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Abstract: Incomplete data are common phenomenon in research that adopts the 

longitudinal design approach. If incomplete observations are present in the 

longitudinal data structure, ignoring it could lead to bias in statistical inference and 

interpretation. We adopt the disposition model and extend it to the analysis of 

longitudinal binary outcomes in the presence of monotone incomplete data. The 

response variable is modeled using a conditional logistic regression model. The 

nonresponse mechanism is assumed ignorable and developed as a combination of 

Markov’s transition and logistic regression model. MLE method is used for 

parameter estimation. Application of our approach to rheumatoid arthritis clinical 

trials is presented.  
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1. Introduction 

An Correlated data are very common in clinical and social science research and include 

nested and clustered data.  Data are correlated because of common attributes that are shared 

among the members of the group, or among several measures of a member over time.  

Longitudinal and repeated data are specific cases of correlated data. Longitudinal data refer to 

data that are collected by repeatedly observing the same subject over a period of time.  Repeated 

measures, which include longitudinal data, refer to data on subjects measured repeatedly over a 

period of time, or under different conditions, or both. In epidemiology, a study on members of 

the same family will be correlated on different covariate than non-family members. This means 

that the probability that a family member has an outcome is not necessarily the same as that of 

an individual randomly selected from the population.  

Likelihood based approaches for analyzing correlated binary data are limited. Bonney (1998) 

introduced the term disposition to represent the conditional probability of the outcome of one 
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member of a cluster given another member has the attribute.  The development of the disposition 

model starts with random effects formulation and then introduces a theory for constructing 

likelihoods utilizing moment series representations. The disposition model was further 

investigated by Kwagyan (2001) through an alternative formulation from a finite mixture 

modeling perspective. 

The attractive feature of reproducibility of the disposition model (Bonney, 1998, 2003) 

makes it desirable to naturally extend it to capture the types of correlation or dependence that 

arises in longitudinal data. 

The problem of incomplete responses is a common occurrence in longitudinal data. This 

happens when one or more of the subject measurement from a unit is not taking, lost or otherwise 

unavailable. Missingness could be related to the outcome of interest. When it is unrelated to the 

outcome of interest, the effect is weak and analysis of the parameters of interest is less 

complicated. However, when it is related to the outcome of interest, the impact of the missing 

data is great, and the analysis, which is complicated, should be carried out with care to avoid a 

potential bias of inference on the parameters of interest. This in particular is the case when 

individuals with missing data differ significantly in important ways from those with complete 

data structure (Molenberghs et. al., 2015). 

When a missing data is related to the history of the observed responses, it is known as missing 

at random (MAR), when it is related to the current unobserved response, it is known as missing 

not at random (MNAR) (Little and Rubin, 2002). When the missingness is MAR, estimates will 

be valid and fully efficient when the likelihood and missing data model is correctly specified 

(Molenberghs et. al., 2002, Diggle and Kenward, 1994). However, when the missingness is 

MNAR, statisticians are faced with difficulties when the parameters of interest are to be estimated. 

The pattern of missingness could be monotone and non-monotone. If an individual, or a subject 

miss an appointment for an observation and he or she is never observed again, the pattern of 

missingness is said to be monotone otherwise it is non-monotone. 

Since missing data are common and still a challenging problem in longitudinal study design, 

several approaches for dealing with them has been suggested. Some of these methods include the 

Likelihood-based and Bayesian method, Multiple Imputation and the Weighted Equations. For a 

study with missing data, the validness, soundness and efficacy of any method of analysis will 

require the tenability of some assumptions regarding the reasons the missing values occurred to 

avoid a bias and misleading inference about the parameters of interest  (Molenberghs et. al., 2015). 

In Section 2, we introduced the joint distribution of the incomplete data by combining the 

model of disposition and the dropout model and present the corresponding likelihood function. 

In Section 3, we present and discuss the result of the application of our approach to the 

rheumatoid arthritis clinical trial. Conclusions are presented in Section 4. 

 

2. Joint Distribution for Incomplete Data 

In this section, we introduce the disposition model and adopt it to develop a model in the 

presence of incomplete data. A joint distribution for the incomplete data will be constructed and 
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models for different dropout mechanism will be developed.Consider a sample of N clusters, each 

of size 𝑛𝑖, 𝑖 = 1, … , 𝑁 and 𝒀𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)𝑇denote the vector of binary outcomes for the 𝑖𝑡ℎ 

cluster. Let 𝛿𝑖𝑘 denote the conditional probability of 𝑌𝑖𝑘 = 1 given that 𝑌𝑖𝑘′ = 1 that is,  

𝛿𝑖𝑘 = 𝑃𝑟(𝑌𝑖𝑘 = 1| 𝑌𝑖𝑘′ = 1), 𝑘 ≠ 𝑘′;  𝑘, 𝑘′ = 1,2, … , 𝑛 

Let us further assume that a pair of observed response within the same group satisfies the 

following relation 

𝑃𝑟(𝑌𝑖𝑘 = 1| 𝑌𝑖𝑘′ = 1)

𝑃𝑟 (𝑌𝑖𝑘 = 1)𝑃𝑟 (𝑌𝑖𝑘′ = 1)
=

1

𝛼𝑖
, 𝛼𝑖 > 0, 𝑘 ≠ 𝑘′;  𝑘, 𝑘′ = 1,2, … , 𝑛 

where 𝛼𝑖 , called the relative disposition is common for all pairs of observation and it 

measures the within-group aggregation (correlation):  𝛼𝑖 = 1  implies independence or no 

aggregation. With this, Bonney (1998, 2003) has shown that the joint distribution of the 𝑖𝑡ℎ 

cluster is given as  

𝑃(𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
) = (1 − 𝛼𝑖) ∏ (1 −

𝑛𝑖
𝑘=1 𝑦𝑖𝑘) + 𝛼𝑖 ∏ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)(1−𝑦𝑖𝑘)𝑛𝑖

