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Abstract: This paper introduces the beta linear failure rate geometric (BLFRG) distribution, 

which contains a number of distributions including the exponentiated linear failure rate 

geometric, linear failure rate geometric, linear failure rate, exponential geometric, Rayleigh 

geometric, Rayleigh and exponential distributions as special cases. The model further 

generalizes the linear failure rate distribution. A comprehensive investigation of the model 

properties including moments, conditional moments, deviations, Lorenz and Bonferroni curves 

and entropy are presented. Estimates of model parameters are given. Real data examples are 

presented to illustrate the usefulness and applicability of the distribution.  
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1. Introduction 

Let 𝐺(𝑥; 𝜙)  be the cumulative distribution function (cdf) of an absolutely continuous 

random variable 𝑋, where ϕ ∈ Ω is the parameter vector. A general class generated from the 

logit of a beta random variable was introduced by Eugene et al. (2002). The cdf of the Beta-G 

distribution has the form  

F(x; a, b, ϕ) =
𝐵𝐺(𝑥;𝜙)(𝑎,𝑏)

B(a,b)
= 𝐼𝐺(𝑥;𝜙)(𝑎, 𝑏),                                   (1) 

where a > 0 and b > 0 are two additional parameters whose role is to introduce skewness 

and to vary tail weight, G(x; ϕ) is an arbitrary parent/baseline cdf, By(a, b) = ∫ 𝑤𝑎−1(1 −
𝑦

0

𝑤)𝑏−1𝑑𝑤 is the incomplete beta function with B(a, b) = B1(𝑎, 𝑏) and Iy(𝑎, 𝑏) =
𝐵𝑦(𝑎,𝑏)

𝐵(𝑎,𝑏)
 is the 

incomplete beta function ratio. One major benefit of this class of distributions is its ability of 

fitting skewed data that cannot be properly fitted by existing distributions. If b 1= , we have 
axGxF )]([=)(  which is called the exponentiated G  distribution (or the Lehmann type-I 

distribution). See for example, the exponentiated Weibull (Pal et al. (2006), Mudholkar et al. 

(1995)) and exponentiated exponential (Gupta and Kundu (1999)) distributions. Indeed, if Z  is 

a beta distributed random variable with parameters a  and ,b  then the cdf of )(= 1 ZGX 
 

agrees with the cdf given in equation (1). As usual, a random variable X  with the cdf (1) is 
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said to have a beta G  (BG) distribution and will be denoted by 𝑋 ~ 𝐵𝐺(𝑎, 𝑏; 𝜙). Some 

special cases of BG  distributions are given by Bidram et al. (2013). 

The classes of distributions obtained when 1=a  and 1=b  in equation (1) are called, 

respectively, the frailty parameter and resilience parameter families with underlying 

distribution );( xG  (See Marshall and Olkin (2007)). Clearly, for positive integer values of 

)(ab , the BG cdf with 1)=1(= ba  is the cdf of a series (parallel) system with )(ab  

independent components all having the cdf );( xG . Several well-known distributions that 

belong to the resilience parameter family include the exponentiated Weibull (EW) distribution 

(see Mudholkar et al. (1995), generalized (or exponentiated) exponential distribution proposed 

by Gupta and Kundu (1999), and exponentiated type distributions introduced by Nadarajah and 

Kotz (2006). The generalized exponential-geometric (GEG) distribution of Silva et al. (2010) 

also belongs to the resilience parameter family. 

For general a  and b , we can express the cdf given in equation (1) in terms of the well-

known hypergeometric function, that is  

)),;(1;,,1(
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and (α)i =
Γ(𝛼+𝑖)

Γ(𝛼)
= α(α + 1) … (α + i − 1) denotes the ascending factorial of .  We can 

obtain the properties of )(xF  for any beta- G  distribution defined from a parent );( xG  

distribution in equation (1) which, in principle, follow from the properties of the 

hypergeometric function that are well established in the literature; see, for example, section 9.1 

of Gradshteyn and Ryzhik (2000). The probability density function (pdf) and hazard (failure) 

rate functions of a BG distribution corresponding to the cdf in equation (1) are given by  

f(x; a, b, ϕ) =
g(x;ϕ)

𝐵(𝑎,𝑏)
𝐺(𝑥; 𝜙)𝑎−1{1 − 𝐺(𝑥; 𝜙)}𝑏−1,                      (3) 

and  
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respectively, where   ),,;(=),(1=),( );();(1  baxFbaIbaI xGxG   is the survival 

function of a BG distribution corresponding to the cdf in equation (1).  

