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Abstract: In this study, first exit time of a compound Poisson process with positive 

jumps and an upper horizontal boundary is considered. An explicit formula is 

derived for the mean first exit time associated with the compound Poisson process. 

Finally, an application on traffic accidents is given to illustrate the usage of the 

mean first exit time. 
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1. Introduction  

Let  0t,N t   be a homogeneous Poisson process and let iY , ..., 3, ,2 ,1i   be i.i.d. 

random variables, independent of the process  0t,N t  . A stochastic process  0t,X t   is said to 

be a compound Poisson process if it is represented as 
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i )Y(V  , ..., ,3 ,2 ,1i   the expected value and variance of 
tX  are  t)X(E t
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)(t)X(V 22  , respectively. In particular, if iY , ..., ,3 ,2 ,1i   are Poisson distributed in (1), 

 0t,X t   is called as a Neyman type A process and if iY , ..., ,3 ,2 ,1i  are distributed according 

to the binomial distribution,  0t,X t   is called as a Neyman type B process. Similarly, if iY , 

..., ,3 ,2 ,1i   are geometric distributed,  0t,X t   is called as a Polya-Aeppli process [1].  

 

The statistical significance of the compound Poisson process arises from its applicability in 

real life situations, where the researcher often observes only the total amount tX , which is 

composed of an unknown random number tN  of random contributions iY , ... 3, ,2 ,1i   The 

probability function for tX  is obtained by Ozel and Inal [2] where iY , ... 3, ,2 ,1i   are discrete 

random variables.  

 

Concerning applications, the first exit time can be defined as the length of the busy period for a 

M/G/1 queue in queuing theory [3]. In risk analysis, the distribution function of the first exit time is 
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that of the first time at which the accumulated total claims from an insurance company exceeds its 

capital. Besides these, the first exit time is defined as the first time until either outdating or total 

depletion of stock for perishable items in inventory theory [4].  

Laplace transforms of the distribution function of the first exit time with two parallel 

boundaries were derived by Dvoretzky et al. [5] for a Poisson process. Explicit formulas for the 

distribution function of the first exit time for the Poisson process were obtained by Delucia and 

Poor [6] and Rolski et al. [7]. The Laplace Stieltjes transforms of the distribution function of the 

first exit time with positive jumps were given by Bar-Lev et al. [8] for the compound Poisson 

process where iY , ..., ,2 ,1i   were continuous random variables. The explicit distribution 

function of the first exit time for the compound Poisson process was obtained by Ozel and Inal 

[9] where iY , ..., ,2 ,1i   are discrete random variables. 

 

In this study it is assumed that  0t,N t   is a Poisson process with parameter 0  and 

iY , ..., ,2 ,1i   are discrete random variables representing the positive integer-valued jump sizes. 

The mean first exit time is obtained for the compound Poisson process with an upper horizontal 

boundary and positive integer-valued jump sizes. The paper is organized as follows. We start by 

introducing in Section 2 the probability function of  tX  and the distribution function of the first 

exit time for the compound Poisson process. In Section 3, we derive the mean first exit time for 

compound Poisson process with an upper horizontal boundary and positive integer-valued jump 

sizes. Finally, an application to the traffic accidents is presented in Section 4. The conclusion is 

given in Section 5.  

 

 

2. Some Preliminary Results On The Compound Poisson Process 

Let iY , ..., ,2 ,1i   be discrete random variables and let  0t,N t   be a homogeneous 

Poisson process. The probability function of tX  is given by 
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(0)

Yp (k) P(k 0)   and )k(p
)n(

Y
 is the n-fold convolution of 

ji p)jY(P  , 

... ,2 ,1j   However, it is not easy to yield the explicit probabilities of tX  from (2) since it needs 

infinite sum [7]. Therefore, a recursive algorithm was derived by Panjer [10] for tX  satisfying 

the relation  
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Then the following recursion holds for )k(p
tX
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where )y(pY  is the common probability function of iY , ... ,2 ,1i   The recursion in (3) 

starts with the calculated value of 
))0(p1(t

t
Ye)0X(P


 . As an example, in risk analysis for 

large insurance portfolios, this probability is very small, sometimes smaller than the smallest 

number that can be represented on the computer. When this occurs, this initial value is 

represented on the computer as zero and the recursion in (3) fails.  