𝑘=1                 (1) 

Let us temporarily drop the subscript i representing the 𝑖𝑡ℎunit when discussing a model of a 

cluster for simplicity of notation and let and 𝒀∗ = (𝑌1
∗, … , 𝑌𝑛

∗) denote the complete vector of 

intended sequence of measurement on an experimental unit, and 𝒕 = (𝑡1, … , 𝑡𝑛) the set of times 

that corresponds to the intended measurement. The joint probability distribution of 𝒀∗ is  

𝑃(𝒀∗ ; 𝛼, 𝛿) = (1 − 𝛼) ∏ (1 −𝑛
𝑘=1 𝑦𝑘

∗) + 𝛼 ∏ 𝛿𝑘(1 − 𝛿𝑘)(1−𝑦𝑘
∗)𝑛

𝑘=1 ) 

Let 𝒀 = (𝑌1, … , 𝑌𝑛)𝑇denote the vector of complete observed sequences of binary observation 

for the  𝑖𝑡ℎunit. 

The assumption for the dropout process is that if an experimental unit is still in the study at 

time 𝑡𝑘  (2 ≤ 𝑘 ≤ 𝑛), the sequence of measurement 𝑌𝑗: 𝑗 = 1,2, … , 𝑘)  associated with it follows 

the same joint distribution as that of the  corresponding intended sequence (𝑌𝑗
∗: 𝑗 = 1,2, … , 𝑘). 

We define the preceding outcome 𝑌𝑗 as: 

𝑌𝑗 = {
2𝑌𝑗

∗ − 1; 𝑓𝑜𝑟 𝑗 = 1, … , (𝐷 − 1)(𝑌𝑗
∗ 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

0  𝑓𝑜𝑟 𝑗 ≥ 𝐷, (𝑌𝑗
∗ 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔)

, 

where D is a random variable such that 2 ≤ 𝐷 ≤ 𝑛 denotes the dropout time, and 𝐷 = 𝑛 + 1    

indicates no dropout. 

For each k, let 𝑯𝑘 = (𝑌1, … , 𝑌𝑘−1)  denote the observed history up to time 𝑡𝑘−1, and 𝑦𝑘
∗ ,  the 

value that would have been observed at time t_k, if there was no dropout in the unit. Similar to 

Diggle and Kenward (1994) selection model with non-ignorable dropout, we assume that the 

probability of dropout at time d depends on the history of the measurement process up to, and 

including the time of dropout 𝑡𝑑.. 

That is, 

𝑃𝑟(𝐷 = 𝑑|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑯𝑑 , 𝑦𝑑
∗ ; 𝝓), 
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where 𝝓 = (𝜙0, … , 𝜙2+𝑝) is a vector of unknown parameters. 

With this, the following patterns of dropout process are identified: 

Dropout Completely At Random (DCAR).Dropout is completely at random if the dropout process 

is independent of 𝑯𝑑 , 𝑎𝑛𝑑 𝑦𝑑
∗ . That is, 

𝑃𝑟(𝐷 = 𝑑|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑑; 𝝓) 

Dropout At Random (DAR). Dropout is at random if the dropout process depends on 𝑯𝑑 , and not 

𝑦𝑑
∗ . That is, 

 𝑃𝑟(𝐷 = 𝑑|𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑝𝑑(𝑯𝑑; 𝝓) 

Informative or Dropout Not At Random (DNAR). This is when the dropout process depends on 

𝑦𝑑
∗ . 

We adopt the regressive logistic models of Bonney (1986, 1987, 1998) to model the dropout 

process and define the logit as, 

𝜃𝑘 = 𝑙𝑜𝑔𝑖𝑡[𝑝𝑘(𝑯𝑘, 𝑦; 𝝓)] = 𝜙0 + 𝜙1𝑦𝑘 + ∑ 𝜙𝑗𝑦𝑘+1−𝑗

𝑘

𝑗=2

 

+𝜙𝑘+1𝑋𝑘1 + ⋯ + 𝜙𝑘+𝑝𝑋𝑘𝑝                                                   (2) 

where 𝑿 = (𝑋𝑘1, … , 𝑋𝑘𝑝)𝑇is the p individual-specific covariates. 

Our motivation of this choice is that the probability of dropout at time 𝑡𝑑  is a direct 

consequence of the past outcomes, the present outcome, and possible set of covariates. Interested 

readers should see Bonney (1986, 1987) for full-parameterized forms with the specification of 

the dependence structure of the model. 

Following Diggle and Kenward (1994), the joint distribution for an incomplete sequence with 

dropout at the 𝑡𝑑
𝑡ℎ time point is: 

𝑃(𝒀) = 𝑃∗(𝑦1, … , 𝑦𝑑−1)[∏ 1 −𝑑−1
𝑘=2 𝑝𝑘(𝑯𝑘, 𝑦𝑘)]𝑃𝑟 (𝑌𝑑 = 0|𝑯𝑑, 𝑌𝑑−1 ≠ 0)                (3) 

Thus, the full log-likelihood for the 𝑖𝑡ℎ cluster for 𝚯 based on the data(𝒚𝑖: 𝑖 = 1, … , 𝑁)is given 

as 

ℓ(𝚯) = ∑ log {𝑃∗(𝑦1, … , 𝑦𝑑−1; 𝛼, 𝛿) [∏ 1 −

𝑑−1

𝑘=2

𝑝𝑘(𝑯𝑘, 𝑦𝑘; 𝝓)] Pr (𝑌𝑑 = 0|𝑯𝑑 , 𝑌𝑑−1 ≠ 0; 𝛼, 𝛿, 𝝓)  }

𝑁

𝐼=1

 

which is partitioned as: 

ℓ(𝜣) = ℓ1(𝛼, 𝛿) + ℓ2(𝝓) + ℓ3(𝛼, 𝛿, 𝝓)                                            (4) 

where 
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ℓ1(𝛼, 𝛿) = ∑ log {(1 − 𝛼𝑖) ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘) + 𝛼 ∏ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)(1−𝑦𝑖𝑘)