The beta Generalized (Beta-G) distribution (beta modified Weibull (BMW)) distribution 

introduced by Silva et al. (2010) is a rich class of generalized distributions. This class has 

captured considerable attention over the last few years. Sepanski and Kong (2007) applied the 

Beta- G distribution to model the size distribution of income. This distribution has been studied 

in the literature for various forms of the baseline distribution .G  The beta-G distributions that 
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have been explored include the beta normal (BN) (Eugene et al. (2002)), beta Fre c het (BFr) 

distribution (Nadarajah and Kotz (2004)), beta exponential (BE) distribution (Nadarajah and 

Kotz (2006)), the Beta Weibull (BW) distribution (Lee et al. (2007)), beta Weibull-geometric 

distribution (Cordeiro et al. (2011)), beta generalized half normal distribution (Pescim et al. 

(2010)), beta extended half-normal model (Cordeiro et al. (2014)), beta Burr XII distribution 

(Paranaíba et al. (2011)). Barreto-Souza et al. (2010) introduced the beta generalized 

exponential (BGE) distribution. The beta generalized Lindley distribution was presented by 

Oluyede and Yang (2015), and beta inverse Weibull (BIW) was developed by Khan (2010). 

Oluyede et al. (2015) introduced and studied the log generalized Lindley-Weibull distribution 

and applied the model to lifetime data. Recently, Cordeiro et al. (2011) introduced the beta-

Weibull geometric distribution in which );( xG  in equation (1) was taken to be the cdf of the 

Weibull-geometric distribution of Barreto-Souza et al. (2011). Bidram (2012) proposed the 

beta exponential-geometric distribution, thereby extending the exponential-geometric 

distribution of Adamidis and Loukas (1998). Also, Bidram et al. (2013) introduced a new 

distribution that includes the Weibull-geometric distribution of Barreto-Souza et al. (2010). 

Percontini et al. (2013) introduced and discussed the properties of the beta Weibull Poisson 

distribution. Cordeiro et al. (2014) presented the properties of Kummer beta generalized 

gamma distribution. 

In this article, we attempt to generalized the linear failure rate geometric (LFRG) 

distribution of Mahmoudi and Jafari (2014) by taking );( xG  in equation (1) to be the cdf of a 

LFRG distribution, when 𝐶(𝜃) =
𝜃

1−𝜃
, 0 < 𝜃 < 1. Mahmoudi and Jafari (2014) compounded 

the linear failure rate distribution with a geometric distribution to obtained new lifetime 

distribution with five possible shapes for the hazard rate function, that is, increasing, 

decreasing, upside - down bathtub (unimodal), bathtub and increasing - decreasing - increasing 

shaped, which are common in reliability and biological studies. Recent generalizations of the 

linear failure rate distributions include the gamma linear failure rate distribution (Cordeiro et al. 

(2014)), and the Poisson generalized linear failure rate model (Cordeiro et al. (2015)). 

The reminder of the paper is organized as follows. In Section 2,  we define the beta linear 

failure rate geometric distribution, expansion for the cumulative and density functions, hazard 

and reverse hazard functions and some special cases are presented. Moments, moment 

generating function and conditional moments are discussed in Section 3.  In Section 4,  we 

obtain the mean deviations about the mean and the median, Bonferroni and Lorenz curves. 

Section 5  contains the distribution of the order statistics and uncertainty measures including 

Rényi and s-entropies. Maximum likelihood estimation is performed in Section 6.  

Applications are given in section 7,  followed by concluding remarks. 

 

2. Beta Linear Failure Rate Geometric Distribution 

Consider the linear failure rate geometric (LFRG) distribution of Mahmoudi and Jafari 

(2014) with the cdf  
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where 0,>0,>   and (0,1).  Replacing ),;( xG  where ),,(=   in equation 

(1) by the LFRG cdf in equation (4) above yields a new cdf  
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for 0,>x  0,>0,> ba  0,>0,>   and (0,1).  A random variable X  with the cdf 

in equation (0.5) is said to have a beta linear failure rate geometric (BLFRG) distribution and 

will be denoted by ).,,,,( baBLFRGX :  The corresponding pdf of this new distribution 

is given by  
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for 0,>x  where the parameters 0>a  and 0>b  are shape parameters, which 

characterize the skewness, kurtosis, and unimodality of the distribution. 

Graphs of the pdf of BLFRG distribution are given in the Figure 1. The plots show that the 

BLFR pdf can be decreasing or right skewed among several other possible shapes as seen in 

the figure. The distribution has positive asymmetry. 
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Figure  1: Graphs of BLFRG pdf for Selected Parameters 

   

The reliability (survival) function (RF) of the BLFRG distribution, denoted by )(xRBLFRG  

is given by  

   ).,(=)(1=)( ),,;(1 abIxFxR xGBLFRGBLFRG 
                          (7) 

 The hazard and reverse hazard functions of the BLFRG distribution are given by  
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respectively. The density and hazard functions can exhibit different behavior depending on 

the values of the parameters when chosen to be positive, as shown in these plots. However, it is 

hard to analyze the shape of both the density and hazard function due to their complicated 

forms. Plots of the hazard rate function for different combinations of the parameter values are 

given in Figure 2. The plot shows various shapes including monotonically increasing, and 

bathtub shapes for five combinations of the values of the parameters. This flexibility makes the 

BLFRG hazard rate function suitable for both monotonic and non-monotonic empirical hazard 

behaviors that are likely to be encountered in real life situations.  
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Figure  2: Graphs of BLFRG Hazard Function for Selected Parameters 

   

2.1 Special Cases of the BLFRG Distribution 

 

The BLFRG distribution is a very flexible model that approaches different distributions 

when its parameters are changed. The BLFRG distribution contains several special-models 

including the following distributions.   

