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Abstract: This study investigates whether Support Vector Machine (SVM) can be 

used to predict the problem solving performance of students in the computer-

based learning environment. The SVM models using RBF, linear, polynomial and 

sigmoid kernels were developed to estimate the probability for middle school 

students to get mathematics problems correct at their first attempt without using 

hints available in the computer-based learning environment based on their 

problem solving performance observed in the past. The SVM models showed 

better predictions than the standard Bayesian Knowledge Tracing (BKT) model, 

one of the most widely used prediction models in educational data mining 

research, in terms of Area Under the receiver operating characteristic Curve 

(AUC). Four SVM models got AUC values from 0.73 to 0.77, which is 

approximately 29% improvement, compared to the standard BKT model whose 

AUC was 0.58. 
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1. Introduction 

As Koedinger and Aleven (2007) pointed out, it is critical to balance giving and 

withholding instructional supports in the computer-based learning environment in order to 

maximize student learning outcomes. Students may not exert enough cognitive effort and fail to 

acquire a schema from learning tasks if they receive instructional supports prematurely (Kapur, 

2008; Schmidt and Bjork, 1992). On the other hand, academically weaker students are likely to 

fail to learn from learning tasks unless they are provided with appropriate instructional supports 

and guidance in time. In most of computer-based learning environments, simple heuristics (e.g., 

giving hints or feedback after students fail to resolve a learning task a certain number of times) 

or the learner’s discretion is used to determine when instructional supports need to be provided. 

However, simple heuristics would not be able to find the right moment to provide instructional 

assistance that can maximize student learning outcomes. Similarly, providing instructional 

supports on the learner’s demand may not lead to improved student learning because previous 

studies found that especially novice learners do not possess enough metacognitive abilities and 
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prior knowledge required to determine the right moment to ask for help (Clark and Mayer, 2003; 

Lawless and Brown, 1997). 

In order to balance giving and withholding instructional supports in the computer-based 

learning environment, it is essential to quantify the ability or the level of understanding of 

students who are trying to learn from given learning tasks. For example, if we can estimate how 

likely students are to correctly solve a problem based on their performance on other (preferably 

related) problems they solved in the past, we should be able to make a better judgment on 

whether or not they need instructional supports. 

One of the most popular approaches to quantifying the ability of students is Bayesian 

Knowledge Tracing (BKT) (Corbett and Anderson, 1995). BKT is based on Hidden Markov 

Model (HMM) where the ability of students is assumed to be a binary variable (e.g., do vs. do 

not understand the Pythagorean theorem) that cannot be observed directly. BKT repeatedly 

estimates and updates this hidden variable as it encounters a series of successful or unsuccessful 

observable learning events (e.g., solve or fail to solve a problem requiring an understanding of 

the Pythagorean theorem). BKT has been used in many previous studies to model the ability of 

students in computer programming (Corbett and Anderson, 1995), mathematics (Pardos and 

Heffernan, 2011; Pardos, Gowda, Baker and Heffernan, 2012), reading (Beck and Chang, 2007) 

and physics (Pardos, Bergner, Seaton and Pritchard, 2013). 

Although BKT has been a popular choice among researchers in educational data mining, 

there are other statistical learning algorithms, such as Support Vector Machine (SVM), that can 

estimate the ability of students. SVM frequently showed better performance than other data 

mining algorithms in many research projects ranging from text classification (Joachims, 2002) 

to bioinformatics (Ding and Dubchak, 2001; Furey, Duffy, Cristianini, Bednarski, Schummer 

and Hassler, 2000; Hua and Sun, 2001), handwritten digit identification (DeCoste and 

Sch ̈olkopf, 2002) and face recognition (Maghaddam and Yang, 2002). Despite its success, 

SVM has been rarely utilized in educational data mining research. This study seeks to address 

this gap in educational data mining by developing SVM-based predictive models of problem 

solving performance of students, and comparing their predictive power to BKT. 

The rest of this paper is organized as follows. Section 2 introduces the SVM classification 

method, the data set, and how the data set was pre-processed. Section 3 presents how various 

SVM models were fit to the pre-processed data, and compares the predictive power of the SVM 

models to the BKT model. Section 4 presents discussions and future directions. Finally, 

Appendix provides the Python source code snippet showing how an SVM model can be built. 