 

The explicit probability function of  tX  was derived by Ozel and Inal [2] as follows where 

 0t,N t   be a homogeneous Poisson process with parameter 0  and 
jj p , 

j 1,2,..., . If iY , ..., ,2 ,1i   are discrete random variables with the probabilities 

  ji pjYP  , 2 ,1 ,0j  , the explicit formula for the probability function of tX  is given by  
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The probabilities in (5) can be used if 3,..., 1,2,i  ,Yi   have infinite values ,...3 ,2 ,1j   

and the probability )jY(P i  , 
jj p  approaches zero for j .  The probabilities             

)kX(P t  , ,...,2 ,1 ,0k   are obtained from (5) and presented in Figures 1-3. Note that 

 0t,X t   is also called as a Neyman type A process in Figure 1 and  0t,N t   is a Poisson 

process with different values of   and 5t  .  

 
Figure 1: )kX(P t  , ,...,2 ,1 ,0k   with 15t)X(E t   where 3,..., 1,2,i  ,Yi   are 

Poisson distributed. From the top the bottom   taking values 1.0, 0.9, 0.8, …, 0.1, respectively.  

 

)kX(P t  , ,...,2 ,1 ,0k   are shown in Figure 2 where 3,..., 2, 1,i  ,Yi   are binomial 

distributed with parameters ( p ,m ) chosen such as 15tmp)X(E   and 20m  . Note that 

 0t,X t   is also called as a Neyman type B process. 
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Figure 2: )kX(P t  , ,...,2 ,1 ,0k   with 15tmp)X(E t   and 20m  where 3,..., 2, 1,i  ,Yi   are 

binomial distributed. From the top the bottom p  taking values 0.05, 0.06, 0.07, 0.08, , 0.5, respectively.  

 

Finally, )kX(P t  , ,...,2 ,1 ,0k   are presented in Figure 3 where 3,..., 2, 1,i  ,Yi   are 

geometric distributed with parameter   chosen such as 15/)X(E t  . Note that 

 0t,X t   is also called as a Polya-Aeppli process. 

 

 
Figure 3: )kX(P t  , ,...,2 ,1 ,0k   with 15/t)X(E t   3,..., 2, 1,i  ,Yi   are geometric distributed. 

From the top the bottom   taking values 1.0, 0.9, 0.8, …, 0.1, respectively.  
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Now consider an upper horizontal boundary   and the first exit time   is defined as 

 

}X:tinf{ t                                                        (5) 

 

where  t0  and 0 .   can be described as the first instant at which a sample path 

crosses (jumps over) the boundary  .  

 

Applications related with the distribution function of the first exit time are varied in 

probability and statistics, including financial mathematics, reliability, queues, inventory theory 

and sequential analysis; see, for instance, Gallot [11], Ignatov and Kaishev [12]. In all of these 

studies iY , ..., ,3 ,2 ,1i   were defined as continuous random variables. The distribution 

function of the first exit time was considered by Ozel and Inal [9] for the compound Poisson 

process with an upper boundary where iY , ..., ,2 ,1i   are discrete random variables. Since 

 tX , t 0  is an increasing process, we have )1(F)tT(P
tX  . Then the distribution 

function of   is given by 

 

 F (t) P( t)    t1 P(X 1)     

                                                
tX1 F ( 1)   .                                                                    (6)

            

                                                                          

The distribution function of   is obtained as given below if the cumulative probabilities in 

(7) substituted into (6)  

 
0

t

t (1 p )

XF (0) e
 

 , 

t t t

1
X X X

( t)
F (1) F (0) F (0)

1!


  , 

t t

3

31 1 2
X X

( t)( t) ( t)( t)
F (3) F (2)

3! 1!1! 1!

   
    

 
,                                                                 (7)                

t t

4 2 2

1 31 1 2 2 4
X X

( t)( t)( t) ( t) ( t) ( t) ( t)
F (4) F (3)

4! 2!1! 1!1! 2! 1!