 If 0,=  the BLFRG  distribution reduces to the lifetime distribution called beta 

exponential geometric (BEG) distribution which was proposed by Bidram (2012). 

 The exponential geometric (EG) distribution is obtained when 1,== ba  and 0.=  

If in addition, 0,  the exponential distribution with parameter 0>  is obtained. 
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 When 1,== ba  the BLFRG distribution reduces to the linear failure rate geometric 

(LFRG) distribution. 

 When 0  we get beta linear failure rate (BLFR) distribution which was introduced 

by Mahmoudi and Jafari (2014). 

 Generalized linear failure rate (GLFR) distribution arises when 0  and 1=b  

which was given by Sarhan and Kundu (2009). In addition, when 1=a , the linear 

failure rate (LFR) distribution is obtained. 

 When 0,=  we get the beta Rayleigh geometric (BRG) distribution. In addition, 

when 0 , the beta Rayleigh (BR) distribution is obtained. 

 Rayleigh geometric (RG) distribution arises as a special case of BLFRG by taking 

0=  and 1.== ba  

 When 0,=  and 0,  we obtain the beta exponential (BE) distribution. 

 Rayleigh distribution is obtained when 0,=  0,  and 1.== ba  

 Exponentiated linear failure rate geometric distribution (ELFRG) is obtained when 

1.=b  
 

2.2 Quantile Function 

 

In this subsection, we present the quantile function of the BLFRG distribution. The 

quantile of the BLFRG distribution is obtained by solving the nonlinear equation 

  ,=),(),,;( UbaI xG   where ),)/(1(1=),,;(
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uniform variate on the unit interval [0,1].  It follows that the BLFRG variate X  are the roots 

of the equation  
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that is  
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 if 0=  and 0,>  where ),(1 baIu
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denotes the inverse of the incomplete beta function ratio. Quantiles of the BLFRG distribution 

for selected values of the model parameters are given in Table 1. An R algorithm for the 

computation of the quantiles of the BLFRG distribution is given in the appendix. 
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Table 1 BLFRG Quantiles for Selected Parameter Values 

 (α, β, θ, a, b) 

u  (3,5,0.5,4,9) (5,2,0.1,9,4) (15,1,0.8,10,2) (1,3,0.2,8,6) 

0.1 0.02840435 0.1343841 0.02450469 0.2973634 

0.2 0.03760774 0.159947 0.0314877 0.3435863 

0.3 0.04546788 0.1804346 0.03775505 0.3790015 

0.4 0.05306507 0.1993744 0.04410258 0.4106138 

0.5 0.06094589 0.2183185 0.05099674 0.4412642 

0.6 0.06962035 0.2385029 0.05894946 0.4729599 

0.7 0.07982285 0.2615153 0.06878013 0.5080052 

0.8 0.09303174 0.2903687 0.08223558 0.5504758 

0.9 0.11373300 0.3339392 0.10482113 0.6119009 

 

  

2.3 Expansion for the Cumulative and Density Functions 

 

In this subsection, we present some series representations of the cdf and pdf of the BLFRG 

distribution. The mathematical relation given below will be useful in subsequent sections. Here 

and henceforth, we let X  be a random variable having the ),,,,( baBLFRG  distribution. 

We obtain some alternative expressions for the cdf )(xF
BLFRG

 and pdf )(xf
BLFRG

 of the 

BLFRG distribution. The following series representations will be useful in studying the 

properties of the BLFRG distribution. If b  is a positive real non-integer and 1,|<| z  then  
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Applying the series representation, one can re-write the BLFRG cdf as follows:  
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Consequently, the BLFRG cdf can be expressed as a mixture of generalized linear failure 

rate geometric (GLFRG) distributions with parameters  ,,  and .ja   Also, when 0>b  

is an integer the index j  in the series representation stops at 1b . Using the series 

representation below:  
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the BLFRG pdf can be expressed as  
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where ),,,,;( jbaxf
BLFR

  is the pdf of the BLFR distribution that was introduced 

by Mahmoudi and Jafari (2014). Another form of equation (0.15) is as follows:  
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3. Moments and Conditional Moments 
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In this section, we present the moments and conditional moments of the BLFRG 

distribution. Moments are necessary and important in any statistical analysis, especially in 

applications. It can be used to study the most important features and characteristics of a 

distribution (e.g., tendency, dispersion, skewness and kurtosis). A table of the first six moments 

and related statistics for selected values of the model parameters is also presented. 

