correlated gamma frailty model by a copula function to analyse bivariate survival data. 

 
 Corresponding author. 
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Considering univariate lifetimes and following Maller and Zhou (1996), the standard cure 

rate model assumes that a certain fraction p in the population is cured or never fail with respect 

to the specific cause of death or failure, while the remaining (1 − p) fraction of the individuals 

is not cured, leading to the survival function for the entire population written as, 

 S(t) = p + (1 − p)S0(t),     (1) 

where p ∈ (0,1) is the mixing parameter and S0(t) denotes a proper survival function for the non 

cured group in the population. 

From the mixture survival function, (1), the probability density function is obtained from f 

(t) = −dt
d S(t) and given by, 

 f (t) = (1 − p)f0 (t),     (2) 

where f0 (t) is the probability density function for a susceptible individual. From , 

the hazard function is given by, 

 .    (3) 

An alternative to a standard long-term survivor mixture model is the longterm survivor 

non-mixture model suggested by Yakovlev et al. (1996); Tsodikov et al. (2003); Lambert et al. 

(2010) which defines an asymptote for the cumulative hazard and hence for the cure fraction. 

The non-mixture model or the promotion time cure fraction has been used by Lambert et al. 

(2007, 2010) to estimate the probability of cure fraction in cancer lifetime data. 

In this paper we consider a generalization of the mixture cure fraction model (1) for the 

bivariate case considering different copula functions to capture the possible existing 

dependence between two lifetimes T1 and T2 for the susceptible individuals, censored data and 

the presence of covariates. Inferences for the proposed models are obtained using Bayesian 

methods where samples of the joint posterior distribution of interest is simulated using MCMC 

(Markov Chain Monte Carlo) methods, as the popular Gibbs sampling algorithm Gelfand and 

Smith (1990); Casella and George (1992) and the Metropolis-Hastings algorithm Chib and 

Greenberg (1995). 

The paper is organized as follows: in Section 2 we introduce bivariate lifetime data 

assuming mixture cure fraction models; in Section 3 we present the likelihood function 

considering bivariate lifetime data in presence of cure fraction and censored data considering 

two special copula functions: Farlie-GumbelMorgenstern (FGM) copula and Gumbel copula; in 

Section 4 we introduce the Weibull marginal distributions for the lifetimes T1 and T2; in Section 

5 we introduce an illustrative example. Finally, in Section 6 we present some concluding 

remarks. 

 

 

2. Bivariate Lifetime Data Assuming Mixture Cure Fraction Models 

In some areas of application, especially in medical and engineering studies, we could have 

two lifetimes T1 and T2 associated with each individual or unit. Usually, these data are assumed 

to be independent, but in many cases, the lifetime of one component could affect the lifetime of 
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the other component. This is the case as an example in the medical area of paired organs like 

kidneys, lungs, eyes, ears, dental implants among many others. In the literature we observe 

many papers related to bivariate lifetime parametric models Gumbel (1960); Freund (1961); 

Marshall and Olkin (1967); Downton (1970); Hawkes (1972); Block and Basu (1974); 

Hougaard (1986); Sarkar (1987); Arnold and Strauss (1988). An alternative is the use of copula 

functions Nelsen (2006); Trivedi and Zimmer (2005, 2006) to model bivariate lifetime data 

assuming different marginal lifetime distributions. 

We also could have the presence of cure fraction or immunes for both lifetimes T1 and T2. 

In this way, let us assume mixture models for T1 and T2, given, respectively, by, 

S1 (t1) = p1 + (1 − p1)S10 (t1) 

 ,   (4) 

S2 (t2) = p2 + (1 − p2)S01 (t2) 

where S10 (t1) and S01 (t2) are the survival functions for the susceptible individuals in the 

lifetimes T1 and T2, respectively; p1 and p2 are, respectively, the cure probabilities in T1 and T2; 

(1 − p1) and (1 − p2) are, respectively, the probabilities of susceptible in lifetimes T1 and T2. 