𝑑𝑖−1

𝑘=1

  }

𝑁

𝐼=1

 

 is the log-likelihood for the observed response, 

ℓ2(𝝓) = ∑ ∑ log[1 − 𝑝𝑘(𝑯𝑘, 𝑦𝑘; 𝝓)]

𝑑𝑖−1

𝑘=1

𝑁

𝑖=

 

and 

ℓ3(𝛼, 𝛿, 𝝓) = ∑ log{Pr (𝐷 = 𝑑𝑖|𝒚𝑖)}

𝑖≤𝑁;𝑑𝑖≤𝑛

 

together corresponds to the log-likelihood function for the dropout process, 

𝑃𝑟(𝐷 = 𝑑𝑖|𝒚𝑖) = {
∑ 𝑝𝑑(𝑯𝑑𝑖

, 𝑦; 𝝓)𝑃𝒅
∗(𝑦|𝑯𝑖𝑑𝑖

, 𝛼, 𝛿𝑦 ) 𝑓𝑜𝑟 𝑑𝑖 < 𝑛

1 𝑓𝑜𝑟 𝑑𝑖 = 𝑛 + 1
                           (5) 

and  

P𝑘
∗(𝑦|𝑯𝑘; 𝛼, 𝛿)  denote the conditional probability distribution function of 𝒀𝑘

∗  given 𝑯𝑘 

 For non-ignorable dropout ℓ3(𝛼, 𝛿, 𝜙) contains information on (𝛼, 𝛿, 𝜙) as such, cannot be 

ignored. 

By applying the DAR (ignorability) condition to Eqn. (4), the reduced log-likelihood function is  

ℓ(𝜣) = ℓ1(𝛼, 𝛿) + ℓ2(𝝓)                                                      (6) 

where ℓ3(𝛼, 𝛿, 𝝓) = ℓ3(𝝓) depends only on 𝝓 and is absorbed by ℓ2(𝝓) 

 

3. Applications to Rheumatoid Arthritis Clinical Trial Data 

In this section we use data consisting of 200 subjects from the rheumatoid arthritis clinical 

data reported in Bombardier et. al., (1986) to illustrate different ways we can fit the disposition 

model when the data are incomplete. Because closed form of solutions to the score function do 

not exist, estimation of the parameters will be done using MULTIMAX (Kwagyan, 2001, Bonney, 

2003, Kwagyan et. al., 2003) for maximization likelihood estimation. 

Patients in this study have at most five unequally spaced binary self-assessment 

measurements of arthritis, where self-assessment equals 0 if "poor" and 1 if "good". An initial 

self-assessment measurement of all patients was recorded at the first time point (month 1), after 

which follow-up self-assessment measurements were taken monthly up to 5 months (k=2,3,4,5).  

Patients were randomized to one of the two treatments: placebo or auranofin at the second 

self-assessment time. After randomization, patients remained in the treatment groups for the 

entire 5 months study period. The covariates used in this study are age in years, sex (1= male, 
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0=female), and treatment (1=Auranofin, 0=Placebo). Details about eligibility criteria and the 

result of the study are reported elsewhere (Bombardier et. al., 1986).  

Of the 200 patients, 33(16.5%) subjects had some of their response missing. Missingness is 

assumed to be monotone in the sense that if an observation is missing at time 𝑡𝑘 it is missing for 

time 𝑡𝑗, 𝑗 > 𝑘. The primary objective of the study was to determine the effects of treatment to 

positive self-assessment, adjusted for age and gender. Of importance to us is the effect of the 

dropout process to positive self-assessment. If we work with the assumption that subjects who 

showed no improvement or positive response to the treatment are likely to dropout of the study, 

then we cannot rule out a DAR mechanism as such, we constrain 𝜙2 = 0. 

To test this assumption, three different models: a complete case where the analysis is based 

on those subject who did not have missingness in their observation, and two incomplete models 

that incorporates the dropout will be fitted. We consider the case when the regression parameters 

in the response model and dropout process are the same and when they are different. 

The dropout probability is model by: 

𝜃 = 𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙0 + 𝜙1𝑦𝑘−1 + 𝜙3𝑆𝐸𝑋 + 𝜙4𝐴𝐺𝐸 + 𝜙5𝑇𝑅𝑇𝑘                       (7) 

while the logit of the individual disposition and the relative disposition are modeled by:  

 {
𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝑆𝐸𝑋 + 𝛽2𝐴𝐺𝐸 + 𝛽3𝑇𝑅𝑇𝑘

𝛼 =
1+𝑒−(𝛾0+𝜆0)

1+𝑒−𝛾0

                              (8) 

where 𝛾0  is the parameter measuring the within cluster or group dependence and 𝜆0  is the 

intercept or the mean effect. 

 

3.1 Results of Analysis 

Three different analyses are carried out to investigate the impact of the dropout process in 

the estimation of the response variables. 

Complete Case: This analysis is done by deleting all the subjects with missing values from 

the data set and estimate the parameters using only the dataset from those subjects without 

missing values also called the completers using the disposition model given by Eqn. (8). 

Incomplete Model DAR: For this model, the parameter for the current response $\phi_{2}=0$ 

is constrained while assuming the covariate parameters for the dropout model and the model of 

disposition are the same. This is done because of the need to ascertain the significance or non-

significance of the missingness. 

𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝑆𝐸𝑋 + 𝛽2𝐴𝐺𝐸 + 𝛽3𝑇𝑅𝑇𝑘 

𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙0 + 𝜙1𝑦𝑘−1 + 𝛽1𝑆𝐸𝑋 + 𝛽2𝐴𝐺𝐸 + 𝛽3𝑇𝑅𝑇𝑘 

𝛼 =
1 + 𝑒−(𝛾0+𝜆0)

1 + 𝑒−𝛾0
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Incomplete Model DAR II: In this model, we want to know if the covariates had any effect or 

significance on the dropout process. To do this, we work with the same DAR assumption and 

chose different parameters for the covariates in the dropout and the model of disposition 

respectively. The models are: 

𝑙𝑜𝑔𝑖𝑡[𝛿𝑘] = 𝛾0 + 𝜆0 + 𝛽1𝑆𝐸𝑋 + 𝛽2𝐴𝐺𝐸 + 𝛽3𝑇𝑅𝑇𝑘 

𝑙𝑜𝑔𝑖𝑡[𝑝𝑘] = 𝜙0 + 𝜙1𝑦𝑘−1 + 𝜙3𝑆𝐸𝑋 + 𝜙4𝐴𝐺𝐸 + 𝜙5𝑇𝑅𝑇𝑘 

𝛼 =
1 + 𝑒−(𝛾0+𝜆0)

1 + 𝑒−𝛾0
 

Table 1 shows results of the fitted models.  

 Complete Case:  We observe that the parameter 𝛾0 measuring the within cluster dependence 

was not statistically significant, the sex (𝛽1) of the subjects and the treatment (𝛽3) received were 

statistically significant to the way the subjects perceived the positive self assessment of their 

arthritis status.  The result suggests that treatment with auranofin tends to increase the odds of a 

positive self-assessment by 𝑒1.021 ≈ 2.80. There was no age effect to a positive self-assessment 

of the subject as the age (𝛽2) of the subjects was not statistically significant. This result is similar 

to the result obtained by Fitzmaurice and Lipsitz, (1995) who analyzed a subset of the data under 

the assumption of missing completely at random using the generalized estimation equations. 

 
Table 1:Parameter estimates and standard errors of the Complete Case and Incomplete data. 

 

 

Parameters 

Complete Case 

Est (Std. error) 

DAR I 

Est (Std. error) 

DAR II 

Est (Std. error) Disposition parameters    

λ0 0.4902 (0.3939) 0.3787 (0.3659) 0.2642 (0.3647) 
γ0 0.19746 (0.1687) 0.1475 (0.0563)∗ 0.1182 (0.052)∗ 

SEX (β1 ) 0.3609 (0.1449)∗ 0.3811 (0.1723)∗ 0.3921 (0.1569)∗ 

AGE (β2 ) -0.0065 (0.0071) -0.0014 (0.0074) -0.0032 (0.0066) 

TRT (β3 ) 0.4840 (0.1554)∗ 0.4840 (0.1554)∗ 0.8341 (0.1434)∗ 

Dropout parameters    

yk−1 (φ1 ) 

η 

- 

- 

-0.8908 (0.4009)∗ 

- 

-0.9846 (0.3981)∗ 

- SEX (φ3 ) - - 0.5568 (166.24) 

AGE (φ4 ) - - -0.00254 (17.96) 

TRT (φ5 ) - - -0.0076 (-) 

log Lik. value -541.35 -529.15 -534.8 
-2 log Lik. 1082.7 1058.3 1069.6 

AIC 1092.7 1066.3 1085.6 

 

Incomplete Models: The parameter 𝛾0  measuring the within cluster dependence is 

statistically significant for DAR I, and DAR II. This means that the clusters are correlated. This 
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was expected since the observation is repeated in each experiment with only one subject in each 

cluster. Also, there was no age effect to the positive self-assessment of the subject as the age (𝛽2) 

of the subjects was not statistically significant. Further, there were gender and treatment effects 

as the gender (𝛽1 ) and treatment (𝛽3 ) parameters in the response model were statistically 

significant for DAR II models and I. The result suggests that treatment with auranofin has the 

tendency to increase the odds of a positive self-assessment by 𝑒0.4840 ≈ 1.62  and 𝑒0.8341 ≈
2.30 for DAR I and DAR II models respectively. 

The dropout parameter 𝜙1  measuring the response status at the previous time point was 

statistically significant for model DAR I when the covariates of the dropout model and the 

response model was the same meaning that we cannot rule out a DAR dropout mechanism. A 

similar result was obtained when the parameters of the covariates in the dropout and response 

model were different in DAR II. However, the covariate parameters 𝜙3, 𝜙4, and 𝜙5 for sex, age 

and treatment were not statistically significant. This means that the dropout is depended on the 

outcome of the previous visit (past history) rather than the treatment, gender or age of the subject.  

Negative estimates of the dropout parameter 𝜙1 imply that the dropout time is more likely 

for those subjects who did not show any positive improvement in their self-assessment at the 

previous visit. The result suggests that holding other covariates constant, patients who did not 

show any positive improvement in their self-assessment at the previous visit are likely to have 

𝑒−0.8909 ≈ 0.41 and 𝑒−0.9846 ≈ 0.37  times odds of continuing the study than their counterparts 

who experienced a positive self assessment of arthritis for DAR II and I respectively.  The DAR 

I model was the best fitted according to Akaike's AIC, and the Likelihood Ratio Test. So we can 

conclude, for this example that the dropout process is random. 

Finally, since the purpose of this study was to determine the effects of treatment and the 

impact of the dropout process to positive self-assessment, adjusted for age and gender, a complete 

case analysis that cannot capture the dropout process cannot be relied upon to produce an 

unbiased estimate even though the result in the disposition parameters across the three models 

are similar. For example, the complete case analysis showed there is no dependence or correlation 

within the clusters, whereas, there is correlation within the clusters as captured by the incomplete 

DAR models.  

It is not uncommon for the dropout process to only depend on the observed history. If this is 

the case, then incomplete DAR I model should be adopted. However, it is possible that the reason 

for the dropout is related to the observed history of the patient and other covariates. To analyze 

data that falls within this framework, the incomplete DAR II model should be used. 