 

3.1 Moments 

 

If X  has the BLFRG distribution, then the thr  moment of X  is given by  
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The coefficients of variation, skewness and kurtosis of the BLFRG distribution can be 

readily obtained according to the following relation SD𝐵𝐿𝐹𝑅𝐺 = √𝜇2 − 𝜇1
1, CV𝐵𝐿𝐹𝑅𝐺 = √

𝜇2

𝜇1
2 − 1, 

CS𝐵𝐿𝐹𝑅𝐺 =
𝜇3−3𝜇1𝜇2+2𝜇1

3

[𝜇2−𝜇1
2]

3
2

 and CK𝐵𝐿𝐹𝑅𝐺 =
𝜇4−4𝜇1𝜇3+6𝜇1

2𝜇2−3𝜇1
4

[𝜇2−𝜇1
2]

2 . 

 

 

 

 

 
Table 2 Table of Moments and Related Statistics 

 (α, β, θ, a, b) 

 (0.5,0.5,0.1,0.5,0.5) (0.5,0.5,0.1,1.0,0.5) (1.0,1.0,0.2,1.0,0.5) (2.0,1.0,0.8,1.5,2.0) 

EX 1.2255612 1.7034846 1.0236743 0.101120946 

EX2 2.8861090 4.3150440 1.6618322 0.022906403 

EX3 8.8818292 13.6401956 3.4547881 0.008988826 

EX4 32.3777643 50.3041555 8.4920167 0.005148664 

EX5 133.6732315 208.8162045 23.6857641 0.003846790 

EX6 609.1805267 954.1735886 73.1189732 0.003491977 

SD 1.1764815 1.1887742 0.7835325 0.112609757 

CV 0.9599533 0.6978485 0.7654118 1.113614554 
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CS 1.1988036 0.8779449 1.0325756 2.876672949 

CK 4.2168538 3.6193911 3.9799767 16.196589432 

 

3.2 Conditional Moments 

 

For lifetime models, it is also of interest to find the conditional moments and the mean 

residual lifetime function. The 
thn  conditional moments for BLFRG distribution is given by  
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where dxexts xs

t
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 1=),(  is the upper incomplete gamma function. The mean residual 

lifetime function is given by  
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4. Mean Deviations, Bonferroni and Lorenz Curves 

In this section we obtain mean deviation about the mean and the mean deviation about the 

median as well as Bonferroni and Lorenz curves for the BLFRG distribution. 

 

4.1 Mean Deviations 

 

The amount of scatter in a population is evidently measured to some extent by the totality 

of deviations from the mean and median. These are known as the mean deviation about the 

mean and the mean deviation about the median. They are defined by  
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respectively, where )(= XE  and =M Median )(X  denotes the median. The measures 

)(1 x  and )(2 x  can be calculated using the relationships  
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respectively. When 1=r  in equation (??), we get the mean )(= XE  as  
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respectively, so that the mean deviation about the mean is  
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4.2 Bonferroni and Lorenz Curves 

 

In this subsection, we present Bonferroni and Lorenz Curves. Bonferroni and Lorenz 

curves (Bonferroni (1930)) have applications not only in economics for the study income and 

poverty, but also in other fields such as reliability, demography, insurance and medicine. 

Bonferroni and Lorenz curves are given by  
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=),(   is the lower incomplete gamma function. 

 

5. Order Statistics and Measures of Uncertainty 

In this section, the distribution of order statistics and measures of uncertainty for the 

BLFRG distribution are presented. The concept of entropy plays a vital role in information 

theory. The entropy of a random variable is defined in terms of its probability distribution and 

can be shown to be a good measure of randomness or uncertainty. 

 

 

 

 

5.1 Distribution of Order Statistics 
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The corresponding cdf of kY  is  
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5.2 Rényi Entropy 

 

Rényi entropy (1960) is an extension of Shannon entropy. Rényi entropy is defined to be 
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Rényi entropy tends to Shannon entropy as 1.v  Note that by using the series 

representations in equations (12)  and (15),  we have 
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Consequently, Rényi entropy for the BLFRG distribution is  
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5.3 s -Entropy 

 

The s -entropy for BLFRG distribution is defined by  
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6. Estimation and Inference 

In this section, we present the maximum likelihood estimates (MLEs) of the parameters of 

the BLFRG distribution from complete samples only. Let nxxx ,...,, 21  be a random sample of 

size n  from ),;( xBLFRG  distribution where 
Tba ),,,,(=   is the vector of model 

parameters. The log-likelihood function Ln log=  for the vector of parameters 

),,,,(= ba  can be written as  
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The log-likelihood can be maximized either directly or by solving the nonlinear likelihood 

equations obtained by differentiating the log likelihood function. The components of the score 

vector are given by  
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respectively. The maximum likelihood estimate (MLE) of ,  say  φ̂ is obtained by solving 

the nonlinear system 0=)(nU . These equations cannot be solved analytically, and statistical 
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software can be used to solve them numerically via iterative methods. We can use iterative 

techniques such as a Newton-Raphson type algorithm to obtain the estimate φ̂. 