The joint survival function for T1 and T2 is given by, 

 

 S (t1,t2) = P (T1 > t1,T2 > t2) = 1 − F1 (t1) − F2 (t2) + F (t1,t2),  (5) 

 

where F1 (t1) = P (T1 ≤ t1) is the marginal cumulative distribution function for T1; F2 (t2) = P (T2 

≤ t2) is the marginal cumulative distribution function for T2; 

F (t1,t2) = P (T1 ≤ t1,T2 ≤ t2) is the joint cumulative distribution function for T1 and T2. 

In this way, we get from (4), 

 

F1 (t1) = 1 − S1 (t1) = 1 − p1 − (1 − p1)S10 (t1); 

(6) 

F2 (t2) = 1 − S2 (t2) = 1 − p2 − (1 − p2)S01 (t2). 

 

Thus, from (5), we get, 

 

 S (t1,t2) = p1 + p2 − 1 + (1 − p1)S10 (t1) + (1 − p2)S01 (t2) + F (t1,t2).  (7) 

 

Let us define the binary indicator random variables V1 and V2 where V1 = 1 if the individual 

is susceptible for the lifetime T1 and V1 = 0 if the individual is immune; in the same way, V2 = 1 

if the individual is susceptible for the lifetime T2 and V2 = 0 if the individual is immune, thus P 

(V1 = 1) = 1−p1, P (V1 = 0) = p1, P (V2 = 1) = 1 − p2 and P (V2 = 0) = p2. 

Let us assume V1 independent of V2, that is, 

 

P (V1 = v1,V2 = v2) = P (V1 = v1)P (V2 = v2),   (8) 

 

where vj = 1 or 0 for j = 1,2. That is, 
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φ00 = P (V1 = 0,V2 = 0) = p1p2; 

 

φ10 = P (V1 = 1,V2 = 0) = (1 − p1)p2; 

(9) 

φ01 = P (V1 = 0,V2 = 1) = p1 (1 − p2); 

 

φ11 = P (V1 = 1,V2 = 1) = (1 − p1)(1 − p2); 

where φ00 + φ10 + φ01 + φ11 = 1. 

Assuming T1 independent of T2, we have, S (t1,t2) = S1 (t1)S2 (t2); from (4), we have, 

 

 S (t1,t2) = p1p2 + (1 − p1)p2S10 (t1) + p1 (1 − p2)S01 (t2) +  (10) 

(1 − p1)(1 − p2)S10 (t1)S01 (t2),     

 

assuming T1 dependent of T2, we get from (9), 

 

 S (t1,t2) = φ00 + φ10S10 (t1) + φ01S01 (t2) + φ11S110 (t1,t2),  (11) 

 

where S110 (t1,t2) is the joint survival function for T1 and T2 for the susceptible individuals. 

Different bivariate lifetime distributions could be used for S110 (t1,t2) Block and Basu (1974); 

Marshall and Olkin (1967); Sarkar (1987). Another possibility is the use of copula functions 

Nelsen (2006). Copula functions can be used to link marginal distributions with a joint 

distribution. For specified univariate marginal distribution functions F1 (t1),F2 (t2),...,Fm (tm), the 

function, 

 C (F1 (t1),F2 (t2),...,Fm (tm)) = F (t1,t2,...,tm),   (12) 

 

which is defined using a copula function C, results in a multivariate distribution function with 

univariate distributions specified as F1 (t1),F2 (t2),...,Fm (tm). 

It is important to point out that any multivariate distribution function F can be written in the 

form of a copula function Sklar (2010), that is, if F (t1,t2,...,tm) is a joint multivariate distribution 

function with univariate marginal distribution functions F1 (t1),F2 (t2),...,Fm (tm), thus there exist 

a copula function C (u1,u2,...,um), such that, 

 

 F (t1,t2,...,tm) = C (F1 (t1),F2 (t2),...,Fm (tm)).   (13) 

 

If every Fl is continuous, then C is unique. For the special case of bivariate distributions, we 

have m = 2. 

The approach to formulate a multivariate distribution using a copula is based on the idea 

that a simple transformation can be made of each marginal variable in such a way that each 

transformed marginal variable has a uniform distribution. Once this is done, the dependence 

structure can be expressed as a multivariate distribution on the obtained uniforms, and a copula 
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is precisely a multivariate distribution on marginally uniform random variables. In this way, 

there are many families of copulas which differ in the detail of the dependence they represent. 

