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Abstract: Accelerated life testing (ALT) has gained greater importance because of 

dealing with high reliability units. As a result, there is a big need to use a goodness 

of fit (GOF) technique for testing the underlying lifetime distribution. But there is 

a difficulty due to the existence of several stress levels with different samples of 

units at each level. Then, the choice of a certain GOF technique is based on its 

capability to combine the failure times from all stress levels to reach a conclusion 

about the adequacy of a certain lifetime distribution at each stress level. 

In this paper, the extended Neyman’s smooth test (ENST) is chosen. It is then mod- 

ified in order to be used in validating the distributional assumption of accelerated 

failure time (AFT) model. This modified method is called; the adapted extended 

Neyman’s smooth test (AENST). It is applied to test for both Weibull and exponen- 

tial distributions in case of constant stress under complete sampling. To check the 

performance of the AENST, a comparison is made with the conditional probability 

integral transformation test (CPITT) via a simulation study. Moreover, a real data 

set is provided to illustrate the application of the introduced AENST. The results 

revealed that the AENST is a powerful test comparing with the CPITT. Thus, the 

AENST is recommended for testing the AFT models. 
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1. Introduction 

Global competition in companion with using higher manufacturing technologies resulted in 

producing high reliability products. Testing whether these products are sufficiently reliable to be 

utilized may require long time. This led to the use of accelerated life testing (ALT) in today’s 

industry in order to obtain failures more quickly. Under ALT, items are subjected to stresses at 

several levels higher than those experienced under normal conditions so as to obtain failures under 

normal levels. This can be achieved via using accelerated life models (ALM) that relate 
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the lifetime distribution to the stress. The difference between the ALM proposed in the literature 

is in the influence of the applied stress on the reliability (for more details, see Bagdonavičius and 

Nikulin (2002)). 

The commonly used model in reliability analysis is the accelerated failure time (AFT) model. 

Under this model, increasing the stress level has the effect of shrinking time through a scale factor 

(For more details, see Meeker and Escobar (1993)); that is the stress affects the scale parameter 

of the lifetime distribution through a certain relationship. The commonly used relationships are 

the Arrhenius and the inverse power law relationships. 

There is a great amount of literature on estimating the parameters of the lifetime distribution 

in the case of constant stress. This literature treats a variety of models (distributions and 

relationships), approaches of estimation, and different types of censoring. For example, see Abdel 

Ghaly et al. (1998), Drop and Mazzuchi (2004), Escobar and Meeker (2006), Liu and Tang 

(2009), and Abdel Ghaly et al. (2015). 

Most of work in ALT assumes that the lifetime distribution is known in advance and the 

problem is to estimate the parameters of this distribution under the normal operating conditions. 

Actually, if the underlying distribution of the lifetime data does not coincide with the 

hypothesized one, the results drawn from ALT are nonsense and misleading. Thus, it is essential 

to check for the underlying lifetime distribution of the lifetime data before extracting any results 

from the test. This problem is known as goodness of fit (GOF) testing problem and there are 

some techniques proposed in the literature concerning solving this problem. 

GOF tests proposed in the field of ALT can be divided into two types; the first one for ALM 

and the other to validate the assumptions of the AFT model. Since ALM are proposed to model 

the effect of the stress on the lifetime distribution, they can be thought of as some hypotheses 

about the influence of the applied stress on the reliability. Accordingly, some GOF techniques 

are proposed to assess these hypotheses. (For more details, see Bagdonaviˇcius and Nikulin 

(2002), Bagadonavičius et al. (2004), Bagadonavičius et al. (2011), and Balakrishnan et al. 

(2013)). 

When applying GOF tests for the assumptions of an AFT model, it is assumed that the AFT 

model holds and GOF techniques are proposed to validate its underlying assumptions;  

which are 

 

1. The life-stress relationship. 

2. The family of distributions to which the failure time at each stress level belongs.  

 

In the case of testing for the life-stress relationship, Nelson (1990) used the F statistic to test 

the linear life-stress relationship for log-failure time variable (log T ), where T was assumed to 

have exponential, Weibull and lognormal distributions. Lawless (2003) dealt with the same case 

but using likelihood ratio test (LRT). Eguchi (1992) investigated the validity of the inverse power 

law relationship assuming a bivariate exponential distribution using a test statistic based on a 

projection method. Teng and Yeon (2002) proposed D-statistic based on the transformed least 

square (LS) estimation approach to assess the validity of the log-linear life-stress relationship 
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against the log-quadratic one in case of step stress ALT experiment under exponential type II 

censored data. 