The convergence of the estimation procedures often depends on the choice of starting or 

initial values of the parameters, so one has to be cautious or care must be taken when obtaining 

the numerical approximations of the expected information matrix. For methods such as the 

BFGS, approximation of the Hessian matrix is used for the computations of each iteration and 

this approximation may not be reliable when convergence of the methods occurs too fast, 

thereby leading to an unreliable approximate Hessian matrix. Other methods of estimation such 

as generalized method of moments to obtain initial values followed by Newton or quasi-

Newton methods to obtain better and reliable parameter estimates may be used. In this paper, 

we maximize the likelihood function using NLmixed in SAS and nlm in R. The function was 

applied and executed for wide range of initial values. This process often results or lead to more 

than one maximum, however, in these cases, we take the MLEs corresponding to the largest 

value of the maxima. In a few cases, no maximum was identified for the selected initial values. 

In these cases, a new initial value was tried in order to obtain a maximum. 

For interval estimation and hypothesis tests on the model parameters, we require the 

information matrix. The Fisher information matrix is given by 

),
log

(=][=)(
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55,
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JJ  1,2,3,4,5,=, ji  can be numerically obtained. The total 

Fisher information matrix )(Jn  can be approximated by  
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For a given set of observations, the matrix given in the equation above is obtained after the 

convergence of the Newton-Raphson procedure. Applying the usual large sample 

approximation, MLE of  , that is φ̂ can be treated as being approximately ))(,( 1

5

 nJN , 

where  )(=)(  nn IEJ . Under conditions that are fulfilled for parameters in the interior of 

the parameter space but not on the boundary, the asymptotic distribution of √n(φ̂ − φ) is 

),)((0, 1

5

JN  where )(lim=)( 1  nn InJ 
  is the unit information matrix. This 

asymptotic behavior remains valid if )(J  is replaced by the average sample information 

matrix evaluated at  �̂� , say n−1In(φ̂) . The estimated asymptotic multivariate normal 

N5(𝜑, 𝐼𝑛(�̂�)−1) distribution of  �̂� can be used to construct approximate confidence intervals 

for the parameters and for the hazard rate and survival functions. An )%100(1   asymptotic 

confidence interval for each parameter r  is given by  

,ˆˆ,ˆˆ=
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where 
rrÎ  is the ),( rr  diagonal element of 

1)ˆ( nI  for 1,2,3,4,5,=r  and z𝜁

2

 is the 1 −
ζ

2
 

quantile of the standard normal distribution. 

We can use the likelihood ratio (LR) test to compare the fit of the BLFRG distribution with 

its sub-models for a given data set. For example, to test 1,== ba  the LR statistic is 

,1,1))],
~

,
~

,~((ln))ˆ,ˆ,ˆ,ˆ,ˆ((ln2[=  LbaL   where ,̂  ,̂  ,̂  â  and ,b̂  are the 

unrestricted estimates, and ,~  ,
~
  and 

~
 are the restricted estimates. The LR test rejects the 

null hypothesis if ,> 2


  where 

2


  denote the upper %100  point of the 

2  distribution 

with 2  degrees of freedom. 

 

7. Simulation 

In this section, we examine the performance of the BLFRG distribution by conducting 

various simulations for different sample sizes. We simulate 1000 samples for the true 

parameters values 2=6,=0.6,=3,=4,=: baI   and 

3.=7,=0.8,=5,=2,=: baII   Table 3 lists the mean MLEs of the five model 

parameters along with their respective root mean squared errors (RMSE) and Bias for sample 

sizes 400=200,=100,=50,= nnnn  and 800.=n  For a parameter   and its estimate ̂ . 

The root-mean-square error (RMSE) of the MLE ̂  is given by  
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The average bias of the MLE ̂  of the parameter ba,,,,=   is given by  
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From the results in Table 3, we can verify that as the sample size n  increases, the RMSEs 

decay toward zero. We also observe that for all the parametric values, the biases decrease as 

the sample size n  increases. 