In the bivariate case, let T1 and T2 be two random variables with continuous distribution 

functions F1 and F2. 

The probability integral transform can be applied separately to the two random variables to 

define U = F1 (t1) and V = F2 (t2), where U and V have uniform (0,1) distributions, but are 

usually dependent if T1 and T2 are dependent (T1 and T2 independent, implies that U and V are 

independent). Specifying dependence between T1 and T2 is the same as specifying dependence 

between U and V . With U and V uniform random variables, the problem reduces to specifying 

a bivariate distribution between two uniforms, that is, a copula. 

As a first copula function appropriated to model weak dependences, we consider a Farlie-

Gumbel-Morgenstern (FGM) copula Morgenstern (1956), given by, 

 

 F110 (t1,t2) = F10 (t1)F01 (t2)[1 + θ1S10 (t1)S01 (t2)],   (14) 

 

where the dependence parameter θ1 is defined in the interval [−1,1]. 

From (5), the joint survival function S110 (t1,t2) for T1 and T2 considering the susceptible 

individuals is given by, 

 

S110 (t1,t2) = 1 − F10 (t1) − F01 (t2) + F110 (t1,t2),   (15) 

 

that is, for the susceptible individuals, 

 

S110 (t1,t2) = S10 (t1)S01 (t2)[1 + θ1F10 (t1)F01 (t2)].   (16) 

 

From (11) we get, 

 

 S (t1,t2) = φ00 + φ10S10 (t1) + φ01S01 (t2) + φ11A(t1,t2),  (17) 

 

where A(t1,t2) = S10 (t1)S01 (t2)[1 + θ1F10 (t1)F01 (t2)]. 

As a second copula function, we assume the Gumbel copula Gumbel (1960) given by, 

 

 F110 (t1,t2) = F10 (t1) + F01 (t2) − 1 + S10 (t1)S01 (t2) ×  (18) 

exp{−θ2 log[S10 (t1)]log[S01 (t2)]}, 

 

where 0 ≤ θ2 ≤ 1. 

That is, from (15), we get, 

 

 S110 (t1,t2) = S10 (t1)S01 (t2)exp{−θ2 log[S10 (t1)]log[S01 (t2)]}. (19) 

 

From (11) we get, 
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S (t1,t2) = φ00 + φ10S10 (t1) + φ01S01 (t2) + φ11S10 (t1)S01 (t2)B (t1,t2),  (20)  

 

where B (t1,t2) = exp{−θ2 log[S10 (t1)]log[S01 (t2)]}. 

  

3. Bivariate Lifetime Data In Presence Of Cure Fraction And Censored Data 

Let us assume n pairs of a random sample of lifetimes t1i and t2i, i = 1,...,n, that can be right 

censored where censoring is independent of the lifetimes divided into four classes: 

 

C1 : both lifetimes t1i and t2i are observed; 

 

C2 : t1i is a lifetime and t2i is a censored time (that is, we only know that T2i ≥ t2i); 

 

C3 : t1i is a censoring time and t2i is a lifetime (that is, we only know that T1i ≥ t1i); 

 

C4 : both t1i and t2i are censoring times. 

 

It is important to note that we could have other censoring schemes but this will be not 

considered in this paper. 

The contribution of the ith individual for the likelihood function Lawless (1982) is given by, 

 

, (21) 

where f (t1i,t2i) is the joint probability density function for T1 and T2; S (t1i,t2i) is the joint 

survival function;  and  are the partial derivatives of S (t1i,t2i), with respect to 

t1i and t2i, respectively. 

Let us define the indicator variables δ1i and δ2i, by, 

 

1 if tji is an observed lifetime 

 . (22) 

0 if tji is a censured lifetime 

 

for j = 1,2; i = 1,2,...,n. 

In this way, we rewrite the likelihood function (21) as, 

  (23) 
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3.1   Farlie-Gumbel-Morgenstern Copula 

From (17), we get expressions for  and S (t1,t2) needed in the 

likelihood function (23), given by: 

1. , where F (t1i,t2i) = F1 (t1) + F2 (t2) − 

From (17), we get, 

 
and 

. 

From the expression (25), we get,  

 

f (t1,t2) = φ11f10 (t1)f01 (t2){1 + θ1 [1 − 2F10 (t1)][1 − 2F01 (t2)]}.   (26) 

 

2. From (17), we get, 

. 