Regarding testing for the underlying distribution at each stress level, there is no much work 

in the literature. This little work was based on some traditional GOF tests. For example, 

Sethuurman and Singpurwalla (1982) used Kolmogrov-Smirnov statistic to test that the unknown 

distributions at different stress levels belong to a common parametric location-scale family. 

Nelson (1990) used the LRT for the same case and the same distributions. Xiong and Ji (2004) 

used the LRT to assess the validity of the cumulative exposure model used for analyzing step 

stress ALT. Wang (2009) proposed a procedure based on sample spacings to test the 

exponentiality of the lifetime distribution for each stress level based on type II censored k-stages 

step- stress ALT in the existence of the log linear life-stress relationship. Galanova et al. (2012) 

and Bagadonaviˇcius et al. (2013) discussed some theoretical problems inherent in using 

nonparametric GOF tests (Kolmogorov, Cramer-von Mises-Smirnov, and Anderson-Darling 

statistics) to validate parametric AFT models based on analyzing a sample of residuals. 

Thus, there is much need to introduce other GOF tests to be used in examining the fit of 

certain family of distributions in AFT models. The contribution of this paper is the adaptation of 

the extended Neyman’s smooth test (ENST) in order to validate it to be used as a GOF technique 

in AFT models. This test is then called; the adapted extended Neyman’s smooth test (AENST). 

Our interest here, is on the problem of GOF pertaining to the distribution to which the lifetime at 

each stress level belongs. Hence, assuming that the AFT model is appropriate, we are interested 

in testing if the underlying distribution at each stress level belongs to a certain family. We focus 

on the log-location-scale family of distributions, specifically the exponential and Weibull 

distributions. The AENST is applied in case of constant stress and complete sampling. 

Abdel-Ghaly et al. (2016) applied the conditional probability integral transfor- mation test 

(CPITT) in the case of AFT models. In order to check the superiority of the proposed AENST as 

a goodness of fit technique to be used in the case of AFT models, a numerical comparison is 

made between the AENST and CPITT under the same assumptions. 

This paper is organized as follows. In Section 2, we present the idea on which Neyman’s 

smooth test (NST) was built. Moreover, the extension of this test in case of composite hypothesis, 

named; the extended Neyman’s smooth test (ENST) is also presented. In Section 3, we clarify 

how to adapt the ENST in order to be applicable in AFT models. This test is then called; the 

adapted extended Neyman’s smooth test (AENST). Section 4 is devoted for summarizing the 

work of Abdel-Ghaly (2016) in applying the CPITT in the case of AFT models. In Section 5, a 

simulation study is conducted to investigate the performance of the AENST comparing with that 

of the CPITT. A real data set is considered in Section 6. Finally, the conclusions reached from 

this paper are summarized in Section 7. 

 

2. Neyman’s Smooth and Extended Neyman’s Smooth Tests 

In this Section, Neyman’s smooth test (NST) and the extended Neyman’s smooth 

test (ENST) are explained. 
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2.1 Neyman’s Smooth Test (NST) 

Neyman (1937) was the pioneer to introduce the GOF smooth tests. His target was to propose 

a test that does not depend on the form of the null density f0(t; β). To achieve his target, the test 

was based on the probability integral transformation (PIT) which implies that; if T is a real-valued 

random variable with continuous CDF F (t; β), then U = F (T ; β) has a uniform distribution on 

the interval (0, 1). Thus, under NST, testing for 

 
is equivalent to testing whether the random variable U has a uniform distribution on the interval 

(0, 1). Neyman (1937) considered an alternative density to the uniform one of the form 

 
where u = F (t; β), D(θ) is a normalizing constant, θ `= (θ1, θ2, ..., θm), m is a fixed known 

positive integer recommended not to exceed four, and πs(u) is the sth degree of Legendre 

polynomials. 

Neyman (1937) called (2.2) the order m smooth alternative density. Testing for (2.1) is 

equivalent to test for H0 : θ = 0 in the smooth alternative density and this is accomplished using 

a quadratic statistic in the form 

 
 The limiting null distribution of Ψ𝑚

2  is χ2 distribution with m degrees of freedom. 