 

2. Method 

2.1. Support Vector Machine (SVM) 

SVM is a classification algorithm that tries to reduce the probability of misclassification by 

maximizing the distance between two class boundaries (positive vs. negative) in data. SVM 

tries to find a hyperplane, ⟨�⃗⃗� , 𝑥 ⟩ = 𝑏, that can separate positive data points from negative ones 

as much as possible in a high dimensional feature space. In the case of soft-margin 
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classification, which can deal with linearly non-separable or noisy data, the maxim margin 

hyperplane can be obtained by solving the following optimization problem (Cristianini and 

Shawe-Taylor, 2000): 

max
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subject to the constraints  

∑𝛼𝑖

𝑙

𝑖=1

𝑦𝑖 = 0 

0 ≤ 𝛼𝑖 ≤ 𝐶 

with i = 1, …, l (number of data points). 

Here, 𝛼𝑖 is a Lagrange multiplier of the Lagrangian dual of the soft-margin classifier 

optimization problem, and 𝑘(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) is a kernel function that allows us to efficiently compute 

the dot product in a high dimensional feature space without actually projecting data points 𝑥𝑖⃗⃗  ⃗ 
into the feature space. Table 1 provides a list of kernel functions used in this study, and their 

free parameter. The free parameter of these kernel functions and the cost constraint C can be 

determined by cross validation as explained below. The cost constant C regulates the amount of 

classification error the algorithm would accept while trying to solve the optimization problem. 

A larger (smaller) C value will result in a narrower (wider) margin classifier because the 

algorithm has to pay a high (small) price as it commits a classification error. Note that the cost 

constant allows us to use a linear kernel for the data that is not linearly separable because 

nonlinear data points can be considered noise. 

 

Table 1: SVM kernel functions used in this study and their free parameter 

 

 

 

 

 

 

 

 

Once 𝛼𝑖 values are determined, the normal vector �⃗⃗�  and the offset term b of the maximum 

margin hyperplane separating positive instances from negative ones in the data can be 

computed as follows: 

�⃗⃗� =∑𝛼𝑖𝑦𝑖𝑥𝑖⃗⃗  ⃗

𝑙

𝑖=1

 

 

Kernel name Kernel function Free parameter 

RBF 
exp⁡(−𝛾|𝑥𝑖⃗⃗⃗⃗ −𝑥𝑗⃗⃗ ⃗⃗  |

2
) 

𝛾 > 0 

Linear 〈𝑥𝑖⃗⃗⃗⃗ , 𝑥𝑗⃗⃗ ⃗⃗  〉 None 

Polynomial 〈𝑥𝑖⃗⃗⃗⃗ , 𝑥𝑗⃗⃗ ⃗⃗  〉𝑑 𝑑 ≥ 2 

Sigmoid tanh⁡(𝛾〈𝑥𝑖⃗⃗⃗⃗ , 𝑥𝑗⃗⃗ ⃗⃗  〉) 𝛾 > 0 



 

234                               Predictive SVM model of Problem Solving Performance 

𝑏 =∑𝛼𝑖𝑦𝑖⟨𝑥𝑖⃗⃗  ⃗, 𝑥𝑥𝑣+⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⟩

𝑙

𝑖=1

− 1 

(2) 

where, 𝑥𝑥𝑣+⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is any data point that lies on the maximum margin hyperplane supporting the 

positive class boundary. Then, the class membership of a new data point 𝑥  can be determined 

by a decision function 𝑓 = 𝑠𝑖𝑔𝑛(⟨�⃗⃗� , 𝑥 ⟩ − 𝑏). A new data point 𝑥  will be predicted as a positive 

instance only when the decision function returns a positive value. 

In order to estimate the probability of being in a positive class, rather than the class 

membership, the posterior probability can be approximated by a sigmoid function as suggested 

by Platt (2000): 

Pr(𝑦 = 1|𝑥 ) ≈ 𝑃𝐴,𝐵(𝑥 ) =
1

1 + exp⁡(𝐴(⟨�⃗⃗� , 𝑥 ⟩ − 𝑏) + 𝐵)
 

(3) 

A and B in Equation 3 can be solved by solving the following optimization problem: 

min
𝑧=(𝐴,𝐵)

𝐹(𝑧) = −∑(𝑡𝑖 log(𝑝𝑖) + (1 − 𝑡𝑖)log⁡(1 −

𝑙

𝑖=1

𝑝𝑖)) 
 

(4) 

𝑝𝑖 = 𝑃𝐴,𝐵(𝑥 ) 

𝑡𝑖 =

{
 

 
𝑁+ + 1

𝑁+ + 2
⁡𝑖𝑓⁡𝑦𝑖 = +1

1

𝑁− + 2
⁡𝑖𝑓⁡𝑦𝑖 = −1

 

𝑁+ = 𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑦𝑖⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔⁡𝑠𝑒𝑡⁡ 

𝑁− = 𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡𝑦𝑖⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔⁡𝑠𝑒𝑡 
𝑖 = 1,… , 𝑙 

 

 

Building an SVM model typically requires the following steps: 

1. Preprocess data to create predictor variables conforming to the format of an SVM 

library (see Section 2.3). This study used an open source python data mining library 

called scikit-learn (Pedregosa et al., 2011) in building soft-margin SVM models that 

can predict the class membership and the posterior probability of unseen problem 

solving data. 