 

4. Concluding Remarks 

In discussing an example to illustrate the applications of the disposition model to longitudinal 

binary response when the data is incomplete, we have provided two different models that can be 

fitted when the dropout mechanism is assumed to be at random. We considered the case when 

the regression parameters in the response model and dropout model are the same and when they 
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are different. The choice of a model, for any given datasets, should be guided by the purpose of 

the analysis and assumption of the dropout process. 
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Appendix: Estimation and Inference 

 In this section we determine the maximum likelihood estimates MLE of the parameters of 

Eqn. (6). Since we are dealing with binary outcomes, we will adopt the logit transformation and 

model the parameters (𝛼, 𝛿) in terms of certain covariate as: 

𝛼𝑖(𝚲, 𝚪) =
1 + 𝑒−{𝑀(𝒁𝒊)+𝐷(𝒁𝒊)}

1 + 𝑒−𝑀(𝒁𝒊)
 

𝛿𝑖𝑘(𝚲, 𝚪, 𝛃) =
1

1 + 𝑒−{𝑀(𝒁𝒊)+𝐷(𝒁𝒊)+𝑊(𝑿𝑖𝑘)}
 

where 𝑀(𝒁𝒊) denotes the mean effects, 𝐷(𝒁𝒊)  represents the within group dependence and 

𝑊(𝑿𝑖𝑘) is a function that describes the individual covariates effect, which are parameterized as  

𝑀(𝒁𝒊) = 𝜆0 + 𝜆1𝑍𝑖1 + ⋯ + 𝜆𝑞𝑍𝑖𝑞 

𝐷(𝒁𝒊) = 𝛾0 + 𝛾1𝑍𝑖1 + ⋯ + 𝛾𝑞𝑍𝑖𝑞  

𝑊(𝑿𝑖𝑘) = 𝛽1𝑋𝑖𝑘1 + ⋯ + 𝛽𝑝𝑋𝑖𝑘𝑝. 

The set of parameters to be determined in the model is therefore. 

𝚽 = (𝚲, 𝚪, 𝛃) = {𝛾0, … , 𝛾𝑞 , 𝜆0, … , 𝜆𝑞 , 𝛽1, … , 𝛽𝑝} 

For the ignorable model with reduced log-likelihood function given by Eqn. (6), the score 

function of the log-likelihood function is. 

𝜕ℓ(𝚯)

𝜕𝚯
=

𝜕ℓ1(𝚽)

𝜕𝚯
+

𝜕ℓ2(𝝓)

𝜕𝚯
 

where 𝚯 = (𝚽, 𝝓)𝑻 is the vector parameter of the model. 

Sinceℓ2(𝝓) does not depend on 𝚽, 
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𝜕ℓ(𝚯)

𝜕𝚽
=

𝜕ℓ1(𝚽)

𝜕𝚽
 

Let. 

𝜏𝑖𝑘 = 𝑀(𝒁𝒊) + 𝐷(𝒁𝒊) + 𝑊(𝑿𝑖𝑘) 

Then 

𝜏𝑖𝑘
(1)

=
𝜕𝜏𝑖𝑘

𝜕𝚽
= [

𝒁𝒊

𝒁𝒊

𝑿𝑖𝑘

] 

and further define the following formulas for the 𝑖𝑡ℎ unit 

𝜏𝑖𝑘
(2)

=
𝜕𝜏𝑖𝑘

(1)

𝜕𝚽
 

𝐿0𝑖(𝚽|𝒚𝒊) = ∏ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)(1−𝑦𝑖𝑘)

𝑑𝑖−1

𝑘=1

 

ℓ0𝑖(𝚽|𝒚𝒊) = log 𝐿0𝑖(𝚽|𝒚𝒊) = ∑ {𝑦𝑖𝑘

𝑑𝑖−1

𝑘=1

log 𝛿𝑖𝑘 + (1 − 𝑦𝑖𝑘) log(1 − 𝛿𝑖𝑘)} 

𝑺𝟎𝒊(𝚽|𝒚𝒊) =
𝜕

𝜕𝚽
log 𝐿0𝑖(𝚽|𝒚𝒊) = ∑ (𝑦𝑖𝑘 −

𝑑𝑖−1

𝑘=1

𝛿𝑖𝑘)𝜏𝑖𝑘
(1)

 

𝑯0𝑖(𝚽|𝒚𝒊) = − ∑ {𝛿𝑖𝑘(1 −

𝑑𝑖−1

𝑘=1

𝛿𝑖𝑘)𝜏𝑖𝑘
(1)

𝜏𝑖𝑘
(1)𝑇

} 

𝐼0𝑖(𝚽|𝒚𝒊) = −𝐸{𝑯0𝑖(𝚽|𝒚𝒊)} = ∑ {𝛿𝑖𝑘(1 −

𝑑𝑖−1

𝑘=1

𝛿𝑖𝑘)𝜏𝑖𝑘
(1)

𝜏𝑖𝑘
(1)𝑇} 

Then 

𝐿𝑖(𝚽|𝒚𝒊) = (1 − 𝛼𝑖) ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘) + 𝛼𝑖𝐿0𝑖(𝚽|𝒚𝒊) 
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the log-likelihood term is given by 

ℓ1(𝚽|𝒚𝒊) = log 𝐿𝑖(𝚽|𝒚𝒊) = log {(1 − 𝛼𝑖) ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘) + 𝛼𝑖𝐿0𝑖(𝚽|𝒚𝒊)} 

The Score Vector with respect to Φ is obtained from 

 𝑺(𝜱|𝒚𝒊) =
𝜕

𝜕𝜱
ℓ1(𝜱|𝒚𝒊) = 𝐴𝑖(𝜱)𝛼𝑖

∗𝐵𝑖(𝜱) + 𝑺𝟎𝒊(𝜱|𝒚𝒊)                      (A1) 

where  

𝐴𝑖 =
𝛼𝑖[𝐿0𝑖(𝚽|𝒚𝒊) − ∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)]