Based on the p-value, one can judge the fit of f0(t; β) for the data in hand. NST was proposed for 

fully specified distributions in the case of independent identically distributed (i.i.d) uncensored 

data. For more details, see D’Agostino and Stephens (1986). 

 

2.2 Extended Neyman’s Smooth Test (ENST) 

Thomas and Pierce (1979) suggested using power functions instead of using the Legendre 

polynomials in (2.2) in order to extend Neyman’s smooth test to the case of composite hypotheses. 

In this case, the smooth alternative density (2.2) became of the form 

 

 
 

where m, D(θ), and u are as defined in equation (2.2). 

The smooth alternative density (2.4) could be written in terms of the original variable T and 

its pdf f (t; β), as follows 
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where m and D(θ) are as defined in equation (2.2), and F (t; β) is the CDF corresponding to f (t; 

β). 

Thomas and Pierce (1979) used partial scores to test for θ = 0 which is equivalent to test for 

(2.1). The testing procedure could be presented as: 

Let T1, T2, ..., Tn be independent continuous random variables. The CDF of Ti is given by F (ti; β), 

where β is a vector of p unknown parameters, with corresponding pdf denoted by f (ti; β). The 

smooth alternative proposed by Thomas and Pierce (1979) is given by (2.5). They entioned that 

for some distributions as the exponential and Weibull ones, it is convenient to replace F (t; β) by 

�̅�(t; β) = 1 − F (t; β), in (2.5) without changing the ultimate test. They used partial scores to test 

the null hypothesis H0 : θ = 0 which is equivalent to test the null density f0(t; β) in (2.1). This can 

be performed by writing the log-likelihood function of the data under (2.5) in the form  

 
and then getting the partial scores from (2.6) under H0 : θ = 0 as 

 

 
and 

 

where θ0 denotes the evaluation at θ = 0, and  

Under H0 : θ = 0, the Fisher information matrix denoted by 

  
partitioned in the form 

 
where 
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Under H0 : θ = 0, the quadratic partial score test statistic considered by Thomas and Pierce 

(1979) takes the form 

 

where  is an (m ×  1) vector of the partial scores, �̂�0 is the MLE for 𝛽 when θ= 0, and 

I𝜃𝜃|𝛽 is an (m ×  m) matrix which represents  and is defined as 

 
The asymptotic null distribution of Qm is 𝜒𝑚

2  distribution. Thomas and Pierce(1979) derived 

n(𝐼𝜃𝜃|𝛽)-1 for m = 4 in the case of exponential, Weibull and normal distributions. They concluded 

that when the distribution under test is of a location-scale type, n(𝐼𝜃𝜃|𝛽)-1 is 𝛽 free, that is; it does 

not depend on the true values of β `= (β1, β2, ..., βp). For other distributions, if n(𝐼𝜃𝜃|𝛽)-1 depends 

on 𝛽, one should replace 𝛽 with �̂�0 or use the observed information matrix, without changing the 

limiting distribution of Qm. Thomas and Pierce (1979) used the extended Neyman's smooth test 

to examine the validity of the exponential, Weibull, and lognormal distributions. 

3. Adapted Extended Neyman’s Smooth Test (AENST) and its use in AFT models 
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In this Section, the ENST explained in sub-section 2.2 is adapted such that it be- comes valid 

to be used as a GOF test in AFT models. We call this test; Adapted Extended Neyman’s Smooth 

Test (AENST). The partial scores and the elements of Fisher information matrix are derived for 

Weibull AFT model in sub-section 3.1, while exponential AFT model is considered as a special 

case in sub-section 3.2. 

 

3.1 The case of Weibull AFT model 

Under Weibull inverse power law AFT model, the experiment is conducted according to the 

following conditions 

1. A random sample of size n units are put on test, and all run to failure. 

2. There are k test stress levels and nj units are tested at stress level Vj , j = 1, 2, ..., k. 

3. The total number of test units is n = n1 + n2 + ... + nk. 

4. The shape parameter η of Weibull distribution is independent of the stress which means 

that this parameter is the same at each stress level. 