3. From (17), we get, 

. 

4. Observe that S (t1,t2) needed in the likelihood function (23) is given by (17). 

3.2   Gumbel Copula 

From (20), we get, 

 

  ;(29) 

    ;(30) 

and, 
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 ; (31) 

 . (32) 

In this way, we get, 

f (t1,t2) = φ11f10 (t1)f01 (t2)B (t1,t2){1 − θ2− θ2log[S10 (t1)]−   (33) 

; 

; (34) 

, (35) 

where B (t1,t2) is defined in (20). 

 

Different marginal parametric lifetime distributions could be used for the lifetimes T1 and 

T2, as exponential, Weibull, log-normal, gamma or generalized gamma distributions. 

 

4. Weibull Marginal Distributions For The Lifetimes T1 And T2 

Considering the bivariate lifetime distributions in presence of cure fractions derived from 

mixture models with a dependence structure given by FGM or Gumbel copula functions, we 

assume as a special model, a popular lifetime model extensively used in medical or engineering 

applications: the Weibull distribution. In this way, we consider marginal Weibull distributions 

for the lifetimes T1 and T2 of susceptible individuals with densities and survival functions given, 

respectively, by, 

 

 ; 

  ; (36) 

 ; 

 . 
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The Weibull distribution is very popular to analyse lifetime data, since its hazard function 

h(t) = f (t)/S (t) is increasing if the shape parameter λ > 1; is decreasing if λ < 1 or is constant 

(an exponential distribution) if λ = 1 Lawless (1982). 

From (2), the means for lifetimes T1 and T2 are given respectively, by, 

; 

(37) 

, 

where p1 = φ00 + φ01 and p2 = φ00 + φ10. 

We get inferences for the vector parameter ϕr = (λ1,λ2,µ1,µ2,φ00,φ10,φ01,φ11,θr);  

where r = 1 (FGM copula), r = 2 (Gumbel copula), φ00 + φ10 + φ01 + φ11 = 1, λ1 and λ2 are shape 

parameters, µ1 and µ2 are scale parameters for the marginal Weibull distributions for T1 and T2 

using Bayesian methods where samples of the joint posterior distribution of interest are 

simulated using MCMC (Markov Chain Monte Carlo) methods, as the popular Gibbs sampling 

algorithm Gelfand and Smith (1990); Casella and George (1992) and the Metropolis-Hastings 

algorithm. Chib and Greenberg (1995). Assuming prior independence among the parameters, 

we consider uniform or gamma prior distributions for the parameters λ1, λ2,µ1, µ2 and θr, r = 1,2. 

A Dirichlet prior distribution is considered for the incidence parameters φ11, φ10, φ01, and 

φ00, where φ11 +φ10 +φ01 +φ00 = 1, with density generically given by, 

 ,  (38) 

for all x1,...,xk−1 > 0 satisfying x1 + ··· + xk−1 < 1, where xk is given by 1 − x1 − ··· − xk−1. The 

normalizing constant is the multinomial beta function, which can be expressed in terms of the 

gamma function: 

 .     (39) 

In the presence of covariates associated to each bivariate lifetime T1 and T2, we could 

assume the following regression model, 

; 

(40) 

; 

 

where xi = (x1i,...,xki)0 is a vector of covariates and βl = (βl1,...,βlk), l = 1,2 denotes a vector 

regression parameters. 

We also assume Normal distributions for the regression coefficients βls, and Gamma prior 

distributions for αl, l = 1,2; s = 1,...,k. 

 

5. An Example 
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In this application, we consider a data set Huster et al. (1989) with 197 patients were a 50% 

random sample of the patients with “high-risk” diabetic retinopathy as defined by the Diabetic 

Retinopathy Study (DRS). Each patient had one eye randomized to laser treatment and the 

other eye received no treatment. For each eye, the event of interest was the time from initiation 

of treatment to the time when visual acuity dropped below 5/200 two visits in a row (call it 

“blindness”). Thus there is a built-in lag time of approximately 6 months (visits were every 3 

months). Survival times in this data set are therefore the actual time to blindness in months, 

minus the minimum possible time to event (6.5 months). Censoring was caused by death, 

dropout, or end of the study. This data set can be obtained in 

http://www.mayo.edu/research/documents/diabeteshtml/DOC-10027460 

In the analysis considered here, we assume as lifetimes, the times (in months) to blindness 

for the eye randomized to laser treatment (T1), with 143 censored observations and 54 not-

censored observations, and the time (in months) to blindness for the eye randomized that not 

received the treatment (T2), with 96 censored observations and 101 not-censored observations. 