 

Table 3 Monte Carlo Simulation Results: Mean Estimates, Biases and RMSEs 

  I II 

 n Mean RMSE Bias Mean RMSE Bias 

α 50 4.5154501 11.2114814 1.51545007 2.7610646 5.6103511 -2.238935364 

 100 4.0134972 5.8391564 3.41349715 2.7879148 3.7391658 1.987914814 

 200 4.2204255 5.160537 -1.77957451 3.005777 3.3657174 -3.994223016 

 400 4.2528155 3.202751 2.25281551 2.7401263 2.5887505 -0.259873698 
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 800 4.2572026 2.4847826 0.25720265 2.4998983 2.164769 0.499898342 

β 50 24.4932256 77.2488562 23.89322562 21.3369212 91.5279917 20.536921179 

 100 22.0585346 55.7548951 16.05853461 16.5111159 38.0552367 9.511115884 

 200 15.7179659 38.2994578 13.71796591 11.7575803 20.1213485 8.75758031 

 400 11.1254503 23.2524148 7.12545026 8.8636964 12.1680447 6.863696406 

 800 7.1381057 12.8558492 4.13810566 7.0963682 9.034725 2.096368177 

θ 50 0.4105315 0.4434283 -5.58946855 0.485253 0.5279769 -6.514747045 

 100 0.5322302 0.3896812 -1.46776981 0.6362691 0.4049937 -2.363730908 

 200 0.5726993 0.3419892 -3.42730067 0.7135356 0.2956052 -1.286464446 

 400 0.5650341 0.3155987 -2.43496586 0.7731983 0.1791921 -4.226801687 

 800 0.5789249 0.2530794 -0.02107514 0.7908513 0.1345934 -0.009148678 

a 50 12.561048 47.8085994 10.56104802 18.0967032 87.1831627 15.096703187 

 100 13.0250482 45.7676797 9.02504818 12.4131211 26.3085505 10.413121071 

 200 9.56369 15.7450963 6.56368997 10.8098116 20.0088847 5.809811612 

 400 8.1268523 10.1831008 7.52685231 9.0755166 12.8955991 8.275516625 

 800 7.0013257 5.4794791 1.00132565 7.8403358 6.3718872 0.840335804 

b 50 4.4113233 4.9417386 0.41132333 4.8811163 4.7076651 2.881116283 

 100 2.7784406 2.7725411 -0.22155937 3.1912916 2.5265626 -1.808708385 

 200 2.2536851 1.937578 1.65368507 2.655721 1.4303754 1.855720975 

 400 2.1096664 1.5679672 -3.89033357 2.6224246 1.1062168 -4.377575431 

 800 2.1068646 1.3347534 0.10686455 2.7063814 0.837099 -0.293618556 

   

8. Applications 

In this section, we present examples to illustrate the flexibility of the BLFRG distribution 

and its sub-models for data modeling. We also compare the five parameters BLFRG 

distribution to the beta-Weibull-geometric (BWG) distribution (Bidram et al. (2013)). The cdf 

and pdf of BWG distribution are given by  
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respectively, where 0>x , 0>,,, ba  and (0,1).p  

The maximum likelihood estimates (MLEs) of the BLFRG parameters ,  ,  ,  ,a  and 

b  are computed by maximizing the objective function via the subroutine NLMIXED in SAS. 

The estimated values of the parameters (standard error in parenthesis), -2log-likelihood statistic, 
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Akaike Information Criterion, )(ln22= LpAIC  , Bayesian Information Criterion, 

)(ln2)(ln= LnpBIC  , and Consistent Akaike Information Criterion, 

1

1)(
2=






pn

pp
AICAICC , where )ˆ(= LL  is the value of the likelihood function evaluated 

at the parameter estimates, n  is the number of observations, and p  is the number of estimated 

parameters are presented in Tables 4 and 5, respectively. Also, presented are values of the the 

goodness-of-fit statistics 
*W  and ,*A  described by Chen and Balakrishnan (1995). These 

statistics can be used to verify which distribution fits better to the data. In general, the smaller 

the values of 
*W  and 

*A , the better the fit. Let );( ΔxG  be the cdf, where the form of G  is 

known but the k-dimensional parameter vector, say Δ  is unknown. We can obtain the statistics 
*W  and 

*A  as follows:  

i. Compute ),ˆ;(= Δii xGu  where the ix ’s are in ascending order;  

ii. Compute ),(= 1

ii uy   where (.)  is the standard normal cdf and (.)1  its 

inverse;  

iii. Compute ),)/((= yii syyv   where i

n

i
yny 

1=

1=  and 

;)(1)(= 2

1=

12 yyns i

n

iy  
 

iv. Calculate )1/(12)}1)/(2(2{= 2
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2 nnivW i

n
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v. Modify 
2W  into )0.5/(1= 2* nWW   and 

2A  into 

).2.25/0.75/(1= 22* nnAA   The sum of squares 

2
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baxGSS j
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n

j
  that are obtained from the 

probability plots are also given in the tables. These statistics are used to compare the 

distributions presented in Tables 4 and 5. Plots of the fitted densities, the histogram 

and probability plots (Chambers et al. (1983)) of the data are given in Figures 3 and 

4. For the probability plot, we plotted )ˆ,ˆ,ˆ,ˆ,ˆ;( )( baxG j
BLFRG

  against 

,,2,1,=,
0.25

0.375
nj

n

j





 where 

)( jx  are the ordered values of the observed data. 