5. The stress Vj affects the scale parameter, αj , through the inverse power law relationship 

 
6. The failure times at stress level Vj , Tij , i = 1, 2, ..., nj , j = 1, 2, ..., k, are assumed to have 

Weibull distribution with pdf given by 

 
By substituting (3.1) in (3.2), the pdf of the failure times, Tij , i = 1, 2, ..., nj , j = 1, 

2, ..., k, takes the following form 

 
For convenience, we use the notations β1 = C, β2 = P, and β3 = η. In this case, the pdf 

in (3.3) and the corresponding reliability function have the following forms, respectively 

 
Testing for (3.4) is equivalent to test for θ = 0 in the smooth alternative given by (2.5) 

and this is accomplished using the score test. Considering (3.4) and (3.5), the log-

likelihood function of the data under (2.5) becomes 
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The partial scores from (3.6) under H0 : θ = 0 are given by 

 
for s=1,2,...,m, and w=1,2,3. The elements of the information matrix I(θ, β) under H0 are 

given by 

 

 
where γ = 0.5772... is the Euler’s constant. 

By getting the Iθθ|β, it was found that it is β free which means that it does not depend 

on the true values of β `= (β1, β2, β3). Thus, under H0 : θ = 0, the quadratic partial score 

test statistic is given by 
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where the sth element of  can be computed as 

 
In this case, the limiting null distribution of Qm is 𝜒2 distribution with m degrees of 

freedom. By comparing the p-value of Qm computed from 𝜒𝑚
2 distribution with the 

significance level, the adequacy of Weibull distribution as the parametric model for the 

lifetime variable at each stress level can be judged. 

 

3.2 The case of exponential AFT model 

Since, the exponential distribution is a special case of Weibull distribution, then by 

putting η = 1 in (3.2), the pdf of Tij , i = 1, 2, ..., nj , j = 1, 2, ..., k, becomes 

 

 
Using inverse power law relationship, the pdf in (3.11) takes the following form 

 
Similarly, under H0 : θ = 0, the quadratic partial score test statistic is given by (3.9). 

 

4. Conditional Probability Integral Transformation Test   (CPITT) 

O’Reilly and Quesenberry (1973) introduced the CPITT that was based on transforming the 

original set of n random variables into a smaller set of (n − p) - where p is the number of estimated 

parameters - (i.i.d) Uniform, U (0, 1) random variables. Then, test of uniformity can be applied. 

Abdel-Ghaly et al. (2016) applied this method in the case of AFT model. They assumed that the 

failure times at each stress level could be transformed separately into i.i.d. U (0, 1) random 

variables. Then the transformed random variables obtained using the CPITT at each stress level 

are pooled together as one sample hypothesized to be drawn from U (0, 1) distribution. Finally, 

the unifor- mity of the pooled sample and accordingly the adequacy of the hypothesized family 

of distributions can be judged. 

Applying the CPITT using both Weibull and exponential distributions are briefly explained 

(for more details, see Abdel-Ghaly et al. (2016)) in the following subsections. 

 

4.1 The case of exponential AFT model 
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Mod 

The failure times, Tij , i = 1, 2, ..., nj , j = 1, 2, ..., k that follow the Weibul distribution 

in the form (3.4), are transformed into a new set of random variables, Xij , where 

 
In this case, the transformation to U (0, 1) is obtained by 

 

 
where Zij is the ith order statistic from the jth stress level, and Z0j = 0. 

If the shape parameter β3 is unknown, it can be replaced by the MLE computed from each 

stress level separately. This will result in omitting an extra observation when using the CPITT, 

which in turn leads to replacing i = 1, 2, ..., nj − 1 by i = 1, 2, ..., nj − 2 in (4.2). The transformed 

(n − 2k) U values obtained from all stress levels are pooled together as one sample. The uniformity 

of the transformed values are tested by using the modified Watson statistic, named 𝑈𝑀𝑜𝑑
2 (called 

𝑈𝑀𝑜𝑑−𝑊
2  in the case of Weibull distribution). Thus, the assumption of Weibull distribution can be 

validated. 

 

4.2 The case of exponential AFT model 

Using Tij, i = 1, 2, ..., nj, j = 1, 2, ..., k with pdf of exponential distribution given by (3.12), 

the transformed U values from each sub-sample at each stress level  are given by (4.2).  By testing 

the uniformity of these (n − k) U values, using the same statistic, 𝑈𝑀𝑜𝑑
2 (called 𝑈𝑀𝑜𝑑−𝐸

2  in the case 

of exponential distribution), the assumption of exponentiality can be validated. 

 

5. Simulation Study 

In this Section, the performance of the AENST in validating the underlying distri- butional 

assumption in AFT models is evaluated. The performance is measured by the size and the power 

of the test. At each size, the power of both the AENST and CPITT are compared. Testing for 

both Weibull and exponential distributions are explained in the following subsections. 