Two covariates, the age at diagnosis of diabetes (in years) and the type of diabetes (juvenile, 

adult) were considered. Observe that among the censored observations, some patients will 

never have the occurrence of the event of interest, that is, they are immunes. 

As a preliminary analysis of the data, we present in Figure 1, the KaplanMeier 

nonparametric estimates for the survival functions considering the two lifetimes associated to 

each patient (treated and untreated eyes). From these plots, we have some indication of cure 

fraction (a large number of censoring times at the end of study). From the Kaplan-Meier plots 

of Figure 1, we also observe better results for the treated eyes, that is, larger times to blindness 

in comparison with the untreated eyes. From the Kaplan-Meier estimates we have estimates for 

the mean time to blindness: 57.83 months for the treated eyes and 43.53 months for the 

untreated eyes. 

In medical research, it is common to assume independence between T1 and T2, which could 

be not appropriated. 

 
Figure 1: Kaplan-Meier nonparametric estimates for the survival function (0:censored; 1:blindness). 
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As a first model, we assume a bivariate Weibull lifetime distribution derived from the FGM 

copula in presence of cure fraction presented in Section 3.1 with independent priors λl ∼ 

Gamma(0.001,0.001), µ l ∼ Gamma(0.001,0.001), l = 1,2, and θ1 ∼ U (−1,1), were Gamma(a,b) 

denotes a gamma distribution with mean a/b and variance a/b2 and U (c,d) denotes an uniform 

distribution defined in the interval (c,d). We also assume a Dirichlet prior given by (38) for φ11, 

φ10, φ01 and φ00 with hyperparameter values w1 = w2 = w3 = w4 = 1 (noninformative priors for the 

incidence parameters). 

Considering the rjags library Plummer (2011) in R software R Development Core Team 

(2011), a single chain has been used considering the simulation for each parameter for 200,000 

times with a burn sample size of 50,000 to eliminate the possible effect of the initial values. We 

choose the simulated values from 100 to 100, to get approximated uncorrelated values which 

result in a final chain of size 2,000. We automatically generate initial values by sampling from 

the prior for the parameters, since the priors are not totally diffuse (vague). Convergence of the 

Gibbs Sampling algorithm was monitored using standard graphical methods, as the trace plots 

and the estimated posterior densities of the simulated samples Brooks and Gelman (1998). In 

Figure 2 we have an example considering the parameter λ1 from the FGM copula (first fitted 

model), all the other parameters have similar behavior. Note we did not show the full 

conditional distributions since we consider the rjags library, making it unnecessary to use, 

however in appendix A we show the required codes to obtain the Bayesian estimates. 

 
Figure 2: Trace plot and estimated posterior density of the simulated samples considering the 

parameter λ1 from the FGM copula. 

 

In Table 1, we have the posterior summaries of interest (Monte Carlo estimates of the 

posterior means for each parameter). We also have in Table 1, the Monte Carlo estimate of DIC 

(Deviance Information Criterion), introduced by Spiegelhalter et al. (2002), used as a 

discrimination criterion for different models. Smaller values of DIC indicates better models. 

The deviance can be expressed as, 

D(θ) = −2logL(θ | y) + c,              (41) 

0 500 1000 1500 2000 0.7 0.8 0.9 1.0 1.1 1.2 1.3 
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where L(θ | y) is the likelihood function for the unknown parameters in θ given the observed 

data y and c is a constant not required for comparing models. Spiegelhalter et al. (2002) defined 

the DIC criterion by, 

 DIC = D(θˆ) + 2nD,     (42) 

 

where D(θˆ) is the deviance evaluated at the posterior mean θˆ and nD is the effective number of 

parameters in the model, namely nD = D¯ − D(θˆ), where D¯ = E[D(θ)] is the posterior deviance 

measuring the quality of the goodness-offit of the current model to the data. 