 

8.1 Time to failure of kevlar 49/epoxy strands tested at various stress level 

The data consists of a real life example is taken from Cooray and Ananda (2008), where 

101 data points represent the stress-rupture life of kevlar 49/epoxy strands which are subjected 
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to constant sustained pressure at the 90%  stress level until all have failed, so that the complete 

data set with the exact times of failure is recorded. These failure times in hours, are originally 

given in Andrews and Herzberg (1985) and Barlow et al. (1984). Initial value for BLFRG 

model in the R code are 0.2.=0.1,=0.5,=1,=0.1,= ba  Estimates of the parameters 

of BLFRG distribution and its related sub-models (standard error in parentheses), AIC, AICC, 

BIC, 
*W , 

*A  and SS for stress-rupture life of kevlar 49/epoxy strands data are given in Table 

4. 

 
Table 4 Estimates of Models for Failure Times of Kevlar Data Set 

 

The asymptotic covariance matrix of the MLEs of the BLFRG model parameters, which is 

the inverse of the observed Fisher information matrix )(1 

nI  is given by:  

 

,

6.576655970.133445241.29910271080.0887087480.31659794

0.1334452440.0226559880.0267118120.0010592780.00327769

1.2991027180.0267118170.03257864390.0086679080.01305782

0.0887087420.0010592740.00866790490.0009007720.00224506

0.3165979580.0032776980.01305782170.0022450650.00446955
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 Estimates Statistics 

Model α β θ a b −2 log 𝐿 AIC AICC BIC W∗ A∗ SS 

BLFRG 0.0277 0.0096 0.8602 0.8920 4.0777 205.05 215.05 215.69 228.13 0.1586 0.9191 0.1478 

 (0.0669) (0.0300) (0.1805) (0.1505) (2.5645)        

ELFRG 0.0382 0.1166 0.8950 0.6677 1 206.01 214.01 214.64 224.47 0.1627 0.9598 0.1429 

 (0.0482) (0.0766) (0.0881) (0.1649) -        

LFRG 0.1193 0.1240 0.8839 1 1 208.87 214.87 215.50 222.71 0.2481 1.3704 0.2070 

 (0.1379) (0.0678) (0.1205) - -        

EG 0.9305 0 0.0896 1 1 206.89 210.89 211.52 216.12 0.1936 1.0894 0.1753 

 (0.2007) - (0.3366) - -        

E 0.9758 0 0 1 1 206.96 208.96 209.59 211.57 0.1809 1.0283 0.1645 

 (0.0971) - - - -        

BR 0 0.3484 0 0.3127 1.0000 215.39 221.39 222.03 229.24 0.1389 1.0130 0.2187 

 - (0.1908) - (0.0356) (0.4410)        

R 0 0.8730 0 1 1 360.46 362.46 363.09 365.07 0.1206 0.9184 3.5326 

 - (0.0869) - - -        

 α β p a b        

BWG 1.2114 0.0185 0.6935 0.6705 23.2461 205.24 215.24 215.88 228.32 0.1515 0.8949 0.1505 

 (0.3379) (0.0826) (1.7747) (0.2723) (0.0300)        
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and the 95%  asymptotic confidence intervals for the model parameters are given by 

0.0669),1.96(0.0277  0.0300),1.96(0.0096  0.1805),1.96(0.8602   

0.1505),1.96(0.8920 a  and 2.5645),1.96(4.0777 b  respectively. 

Plots of the fitted densities and the histogram, observed probability vs predicted probability, 

and empirical survival function for the data are given in Figure 3. 

 

   
Figure  3: Fitted Densities and Probability Plots 

   

The LR test statistic of the hypotheses 0H : BR against aH : BLFRG and 0H : LFRG 

against aH : BLFRG are 10.3 (p-value 0.0056= ) and 3.8 (p-value 0.1485= ). We can 

conclude that there is a significant difference between BLFRG and BR distributions. 

Considering the values of the statistics AIC, BIC and the values of SS given in Table 4, we 

observe that the BLFRG distribution gives a better fit for the data. The values of the goodness-

of-fit statistics 
*W  and 

*A  shows that the BLFRG distribution is a better fit that its sub-

models except for the staistics 
*W  for the BR and R distributions. When the BLFRG 

distribution is compared to the non-nested five parameter BWG distribution, it is seen that the 

BLFRG distribution is a competitive distribution. 

8.2 Fatigue fracture of kevlar 373/epoxy 

The data set is on the life of fatigue fracture of Kevlar 373/epoxy that are subject to 

constant pressure at the 90%  stress level until all had failed. The complete data with the exact 

times of failure was also studied by Andrews and Herzberg (1985), and Barlow, Toland and 

Freeman (1984). Initial value for BLFRG model in the R code are 

2.=4,=0.3,=1,=1,= ba  Estimates of the parameters of BLFRG distribution and its 
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related sub-models (standard error in parentheses), AIC, AICC, BIC, 
*W , 

*A  and SS for the 

fatigue fracture of Kevlar 373/epoxy data are given in Table 5. 