 

5.1 Testing for the Weibull distribution 

In this subsection, the assumption of Weiull distribution in AFT model is to be examined. 

Firstly, the power of the AENST, Qm  given by (3.9) with m = 1 (called Q1−W in this case) is found. 

Secondly, the power of the CPITT, 𝑈𝑀𝑜𝑑
2  (called 𝑈𝑀𝑜𝑑−𝑊

2  is also given. 

The simulation study is conducted under the following   experiment 

 There are k = 4 stress levels with different four values: V1= 24, V2= 26, V3 = 28 and V4 = 

30. 
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 Four different sample sizes, n, and their division on stress levels, nj , j = 1, 2, 3, 4, are 

arbitrary chosen as shown in Table 1. 

 The true values of the parameters of the inverse power law relationship defined in (3.1), 

C and P are arbitrary chosen to be (0.5, 1.5, 3.5) and (0.1, 0.5, 0.9), respectively.Then, 

nine different combinations of these values are considered. 

 The computed values of the variance of the partial score, Iθθ|β , needed to calculate the 

statistic Q1−W are given in Table 2. 

 For each combination of (C, P, n), 1000 samples are generated using Mathcad program 

from 

– Exponential distribution with pdf given by (3.11). 

– Weibull distribution with pdf given by (3.3), with η = 0.5. The case of η = 2 is also 

considered, but it is found that there is no much difference between both cases. So, 

the case of η = 0.5 is the only presented in this paper. When η = 1 -which is the case 

of the exponential distribution- is discussed in subsection 5.2. 

– Lognormal distribution with pdf givenby 

 
with σ = 2 and the scale parameter, exp(µ j ), j = 1, 2, 3, 4, is expressed by the inverse power law 

relationship defined by 

 
 For each sample, the MLE of the parameters of these distributions are obtained using 

Mathcad program with tolerance value ϵ = 0.00001. Then,the statistics Q1-W and 𝑈𝑀𝑜𝑑−𝑊
2  

are calculated and the power for each one of them is estimated by 

 

Power = Number of times rejecting H0/1000, where 

H0: Tij follows Weibull distribution with pdf given by (3.2). 

H1:  Not H0. 

The estimated power values of Q1-W and 𝑈𝑀𝑜𝑑−𝑊
2  statistics are given in Table 3. 

From this Table, it is seen that 

 In general, The estimated power for Q1−W statistic increases as the sample sizes increase. 

For large sample sizes, the power of the this statistic becomes very high and is close to 

1. 

 Under the lognormal alternative and for all sample sizes, Q1−W has observable higher 

power than 𝑈𝑀𝑜𝑑−𝑊
2  statistic.  

 When testing for the Weibull distribution against Weibull alternative, the estimated 

power of Q1−W is very small, whatever the sample size. This means that there is a very 
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small probability to reject H0 when the failure times have already follow Weibull 

distribution. 

 Under the exponential alternative, the estimated power of Q1−W is not so high. This can 

be justified by the fact that when the shape parameter of Weibull distribution equals 1, 

the distribution is reduced to the exponential one. 

 The case when n = 33 is not considered when calculating the power of the 𝑈𝑀𝑜𝑑−𝑊
2  

statistic because some of the sub-samples at each stress level are very small and using 

this statistic requires obtaining the MLE of the shape parameter of Weibull distribution 

at each stress level separately. This problem does not appear when using the Q1−W statistic. 

 

5.2 Testing for the exponential distribution 

For the exponential case, to examine the power of the AENST (called Q1−E ), the simulation 

study is conducted under the same experiment of Weibull case but with different values of the 

variance of the partial score, Iθθ|β , also given in Table 2. 

In this case, the hypotheses are given by 

H0: Tij follows exponential distribution with pdf given by (3.11). 

H1: Not H0. 

The estimated power values of Q1−E statistic in testing the exponential distribution in AFT 

model are given in Table 4 under different values of C, P , and n. From this Table, it is seen that 

 The estimated power increases as the sample size increases. 

 The Q1−E statistic is powerful for testing the exponential distribution since the estimated 

power of this statistic is very high for all sample sizes versus each one of the lognormal 

and Weibull alternatives. In some cases the power equals 1. 

 Comparing with the CPITT test, 𝑈𝑀𝑜𝑑−𝐸
2 , Q1−E statistic is more powerful for testing H0 

versus both the lognormal and Weibull alternatives. 