       
      


 

t t

25 3 2

1 31 1 2 1 2 1 4
X X

2 3 5

( t) ( t)( t) ( t) ( t) ( t)( t) ( t)( t)
F (5) F (4)

5! 3!1! 2!1! 1!2! 1!1!

( t)( t) ( t)
          

1!1! 1!

        
     



   
  



                       

              

 



 
                                                                         G. Ozel                                                                       353 

 

Some numerical examples of )t(F  are presented in Figures 4-6 using the algorithm of 

)t(F . In these figures the upper horizontal boundary is taken as 10  and }0t,N{ t   is a 

Poisson process with parameter   taking several values. The distribution function of   is given 

in Figure 4 where iY , ..., ,2 ,1i   have Poisson distribution with 5.1  and )t(F  is shown 

where iY , ..., ,2 ,1i   have binomial distribution with parameters ( 2.0p  , 5m  ) in Figure 5. 

Finally, the distribution functions of   are presented in Figure 6 where iY , ..., ,2 ,1i   have 

geometric distribution with parameter 6.0 . 

 

 
 

Figure 4:The distribution function of   with 10  for several values of t where iY , ..., ,2 ,1i   have 

Poisson distribution with parameter 5.1 .  
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Figure 5: The distribution functions of   with 10  for several values of t where iY , ..., ,2 ,1i   

have binomial distribution with parameters ( 2.0p  , 5m  ).  

 

 
 

Figure 6: The distribution functions of   with 10  for several values of t where iY , ..., ,2 ,1i   

have geometric distribution with parameter 6.0 .  
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3. Mean First Exit Time 

 

 In this section, mean the first exit time E( )  is obtained for the compound Poisson 

process where 3,..., 1,2,i  ,Yi   are discrete random variables.  

 

Let E( )  be the mean first time at which a given compound Poisson process hits a given 

subset of the state space. Let   be the upper horizontal boundary for (6), we obtain from (6)  

 
1

t

k 0

P(T t) P(X k)




                                                       (8) 

 

and taking the expectation we obtain  

 

0

E( ) P(T t) dt



                                                         (9) 

 

where  t0 . P(T t)  is obtained for 1   from (8) as 
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                                                  (10) 

 

Taking expectation of (10), the mean first exit time for 1   is obtained by 
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where 
jj p , j 1,2,...  

 

According to the mean first exit time E( ) ,  the right-hand side terms depend on how   

can be partitioned into different forms with using integers 1,  2,  ...  To obtain E( ) , a new 

algorithm is prepared in R. A summary outline of the basic steps and operations for the algorithm 

is given as 

 

Step 1 Determine the value of parameter   and initial parameters of the algorithm (t,  , and 

  ji pjYP  , 2 ,1 ,0j  ,...). 

Step 2 Multiply each terms of E( )  for   with 
 

1

0

( t)

t(1 p )



 
 for each expected value E( )  

for 1  and keep the numerical values of this step. 

Step 3 Form the new 
j , j 2,3,...  terms beginning from E( )  for 2  to E( )  for 

 / 2   and keep the numerical values of this step. 

Step 4 Multiply 
j , j 2,3,...  terms of Step 3 with 

 
1

0

( t)

t(1 p )



 
 and keep the numerical 

values of this step. 

Step 5 Add the numerical values of Steps 1,  2 and 3 and add 
 0

1

t(1 p ) 
. Then obtain the 

final E( )  for 2,3,...  

 

4. Numerical Example 

Meintanis [13] obtained a new goodness of fit test for certain bivariate distributions based on 

accident data and fatalities in The Netherlands. The data were obtained from the database of 

BRON of the Ministry of Transport, The Netherlands. In particular, total accidents and fatalities 

recorded on Sundays of each month over the period 1997-2004 in the region of Groningen are 

given in Table 1.  
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Table 1: Total Sunday accidents (left entry) and the corresponding number of fatalities (right entry) 

recorded in the region Groningen for each month during the years 1997-2004. 