 

Table 1: Posterior summaries (bivariate Weibull distribution derived from FGM copula in presence of 

cure fraction) 

Parameter Mean S.D. 95% Credible Interval DIC 

λ1 0.93 0.15 (0.68;1.26)  

λ2 

µ1 

µ2 

θ1 

0.94 

66.65 

35.56 

0.62 

0.09 

40.51 

8.99 

0.30 

(0.77;1.13) 

(22.88;164.73) 

(22.88;57.49) 

(−0.11;0.98) 1667.04 

φ11 0.45 0.13 (0.25;0.73)  

φ10 0.08 0.05 (0.004;0.20)  

φ01 0.25 0.12 (0.02;0.47)  

φ00 0.22 0.07 (0.05;0.35)  

 

In Table 2, we have the posterior summaries of interest assuming independent marginal 

Weibull distributions for the lifetimes T1 and T2 in presence of cure fraction, that is, with θ1 = 0, 

assuming the same priors for the parameters of interest and the same Gibbs sampling steps 

using the rjags library in R software used for the bivariate Weibull distribution derived from 

FGM copula in presence of cure fraction (results in Table 1). 

From the obtained Monte Carlo estimates for DIC assuming the two models given in Tables 

1 and 2 (presence or not of dependence between T1 and T2) we observe that the bivariate 

Weibull distribution derived from a FGM copula function gives better fit for the data, since the 

obtained DIC value is smaller for the dependent model than for the independent model. 

 
Table 2: Posterior summaries (independent Weibull distributions in presence of cure fraction) 

Parameter Mean S.D. 95% Credible Interval DIC 

λ1 0.98 0.17 (0.71;1.34)  
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λ2 

µ1 

µ2 

φ11 

0.95 

49.52 

33.97 

0.39 

0.09 

31.28 

7.18 

0.12 

(0.78;1.14) 

(20.33;138.20) 

(23.18;50.79) 

(0.24;0.68) 1669.76 

φ10 0.05 0.04 (0.003;0.16)  

φ01 0.29 0.12 (0.02;0.48)  

φ00 0.26 0.06 (0.13;0.36)  

 

Considering “FGM copula model” in the presence of cure fraction and the covariates age 

and type of diabetes (see (40)), that is, 

 

µ1i = α1 exp(β11x1i + β12x2i); 

(43) 

µ2i = α2 exp(β21x1i + β22x2i); 

where i = 1,...,n (n = 197) x1i denotes the age at diagnosis of diabetes (in years) and x2i is a 

binary variable denoting the type of diabetes (1 = juvenile; 0 = adult). 

We consider the same priors for the parameters, λ1, λ2, θ1, φ11, φ10, φ01 and φ00, and the same 

Gibbs sampling steps using the rjags library in R software used for the bivariate Weibull 

distribution derived from FGM copula in presence of cure fraction. For the others parameters 

we consider independent priors αl ∼ Gamma(0.001,0.001), βl1 ∼ N (0,1000) and βl2 ∼ N 

(0,1000), l = 1,2, were N (e,f) denotes a normal distribution with mean e and variance f. In 

Table 3, we have the posterior summaries of interest assuming “FGM copula model” in the 

presence of cure fraction and the covariates age and type of diabetes. 

From the results of Table 3, we observe that both covariates (age at diagnosis and type of 

diabetes) do not present significant effects on the response since the 95% credible intervals 

contain the zero value. In fact the Monte Carlo estimates of DIC are very similar considering 

the dependent model in presence or not of covariates. Considering the independent model, we 

observe a DIC value a little bit larger, an indication that the dependence model is better fitted 

by the data. 