 

 
Table 5 Estimates of Models for Failure Times of Kevlar Data Set 

  

The asymptotic covariance matrix of the MLEs of the BLFRG model parameters, which is 

the inverse of the observed Fisher information matrix )(1 

nI  is given by:  

 Estimates Statistics 

Model α β θ a b −2 log 𝐿 AIC AICC BIC W∗ A∗ SS 

BLFRG 0.0057 0.0310 0.9013 0.9607 1.6459 241.10 251.10 251.95 262.75 0.0723 0.4207 0.0672 

 (0.0142) (0.0656) (0.1654) (0.3277) (0.9600)        

ELFRG 0.0134 0.0909 0.8557 0.9919 1 242.12 250.12 250.98 259.44 0.0891 0.5141 0.0900 

 (0.0218) (0.0464) (0.1033) (0.3286) -        

LFRG 0.0138 0.0909 0.8566 1 1 242.12 248.12 248.98 255.11 0.0892 0.5149 0.0896 

 (0.0162) (0.0462) (0.0935) - -        

GLFR 0.3298 0.1126 0 1 1 248.97 254.97 255.83 261.96 0.1818 1.0528 0.2161 

 (0.3075) (0.1128) - (0.4031) -        

LFR 0.3298 0.1126 0 1 1 248.97 252.97 253.83 257.63 0.1818 1.0528 0.2161 

 (0.0920) (0.0538) - - -        

E 0.5104 0 0 1 1 254.23 256.23 257.09 258.56 0.1193 0.7074 0.5612 

 (0.0585) - - - -        

BRG 0 0.0241 0.9039 0.7345 1.7357 242.25 250.25 251.11 259.57 0.0852 0.5071 0.0775 

 - (0.0799) (0.2469) (0.1356) (1.3362)        

BR 0 0.2004 0 0.5325 1.0000 251.00 257.00 257.86 264.00 0.2221 1.2748 0.2768 

 - (0.1471) - (0.0741) (0.6425)        

BE 0.7028 0 0 1.7095 1.0000 244.49 250.49 251.34 257.48 0.1167 0.6935 0.1083 

 (0.8893) - - (0.3083) (1.4067)        

RG 0 0.0809 0.8975 1 1 245.27 249.27 250.13 253.94 0.1197 0.7045 0.0690 

 - (0.0464) (0.0668) - -        

R 0 0.3183 0 1 1 274.64 276.64 277.50 278.97 0.2086 1.2016 1.1748 

 - (0.0365) - - -        

 α β p a b        

BWG 1.2253 0.0213 0.7658 1.2534 14.2049 244.03 254.03 254.89 265.69 0.1125 0.6660 0.1001 

 (0.4651) (0.1123) (1.6878) (0.7125) (0.0166)        
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,

10.9215947330.0019727460.09687644620.05281038610.00781557

30.0019727460.1073634680.01079295790.0011326380.00220924

60.0968764480.0107929540.02735532390.0101005610.00168696

60.0528103880.0011326340.01010056960.00430772360.00071225

60.0078155780.0022092410.00168696360.00071225630.00020301
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and the 95%  asymptotic confidence intervals for the model parameters are given by 

0.0142),1.96(0.0057  0.0656),1.96(0.0310  0.1654),1.96(0.9013   

0.3277),1.96(0.9607 a  and 0.9600),1.96(1.6459 b  respectively. 

Plots of the fitted densities and the histogram, observed probability vs predicted probability, 

and empirical survival function for the data are given in Figure 4. 

 

   
Figure  4: Fitted Densities and Probability Plots 

   

The LR test statistic of the hypotheses 0H : BR against aH : BLFRG and 0H : LFRG 

against aH : BLFRG are 9.9 (p-value 0.007= ) and 7.9 (p-value 0.0486= ). We can conclude 

that there are significant differences between BLFRG and BR distributions as well as between 

BLFRG and LFRG distributions. Considering the values of the statistics AIC, BIC, 
*W , 

*A  

and the values of SS given in Table 5, we observe that the BLFRG distribution gives a better fit 

for the data. When the BLFRG distribution is compared to the non-nested five parameter BWG 

distribution, it is seen that the BLFRG distribution is a better fit. 
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9. Concluding Remarks 

A new and generalized linear failure rate distribution called the beta linear failure rate 

geometric (BLFRG) distribution is proposed and studied. The BLFRG distribution has several 

well known distributions including the LFRG, LFR, EG, RG, Rayleigh and exponential 

distributions as special cases. The density of this new class of distributions can be expressed as 

a linear combination of BLFR density functions. The BLFRG distribution possesses hazard 

function with flexible behavior. We also obtain closed form expressions for the moments, mean 

and median deviations, distribution of order statistics and entropy. Maximum likelihood 

estimation technique is used to estimate the model parameters. Finally, the BLFRG distribution 

is fitted to real data sets to illustrate its applicability and usefulness. 
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