 

Month 1997 1998 1999 2000 2001 2002 2003 2004 

January 6 0 6 0 13 1 11 0 8 0 8 0 11 4 2 0 

February 10 0 10 1 7 0 4 0 8 1 8 0 9 0 2 0 

March 7 0 13 4 8 0 10 0 6 0 12 0 9 0 3 0 

April 11 0 5 0 14 1 15 1 9 0 10 1 7 1 1 1 

May 12 0 17 2 13 0 18 0 13 2 11 0 12 1 5 0 

June 21 1 19 0 14 0 21 1 12 3 12 1 13 0 7 2 

July 15 0 10 0 14 0 11 1 10 2 4 0 8 0 1 0 

August 11 1 11 1 10 0 8 0 9 0 14 1 6 0 5 0 

September 7 0 11 0 7 0 9 0 22 1 16 1 7 0 8 1 

October 11 2 13 1 16 1 14 0 15 1 8 1 6 1 2 0 

November 15 1 17 1 13 0 13 0 6 0 9 1 11 1 1 0 

December 5 0 7 0 10 1 10 0 10 0 8 0 5 0 2 0 

 

In this study the same data is used to show applicability of the compound Poisson process 

and the mean first exit time. For the construction of a model to explain the total number of 

fatalities from the accidents the following random variables are defined: 

 

tN : The number of accidents which occur in Groningen between years 1997-2004; 

iY : The number of fatalities of ith accident such that ,...3 ,2 ,1i  ; 

tX : The total number of fatalities in the time interval ]t,0( . 

 

We get 



tN

1i

it YX  and we say that }0t,X{ t   is a compound Poisson process if the 

following conditions are hold: 

 

Condition 1. Fit of the Homogeneous Poisson Process to Accidents: Using goodness of 

fit test ( 94.22  , p-value = 0.57), we have seen that the number of the accidents which occur 

in Groningen between years 1997-2004, defined as  0 t,N t  , fit a homogeneous Poisson 

process with 84.9  (month). The probabilities of the traffic accidents for 3 ,2 ,1t   months 

are shown in Figure 7.  
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Figure 7: The occurrence probabilities of traffic accidents within 3 ,2 ,1t   months. 

 

Condition 2. Independence Test of the Process  0t,N t    and iY , ... 3, 2, 1,i  : Now 

it must be shown the independence of iY , ... ,2 ,1i   and  0t,N t  . According to Spearman’s 

  test (Spearman’s 084.0 ; p value 0.432)  , the independence is accepted.  

 

Condition 3. Fit of the Poisson, Binomial or Geometric Distributions to Fatalities: To 

decide the best distribution between Poisson distribution, binomial distribution and geometric 

distribution for the number of fatalities, the goodness of fit tests were performed and the results 

are presented in Table 2. It is seen in Table 2 that the chi-square values are less than the critical 

table values for each distribution at the 5% level of significance. This means that the Poisson 

distribution with parameter 53.0 , binomial distribution with parameters 

(m 4,   p 0.13; p-value = 0.897)   and geometric distribution with parameter 62.0  

significantly fit the data. 

 
Table 2: Comparison of fit of Poisson and binomial distributions to observed frequency for fatalities 

Number of 

Fatalities 

Observed 

Frequency 

Expected Frequency 

Poisson Binomial Geometric 

0 59 56.51 55.00 56.04 

1 29 29.95 32.87 22.73 

2 5 7.94 7.37 8.75 

3 1 1.40 0.73 3.37 

4 2 0.19 0.03 1.30 

         Total 96 96.00 96.00 95.18 

Chi-Square  0.202 1.519 0.057 

d.f.     2    3     2 
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For our data, binomial distribution is more appropriate than geometric and Poisson 

distributions for the random variables iY , ..., 3, ,2 ,1i   since the number of fatalities are small. 

Since all conditions are hold, it can be said that }0t,X{ t   is a compound Poisson process. So, 

the probabilities )kX(P t  , ,...,2 ,1 ,0k   and the mean first exit time can be computed easily. 

The probabilities of the total number of fatalities for 3 ,2 ,1t   months are given in Figure 9.  

 

 
Figure 9: The probability of total fatality number which will occur within 3 ,2 ,1t   months 

 

The distribution functions of   are presented in Figure 10 where the random variables iY , 

..., ,2 ,1i   have binomial distribution with parameters 13.0p   and 4m  . In Figure 10, 

}0t,N{ t   is a homogeneous Poisson process with 84.9  and the upper horizontal 

boundaries are taken as 5  and 10 .  