 

Table 3: Posterior summaries (“FGM copula model”, considering cure fraction and covariates) 

Parameter Mean S.D. 95% Credible Interval DIC 

α1 102.05 138.99 (6.20;514.62)  
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β11 

β12 

α2 

β21 

β22 

λ1 

0.006 

−0.66 

68.48 

−0.02 

−0.12 

0.99 

0.03 

0.78 

40.83 

0.01 

0.42 

0.16 

(−0.05;0.06) 

(−2.19;0.88) 

(20.21;167.88) 

(−0.05;0.008) 

(−0.97;0.74) 

(0.70;1.32) 1667.57 

λ2 0.93 0.09 (0.77;1.12)  

θ1 0.01 0.59 (−0.96;0.95)  

φ11 0.41 0.10 (0.27;0.67)  

φ10 0.04 0.03 (0.002;0.12)  

φ01 0.30 0.10 (0.05;0.47)  

φ00 0.25 0.05 (0.14;0.36)  

 

In this case, we also could to model the data considering other existing copula functions 

since the FGM copula is appropriated only to model weak dependence Nelsen (2006). Observe 

that the 95% credible interval of the dependence parameter θ1 includes the zero value, implying 

that θ1 is insignificant and it is enough to justify that T1 and T2 are not dependent at least through 

FGM copula function. 

Now, let us assume a bivariate Weibull lifetime distribution derived from the Gumbel 

copula in presence of cure fraction presented in Section 3.2 with independent priors λl ∼ 

Gamma(0.001,0.001), µ l ∼ Gamma(0.001,0.001), l = 1,2, and θ2 ∼ U (0,1). We also assume a 

Dirichlet prior given by (38) for φ11, φ10, φ01 and φ00 with hyperparameter values w1 = w2 = w3 = 

w4 = 1 (noninformative priors for the incidence parameters). 

Considering the rjags library Plummer (2011) in R software R Development Core Team 

(2011), a single chain has been used considering the simulation for each parameter for 210,000 

times with a burn sample size of 50,000 to eliminate the possible effect of the initial values. We 

choose the simulated values from 100 to 100, to get approximated uncorrelated values which 

result in a final chain of size 2,000. Convergence of the Gibbs Sampling algorithm was 

monitored using standard graphical methods, as the trace plots of the simulated samples Brooks 

and Gelman (1998). 

In Table 4, we have the posterior summaries of interest (Monte Carlo estimates of the 

posterior means for each parameter). We also have in Table 4, the Monte Carlo estimate of DIC 

(Deviance Information Criterion), introduced by Spiegelhalter et al. (2002), used as a 

discrimination criterion for different models. 

Smaller values of DIC indicates better models. 
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Table 4: Posterior summaries (“Gumbel copula model”, considering cure fraction) 

Parameter Mean S.D. 95% Credible Interval DIC 

λ1 0.85 0.13 (0.63;1.13)  

λ2 

µ1 

µ2 

θ2 

0.94 

62.14 

28.99 

0.55 

0.09 

23.27 

5.36 

0.20 

(0.77;1.14) 

(22.61;109.41) 

(20.92;41.89) 

(0.16;0.91) 1662.86 

φ11 0.50 0.10 (0.29;0.67)  

φ10 0.04 0.04 (0.001;0.14)  

φ01 0.14 0.12 (0.005;0.41)  

φ00 0.31 0.05 (0.21;0.40)  

Finally, assuming “Gumbel copula model” in presence of cure fraction and covariates, we 

assumed the same regression model (43) and consider the same priors for the parameters, λ1, λ2, 

θ1, φ11, φ10, φ01 and φ00, and the same Gibbs sampling steps using the rjags library in R software 

used for the bivariate Weibull distribution derived from Gumbel copula in presence of cure 

fraction. For the others parameters we consider independent priors αl ∼ Gamma(0.001,0.001), 

βl1 ∼ N (0,1000) and βl2 ∼ N (0,1000), l = 1,2. In Table 5, we have the posterior summaries of 

interest assuming “Gumbel copula model” in the presence of cure fraction and the covariates 

age and type of diabetes. From the results of Table 5, we also conclude that both the covariates 

do not have significant effects on the response, but the dependent model derived from Gumbel 

copula gives smaller values of DIC, possibly an indication of better fit of the model for the data. 