𝐿𝑖
 

𝐵𝑖 =
𝛼𝑖𝐿0𝑖(𝚽|𝒚𝒊)

𝐿𝑖
 

𝛼𝑖
∗ =

𝜕

𝜕𝚽
log 𝛼𝑖 

Thus, the Score vector with respect to the parameters Φ is given by 

𝑺(𝜷) =
𝜕

𝜕𝜷
ℓ1(𝚽|𝒚𝒊) = 𝐴𝑖𝛼𝑖

∗(𝜷) + 𝐵𝑖𝑺𝟎𝒊(𝜷) 

𝑺(𝚪) =
𝜕

𝜕𝚪
ℓ1(𝚽|𝒚𝒊) = 𝐴𝑖𝛼𝑖

∗(𝚪) + 𝐵𝑖𝑺𝟎𝒊(𝚪) 

𝑺(𝚲) =
𝜕

𝜕𝚲
ℓ1(𝚽|𝒚𝒊) = 𝐴𝑖𝛼𝑖

∗(𝚲) + 𝐵𝑖𝑺𝟎𝒊(𝚲) 

The Hessian terms are obtained by taking the second partial derivatives of Eqn. (A1) 

which are written in compact form as 

𝑯(𝚽) = ∑ {
∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐴𝑖𝛼𝑖

∗𝛼𝑖
∗𝑇

𝐿𝑖
+

∏ (1 −
𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐵𝑖

𝐿𝑖
[𝛼𝑖

∗𝑺0𝑖
𝑇 (𝚽) + 𝑺0𝑖(𝚽)𝛼𝑖

∗𝑇]

𝑵

𝒊=𝟏

+
∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐴𝑖𝛼𝑖

∗𝛼𝑖
∗𝑇

𝐿𝑖
𝐵𝑖𝑺0𝑖(𝚽)𝑺0𝑖

𝑇 (𝚽) + 𝐵𝑖𝑯0𝑖(𝚽) + 𝐴𝑖

𝜕

𝜕𝚽
𝛼𝑖

∗} 

So the Hessian terms are: 
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𝑯𝜷𝜷 = ∑ {
∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐴𝑖𝛼𝑖

∗𝛼𝑖
∗𝑇

𝐿𝑖
𝐵𝑖𝑺0𝑖(𝜷)𝑺0𝑖

𝑇 (𝜷) + 𝐵𝑖𝑯0𝑖(𝜷)}

𝑵

𝒊=𝟏

 

 

𝑯𝚪𝚪 =  ∑ {
∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐴𝑖𝛼𝑖

∗(𝚪)𝛼𝑖
∗𝑇(𝚪)

𝐿𝑖
+

∏ (1 −
𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐵𝑖

𝐿𝑖

[𝛼𝑖
∗(𝚪)𝑺0𝑖

𝑇 (𝚪) + 𝑺0𝑖(𝚪)𝛼𝑖
∗𝑇(𝚪)]

𝑵

𝒊=𝟏

+
∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)𝐴𝑖𝛼𝑖

∗𝛼𝑖
∗𝑇

𝐿𝑖
𝐵𝑖𝑆0𝑖(𝚪)𝑺0𝑖

𝑇 (𝚪) + 𝐵𝑖𝑯0𝑖(𝚪) + 𝐴𝑖

𝜕

𝜕𝚪
𝛼𝑖

∗(𝚪)} 

 

𝑯𝜷𝚪 = ∑ {
𝟏

𝐿𝑖
{𝐿0𝑖𝛼𝑖

∗𝑇(𝚪)𝑺0𝑖
𝑇 (𝜷) + 𝛼𝑖(𝛀)𝑺0𝑖

𝑇 (𝚪)𝑺0𝑖(𝜷) + 𝛼𝑖(𝛀)𝐿0𝑖(𝚽) ∑ {𝛿𝑖𝑘(1 −

𝑑𝑖−1

𝑘=1

𝛿𝑖𝑘)𝑿𝑖𝑘𝒁𝑖
𝑇}}

𝑵

𝒊=𝟏

 

−
𝛼𝑖(𝛀)𝐿0𝑖(𝚽)𝑺0𝑖(𝜷)

𝑳𝒊
𝟐 {𝛼𝑖(𝛀)[𝐿0𝑖(𝚽) − ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘)]𝛼𝑖
∗(𝚪)+𝛼𝑖(𝛀)𝐿0𝑖(𝚽)𝑺0𝑖

𝑇 (𝚪)} 

 

𝑯𝜷𝚲 = ∑ {
𝟏

𝐿𝑖
{𝐿0𝑖𝛼𝑖

∗𝑇(𝚲)𝑺0𝑖
𝑇 (𝜷) + 𝛼𝑖(𝛀)𝑺0𝑖

𝑇 (𝚲)𝑺0𝑖(𝜷) + 𝛼𝑖(𝛀)𝐿0𝑖(𝚽) ∑ {𝛿𝑖𝑘(1 −

𝑑𝑖−1

𝑘=1

𝛿𝑖𝑘)𝑿𝑖𝑘𝒁𝑖
𝑇}}

𝑵

𝒊=𝟏

−
𝛼𝑖(𝛀)𝐿0𝑖(𝚽)𝑺0𝑖(𝜷)

𝑳𝒊
𝟐 {𝛼𝑖(𝛀)[𝐿0𝑖(𝚽) − ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘)]𝛼𝑖
∗(𝚲)+𝛼𝑖(𝛀)𝐿0𝑖(𝚽)𝑺0𝑖

𝑇 (𝚲)} 

𝑯𝚲𝚲 = ∑ {
∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)

𝐿𝑖
𝐴𝑖𝛼𝑖

∗(𝚲)𝛼𝑖
∗𝑇(𝚲) +

∏ (1 −
𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)

𝐿𝑖
𝐵𝑖[𝛼𝑖

∗(𝚲)𝑺0𝑖
𝑇 (𝚲) + 𝑺0𝑖(𝚲)𝛼𝑖

∗𝑇(𝚲)]