 In the case of Exponential alternative, Q1−E statistic has a very small power to reject H0. 

In the majority of cases, the estimated power of Q1−E is smaller than that of 𝑈𝑀𝑜𝑑−𝐸
2 . 

 

6. A Real Data Set 

In this Section, we apply the AENST to investigate the distribution of times to breakdown of 

an insulating fluid. The data is taken from Nair (1982). This data represents the times to 

breakdown of an insulating fluid under three elevated voltage stresses. 

Nelson (1990) suggested using the exponential inverse power law model given by (3.12) to 

fit the data. To validate this suggestion, the AENST statistic with m = 1, Q1−E statistic is computed. 

The results of applying the test are summarized in Table 5. The MLE of the parameters are 

obtained using Mathcad program. From Table 5, it is clear that the test gave strong evidence that 

the exponential inverse power law model is a suitable model to represent the times to breakdown 

of the insulating fluid given by Nair (1982). 
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7. Conclusions 

In accelerated life testing (ALT), the failure times obtained under high stress con- ditions are 

used to obtain the lifetime distribution of products under the normal conditions. The incorrect 

specification of the lifetime distributions of products may result in expensive costs and bad 

decisions. 

The tools used to assess the validity of certain distribution in representing the data are called 

goodness of fit (GOF) techniques. These techniques are based on measuring the discrepancy of 

the sample data from the null or the hypothesized distribution. 

When dealing with accelerated failure time (AFT) models, it is assumed that a certain model 

holds. Then, it is desired to test the validity of the underlying distribution. Under constant stress 

ALT experiment, there are different stress levels. Thus, the failure times at all stress levels should 

be combined to reach a conclusion about the adequacy of a certain lifetime distribution at each 

stress level. Thus, there is a need to modify some GOF techniques to be used in this case. 

The Neyman’s smooth test (NST) is a GOF test that dose not depend on the form of the null 

density. This test was extended to be used in the case of composite hypotheses. It is called the 

extended Neyman’s smooth test (ENST). 

In this paper, the process of adapting the ENST is clarified. The resulting test; which we 

called the adapted extended Neyman’s smooth test (AENST) is then ap- plied to examine the fit 

of a certain family of distributions under AFT models. We assumed that the AFT model holds 

and showed how to use the AENST to assess the underlying lifetime distribution. The case of 

constant stress under complete sam- pling is considered and the method is applied to test for both 

Weibull and exponential distributions. 

A simulation study is conducted to examine the estimated power of the AENST in validating 

both the Weibull (the test is called Q1−W in this case) and exponential (it is called Q1−E) 

distributions when using a certain AFT model. Another GOF test; which is the conditional 

probability integral transformation test (CPITT) is also applied on the same experiments to the 

purpose for comparison. The results showed that the estimated powers for both Q1−W and Q1−E 

statistics increase as the sample sizes increase and for large sample sizes, the power of these 

statistics become very high and sometimes equal 1. It is also seen that the power of the AENST 

is much better than that of the CPITT in the majority of cases. Thus, it is recommended to use 

the AENST as a GOF test when dealing with AFT models. To summarize, we can say that 

adapting the ENST will help the development in this field. 

Finally, the AENST is applied on a real data set that includes the times to break- down of an 

insulating fluid to investigate the adequacy of the exponential inverse power law model suggested 

by Nelson (1990). The results give an evidence that the exponential inverse power law model is 

suitable to describe the data. 

The future work of this study is to modify the AENST in order to be valid to test the 

underlying distributions in AFT model under step stress ALT. Under step stress, the stress on 

each unit is increased at pre-specified periods of time, or upon the occurrence of a fixed number 

of failures. 
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Table 1. Total sample sizes (n) and sub-samples (nj ) 

 
 

Table 2. Computed values of Iθθ|β for Weibull and exponential distributions at different n 
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Table 3: Estimated values of the power for testing Weibull distribution
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Table 3: Estimated values of the power for testing Weibull distribution (Cont.)
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Table 3: Estimated values of the power for testing Weibull distribution (Cont.)
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Table 4: Estimated values of the power for testing the exponential distribution
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Table 4: Estimated values of the power for testing the exponential distribution (Cont.)
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Table 4: Estimated values of the power for testing the exponential distribution (Cont.)
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Table 5. The results of applying Q1−E statistic on the real data set 
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