 

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 2 4 6 8 10 12 14 16 18 20

k

P
(X

t=
k)

t=1 month t=2 months t=3 months



 

360                              On the Mean First Exit Time for a Compound Poisson Process 

 

 
Figure 10: The distribution functions of   for 5  and 10  with several values of t where 

iY , 

..., ,2 ,1i   have binomial distribution with parameters ( 13.0p  , 4m  ). 

 

Mean exit time E( )  is obtained from (11) for 1,  2,  3,  4,  5   with several values of t 

where iY , ..., ,2 ,1i   have binomial distribution with parameters ( 13.0p  , 4m  ) and 

presented in Table 3. 
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Table 3: Mean exit time E( )  for 1,  2,  3,  4,  5   with several values of t where iY , ..., ,2 ,1i  

have binomial distribution with parameters ( 13.0p  , 4m  ). 

t (month) 

  

1 2 3 4 5 

1 0,0510 0,3530 0,3580 0,7 1,5 

2 0,1019 0,1765 0,2555 5,4 25,5 

3 0,1529 0,1177 0,2553 25,9 174,9 

4 0,2039 0,0883 0,2807 81,3 701,1 

5 0,2549 0,0706 0,3163 198,1 2074,8 

6 0,3058 0,0588 0,3570 410,5 5055,8 

7 0,3568 0,0504 0,4007 760,2 10762,7 

8 0,4078 0,0441 0,4462 1296,7 20742,8 

9 0,4588 0,0392 0,4929 2076,8 37041,7 

10 0,5097 0,0353 0,5404 3165,1 62273,5 

11 0,5607 0,0321 0,5886 4633,9 99690,0 

12 0,6117 0,0294 0,6373 6562,8 153251,0 

13 0,6627 0,0272 0,6863 9039,1 227693,9 

14 0,7136 0,0252 0,7356 12157,9 328603,5 

15 0,7646 0,0235 0,7851 16021,6 462481,7 

16 0,8156 0,0221 0,8348 20740,4 636817,5 

17 0,8665 0,0208 0,8846 26432,0 860156,7 

18 0,9175 0,0196 0,9346 33221,7 1142171,6 

19 0,9685 0,0186 0,9847 41242,4 1493731,0 

20 1,0195 0,0177 1,0348 50634,7 1926969,8 

21 1,0704 0,0168 1,0851 61546,6 2455358,9 

22 1,1214 0,0160 1,1354 74133,8 3093774,9 

23 1,1724 0,0153 1,1857 88559,7 3858570,1 

24 1,2234 0,0147 1,2362 104995,1 4767642,0 

25 1,2743 0,0141 1,2866 123618,5 5840503,3 

26 1,3253 0,0136 1,3371 144616,0 7098351,7 

27 1,3763 0,0131 1,3877 168181,3 8564139,7 

28 1,4273 0,0126 1,4382 194515,5 10262644,2 

29 1,4782 0,0122 1,4888 223827,7 12220536,4 

30 1,5292 0,0118 1,5394 256334,2 14466451,9 

31 1,5802 0,0114 1,5901 292259,1 17031059,9 

32 1,6312 0,0110 1,6407 331834,1 19947133,4 

33 1,6821 0,0107 1,6914 375298,4 23249619,2 

34 1,7331 0,0104 1,7421 422898,8 26975707,0 

35 1,7841 0,0101 1,7928 474889,7 31164899,8 

36 1,8350 0,0098 1,8436 531533,3 35859083,6 

37 1,8860 0,0095 1,8943 593099,1 41102596,8 

38 1,9370 0,0093 1,9451 659864,3 46942300,6 

39 1,9880 0,0091 1,9958 732113,8 53427648,3 

40 2,0389 0,0088 2,0466 810139,9 60610755,3 
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5. CONCLUSION 

We conclude with the comment that the mean first exit time E( )  can be computed easily 

if )0Y(Pp i0  , )1Y(Pp i1  ,..., )mY(Pp im   are known for a compound Poisson 

process when the jump sizes are discrete random variables and the boundary is upper horizontal. 

Then, an application to traffic accident data is presented to illustrate the usage of the mean first 

exit time for the compound Poisson process.  
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