𝑵

𝒊=𝟏

+
(1 − 𝛼𝑖) ∏ (1 −

𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)

𝐿𝑖
𝐵𝑖𝑺0𝑖(𝚲)𝑆0𝑖

𝑇 (𝚲) + 𝐵𝑖𝑯0𝑖(𝚲) + 𝐴𝑖

𝜕

𝜕𝚲
𝛼𝑖

∗(𝚲)}. 
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Finally 

𝑯𝚪𝚲 = 𝑯𝚲𝚪
𝑻  is the term  

𝑯𝚪𝚲 = ∑
1

𝐿𝑖
{𝛿0𝑖(1 − 𝛿0𝑖)𝛼𝑖[𝐿0𝑖 − ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘)]}𝒁𝒊𝒁𝑖
𝑇 + [𝐿0𝑖 − ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘)]𝛼𝑖
∗(𝚪)𝛼𝑖

∗𝑇(𝚲)

𝑁

𝑖=1

+ 𝛼𝑖𝛼𝑖
∗(𝚪)𝑺0𝑖(𝚲) + 𝐿0𝑖𝛼𝑖

∗𝑇(𝚲)𝑺0𝑖(𝚪) + 𝛼𝑖 𝑺0𝑖
𝑇 (𝚲)𝑺0𝑖(𝚪)

+ 𝛼𝑖𝐿0𝑖(− ∑ 𝛿𝑖𝑘(1 − 𝛿𝑖𝑘)

𝑑𝑖−1

𝑘=1

𝒁𝒊𝒁𝑖
𝑇)}

−
𝛼𝑖𝛼𝑖

∗(𝚪)[𝐿0𝑖 − ∏ (1 −
𝑑𝑖−1
𝑘=1 𝑦𝑖𝑘)] + 𝛼𝑖𝐿0𝑖𝑺0𝑖(𝚪)

𝐿𝑖
2 {𝛼𝑖[𝐿0𝑖 − ∏(1 −

𝑑𝑖−1

𝑘=1

𝑦𝑖𝑘)]𝛼𝑖
∗𝑇(𝚲)

+ 𝛼𝑖𝐿0𝑖𝑺0𝑖(𝚲)} 

In addition, 

𝑯𝝓𝚪 = 𝑯𝚪𝝓
𝑻 = 𝟎 

𝑯𝝓𝚲 = 𝑯𝚲𝝓
𝑻 = 𝟎 

 

Since ℓ1(𝚽) does not depend on 𝝓, 

𝜕ℓ(𝚯)

𝜕𝝓
=

𝜕ℓ2(𝝓)

𝜕𝝓
 

 

The score vector 𝑺(𝝓|𝒚𝒊) is given by 

𝑺(𝝓|𝒚𝒊) =
𝜕ℓ2(𝝓)

𝜕𝝓
= − ∑ ∑ (𝑦𝑖𝑘 , (𝑿𝑖𝑘)𝑇)𝑝𝑘

𝑑𝑖−1

𝑘=1

𝑁

𝑖=1

 

 

where 

(𝑿𝑖𝑘)𝑇 = (𝑋𝑖𝑘1, … , 𝑋𝑖𝑘𝑝) 

 

and 

  𝑝𝑘 = 𝑝𝑘(𝑯𝑘; 𝝓) 

 

The score equation is obtained by solving the equation 

𝑺(𝝓) = 0 
 

The Hessian term is 
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𝑯𝝓𝝓 = − ∑ ∑ (𝑦𝑖𝑘 , (𝑿𝑖𝑘)𝑇)𝑇𝑼𝑘(𝑦𝑖𝑘 , (𝑿𝑖𝑘)𝑇)

𝑑𝑖−1

𝑘=1

𝑁

𝑖=1

 

 

where 

𝑼𝑘 = 𝑑𝑖𝑎𝑔(𝑝𝑘(1 − 𝑝𝑘)). 

 

  



 
                         Francis Erebholo , Victor Apprey, Paul Bezandry , John Kwagyan.                              379 

 

 

References 

[1]  Albert, P.S., and Follman, D.A. (2003). A random Effects Transition Model for 

Longitudinal Binary Data with Informative Missingness. Statistica Neverlandica, 57,100-

111. 

 

[2]  Bombardier, C., Ware, J.H., and Russell, I.J. (1986). Auranofin Therapy and Quality of Life 

in Patients with Rheumatoid Arthritis. Am. J. Med. 81, 565-578. 

 

[3]  Bonney, G.E. (1984). On the Statistical Determination of Major Gene Mechanism in 

Continuous Human Traits: Regressive Models. American Journal of Medical Genetics, 18, 

731-749. 

 

[4]  Bonney, G.E. (986). Regressive Logistics Models for Familial Diseases and other Binary 

Traits. Biometics, 42, 611-625. 

 

[5]  Bonney, G.E. (1987). Logistic Regression for Dependent Binary Observations. Biometrics, 

43, 951-973. 

 

[6]  Bonney, G.E. (1998). Regression Analysis of Disposition to Correlated Outcomes. Dept. of 

Biostatistics Technical Report No. 1998-001. Fox Chase Cancer Center, Philadelphia, PA. 

USA. 

 

[7]  Bonney, G.E. (2003). Disposition to a Correlated Binary Outcomes and its Regression 

Analysis. Journal of Statistics, Biometry and Genetics. 1, 1-30. 

 

[8]  Diggle, P.J., Liang, K.Y.,  and Zeger, S.L. (1994). Analysis of Longitudinal Data. Clarendon 

Press, Oxford, Great Britain. 

 

[9]  Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.l. (2002). Analysis of Longitudinal Data. 

2 ed. Clarendon Press, Oxford, Great Britain. 

 

[10]  Diggle, P.J. and Kenward, M.G. (1994). Informative Dropout in Longitudinal Data Analysis 

(with discussion). Journal of Royal Statistical Society B, 43, 49-93. 