 
Table 5: Posterior summaries (“Gumbel copula model”, considering cure fraction and covariates) 

Parameter Mean S.D. 95% Credible Interval DIC 

α1 130.17 136.89 (11.42;505.52)  

β11 

β12 

α2 

β21 

β22 

λ1 

−0.0001 

−0.85 

60.81 

−0.02 

−0.15 

0.88 

0.02 

0.70 

37.19 

0.01 

0.43 

0.14 

(−0.05;0.05) 

(−2.24;0.53) 

(19.91;156.39) 

(−0.05;0.005) 

(−1.01;0.67) 

(0.64;1.19) 1661.68 
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λ2 0.93 0.08 (0.77;1.10)  

θ2 0.53 0.20 (0.13;0.90)  

φ11 0.49 0.10 (0.31;0.66)  

φ10 0.03 0.03 (0.0005;0.09)  

φ01 0.18 0.11 (0.01;0.40)  

φ00 0.31 0.05 (0.21;0.40)  

 

Since, in this case, it is not possible to compare the Kaplan-Meier curves with the estimated 

survival functions, we could use other discrimination methods to choose the best model for the 

data set. A possibility to discriminate the proposed models in terms of better fit for the data not 

considering the presence of covariates is to compare the Monte Carlo estimates of the means 

for the lifetimes T1 and T2 using the bivariate Weibull distributions derived from copula 

functions. Standard non-parametric estimates for the means based on Kaplan-Meier estimates 

are given, respectively, by E (T1) = 57.83 and E (T2) = 43.53 (use of the R software). Using the 

bivariate Weibull distributions derived from copula functions in presence of cure fraction, we 

get estimates for the means of T1 and T2 from (37), given by: 

 FGM copula in presence of cure fraction not considering the presence of covariates: E 

(T1) = 36.08 and E (T2) = 25.62. 

 Independent lifetimes with Weibull distributions in presence of cure fraction not 

considering the presence of covariates: E (T1) = 22.42 and E (T2) =23.87. 

 Gumbel copula in presence of cure fraction not considering the presence of covariates: 

E (T1) = 36.87 and E (T2) = 19.28. 

From these results, we also observe that the dependent models based on the copula 

functions are better fitted by the data, as compared to the independent Weibull model, since the 

obtained Bayesian estimates using copulas for the means of the marginal lifetimes are more 

close to the Kaplan-Meier estimates. 

 

6. Concluding Remarks 

The use of copula functions could be a good alternative to analyse bivariate lifetime data in 

presence of censored data, cure fraction and covariates. Observe that in many applications of 

lifetime modeling we could have the presence of a cure fraction for individuals that are “long 

term survivors” or “cured individuals”. 

In this paper, we have used two copula functions, but we also could consider any other 

existing copula function to build new bivariate lifetime models. We also have used marginal 

Weibull distributions, since this distribution has a good flexibility of fit for lifetime data, as 
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constant, increasing or decreasing hazard functions. Other usual existing univariate lifetime 

distributions could be used (Gamma, log-normal, exponential, exponentiated Weibull 

distributions, among many others) to model the marginal distributions. This approach could be 

of great interest in many areas of interest, especially in medical or engineering studies. 

The use of standard existing MCMC methods, especially with the rjags library in R 

software, could give a great simplification to obtain inferences for the proposed models. Using 

a real data set example, we observed that using both proposed models (FGM or Gumbel 

copulas) give similar results when observing the Monte Carlo estimates for the posterior means 

and credible intervals for all parameters, except for the association parameters θ1 and θ2, which 

have different interpretations Nelsen (2006). A small improvement for the fit of the models for 

the data is observed considering “Gumbel copula model” where the DIC values are smaller than 

considering “FGM copula model” (see Tables 1–5). Observe that prior information on the 

association parameter of copula functions usually it is not available from preliminary studies. 

It is interesting to observe that we have great difficulties to get standard classical inferences 

for the parameters of the proposed models. In our case, we tried to find maximum likelihood 

estimators for the parameters of the models in our application using SAS software, but we did 

not get good results. Other problem with the use of classical approach: confidence intervals and 

hypothesis tests are based on asymptotic results. In our case, these results could be not accurate 

even using large sample sizes. 

It is important to point out that any existing parametric lifetime distribution could be 

considered for the lifetimes of the susceptible individuals by choosing different parametric 

forms for f10 (t1), f01 (t2), S10 (t1) and S01 (t2) used in Sections 3.1 and 3.2 in the analysis of 

lifetimes in presence of cure fraction and censored data. 
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A rjags Codes 

Listing 1: Main code of the rjags library. 

 

 