 

[11]  Diggle, P.J. (2005). Dealing with Missing Values in Longitudinal Studies. Statistical 

Analysis of Medical Data, 203-228. 

 

[12]  Diggle, P.J. (1998). Diggle-Kenward Model for Dropouts. In Encyclopedia of Biostatistics. 

2 ed. Armitage, P. and Colton, T., 1160-1, New York:Wiley. 

 



 

380 A Correlated Binary Model for Ignorable Missing Data:Application toRheumatoid Arthritis Clinical Data 

 

[13]  Erebholo, F.O. (2015). Application of the Disposition Model to the Analysis of Longitudinal 

Binary Outcome in the Presence of Incomplete Data. Ph.D dissertation submitted to the 

College of Art and Sciences Graduate School, Howard University, Washington DC. USA. 

 

[14]  Fitzmaurice, G.M. and Laird, N.M. (1993). A likelihood-based Method for Analyzing        

Longitudinal Binary Responses.  Biometrika, 80, 141-151. 

 

[15]  Fitzmaurice, G.M., Laird, N.M., and Lipsitz, S.R. (1994). Analyzing Incomplete Binary 

Responses: A Likelihood-based Approach. Biometrics, 50, 601-612 

 

[16]  Fitzmaurice, G.M. and Lipsitz, S.R. (1995). A Model for Binary Time Series data with Serial 

Odds Ratio Patterns. Journal of the Royal Statistical Spciety, series C. 44 (1), 51-61. 

 

[17]  Fitzmaurice, G.M., Molenberghs, G., and Lipsitz, S.R. (1995). Regression Models for 

Longitudinal Binary responses with Informative Drop-outs. Journal of Royal Statistical 

Society. Series B, 57, 691-704. 

 

[18]  Fitzmaurice, G.M., Heath, A.F. and Clifford, P. (1996). Logistic Regression Models for 

Binary Panel with Attrition. Journal of Royal Statistical Society. A, 159, 249-263. 

 

[19]  Kurland, B.F. and Heagerty, P.J. (2004). Marginalized Transition Models for Longitudinal 

Binary Data with Ignorable and Non-ignorable Dropout. Statistics in Medicine, 23, 2673-

2695. 

 

[20]  Kwagyan, J. (2001). Further Investigations of the Disposition Model for Correlated Binary 

Outcomes. Ph.D dissertation, The Temple University Graduate School, USA 

 

[21]  Kwagyan, J. Apprey, V., and Bonney, G.E. (2003) Maximum Likelihood Inference in the 

Models of Disposition for Correlated Binary Outcomes, J. Statistics, Biometry and Genetics, 

1, 31-48. 

 

[22]  Kwagyan, J. Apprey, V., and Bonney, G.E. (2003) Gram-Schmidt Parameter 

Orthogonalization on Maximum Likelihood. J. Statistics, Biometry and Genetics, 1, 49-62.. 

 

[23]  Kwagyan, J. Apprey, V., and Bonney, G.E. (2003) Fitting the Disposition Model via EM 

Algorithm. J. Statistics, Biometry and Genetics, 1, 63-79. 

 

[24]  Laird, N.M. and Ware, J.H. (1982). Random-effects Models for Longitudinal Data. 

Biometrics, 38, 963-974. 

 

[25]  Liang, K.Y. and Zeger, S.L (1986). Longitudinal Data Analysis using Generalized Linear 

Models. Biometrika, 73, 13-22. 

 



 
                         Francis Erebholo , Victor Apprey, Paul Bezandry , John Kwagyan.                              381 

 

[26]  Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing Data. John Wiley 

abd Sons, New York, USA. 

 

[27]  Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. 2 ed. John 

Wiley abd Sons, New York, USA. 

 

[28]  Little, R.J.A. (1995). Modeling the Dropout Mechanism in Repeated Measure Studies. J. of 

the American Statistical Association, 90, 1112-1121. 

 

[29]  Molenberghs, G., Fitzmaurice, G., Kenward, M.G., Tsiatis, A., and Verbeke, G. (2015). 

Handbook of Missing Data Methodology. Chapman and Hall/CRC. New York. 

 

[30]  Molenberghs, G., and Kenward, M.G. (2005). Missing Data in Clinical Studies. John Wiley 

and Sons, Chichester, England. 

 

[31]  Molenberghs, G., and Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer, 

New York, USA. 

 

[32]  Newey, W.K. (1993). Efficient Estimation of Models with Conditional Moment Restrictions. 

Handbook of Statistics, 11, 419-454. 

 

[33]  Rubin, R.D. (1976). Inference and Missing Data. Biometrika, 63, 581-592. 

 

[34]  Yi, G.Y. and Thompson, M.E. (2005) Marginal and Association Regression Models for 

Longitudinal Binary Data with Drop-outs: A Likelihood-based Approach. The Canadian 

Journal of Statistics, 33, 3-20. 

 

[35]  Zeger, C.L., and Liang, K.Y. (1986). Longitudinal Data Analysis for Discrete and 

Continuous Outcomes. Biometrics, 42, 121-130. 

 
Received March 15, 2015; accepted November 19, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

382 A Correlated Binary Model for Ignorable Missing Data:Application toRheumatoid Arthritis Clinical Data 

 

Francis Erebholo 

Department of Mathematics 

Hampton University, 

Hampton, VA, USA 

francis.erebholo@hamptonu.edu 

 

Victor Apprey 

National Human Genome Center 

Howard University 

Washington DC, USA  

vapprey@howard.edu 

 

Paul Bezandry 

Department of Mathematics  

Howard University,  

Washington DC, USA 

 pbezandry@howard.edu 

 

John Kwagyan 

Department of Community and Family Medicine 

College of Medicine 

Howard University Hospital  

Washington DC, USA  

jkwagyan@howard.edu 

 

 