2. Normalize all non-categorical predictor variables in order to keep them be- tween 0 

and 1 (see Section 2.3). 

3. Choose an appropriate kernel to be used (see Table 1). 

4. Separate the data into training and test sets (see Section 2.3). 

5. Find the best parameters for the selected SVM kernel by conducting cross validation 

on the training set (see Section 3.1) 

6. Build the final SVM model using the best parameters identified in the previous step 

and the entire training set (see Section 3.2). 

7. Evaluate the predictive power of the developed SVM model against the test set (see 

Section 3.2) 
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2.2. Data set 

The data set analyzed in this study was obtained from the Pittsburgh Science of Learning 

Center (PSLC) (http://www.learnlab.org). Their DataShop Web service (http://pslcdatashop.org) 

provides log files of computer-based learning environments capturing the learning processes of 

students trying to solve various subject matters, from foreign language to mathematics and 

physics (Koedinger, Baker, Cunningham, Skogsholm, Leber and Stamper, 2010). This study 

used ‘Assistment Math 2004-2005’ data set that captured how 912 middle school students used 

a Web-based algebra learning environment for over 3,400 student hours. The original data set 

obtained from PSLC includes 580,786 database transactions where each transaction record 

contains information about students, and their problem solving activities such as problem/step 

name, problem/step solving time, and whether or not they were able to solve each problem 

solving step successfully (see Table 2). 

 

Table 2: Problem solving information available in the PSLC data set 
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note is that each transaction is associated with a particular Knowledge Component (KC), which 

is defined as “an acquired unit of cognitive function or structure that can be inferred from 

performance on a set of related tasks1.” KC allows for categorizing problem solving steps so 

that problem solving steps in the same category can be considered examining one particular 

mathematics concept (e.g., Pythagorean theorem). 

 

 

2.3. Data pre-processing 

                                                           
1 http://pact.cs.cmu.edu/pubs/PSLC-Theory-Framework-Tech-Rep.pdf  

Column in PSLC data set Description 

Anonymized student ID Anonymized student ID generated by DataShop 

Problem name Name of the problem associated with the transaction 

Step name Name of the problem solving step associated with the transaction 

Problem time Time at which the student started solving the problem 

Step time Time at which the student started working on a particular problem 

solving step 

Number of problem views Number of times the student tried to solve the same problem 

Number of attempts at step Number of times the student submitted an answer to the same problem 

solving step 

KC Knowledge Component associated with the transaction 

Outcome Result of the problem solving attempt (CORRECT, INCORRECT or 

HINT) 
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Considering the fact that building an SVM model is computationally expensive (see Table 

3), compared to BKT and other standard statistical approaches such as Generalized Linear 

Model (GLM), the original data set obtained from PLSC was too big to be processed on a 

standard desktop computer. In order to make the computation tractable on a standard desktop 

computer, this study used randomly selected 10% of the transaction records. 

 
Table 3: Best parameters and execution time of SVM models 

 

 

 

 

 

 

 

 

 

Since the goal of this study was to build SVM models that can predict students’ problem 

solving performance based on their problem solving history, the selected transaction records 

were pre-processed as follows. First, for each selected transaction record, its anonymized 

student ID, KC and step time were identified. This information is then used to compile all 

transaction records with the same anonymized student ID and KC, and earlier step time and 

problem time. From these records of past problem solving performance on the same KC, 

number of unique problems and steps the student solved, fraction of correct steps/problems, 

fraction of incorrect steps/problems, fraction of steps/problems with a hint request, and streaks 

of correct answers were computed. These predictors were then normalized in order to keep 

them in the same [0, 1] range. Otherwise, predictors with a broader range will have an unfair 

influence on the objective function an SVM algorithm tries to optimize (Equation 1). In 

addition, dummy variables were created to incorporate categorical variables, such as 

anonymized student ID, problem name, step name, and KC, into SVM prediction models. 

Finally, a new outcome variable (CORRECT or WRONG) was created by combining 

INCORRECT and HINT cases because the focus of this study was to predict whether students 

will be able to solve a problem without using hints available in the computer-based learning 

environment. 

In order to estimate the predictive power of SVM models without bias, the preprocessed 

PLSC data set was divided into training and test sets. When creating a test set, which consists 

of 20% of the pre-processed data, stratified random sampling was used to ensure that the ratio 

of positive to negative instances in the training and the test sets are similar. 

 

 

3. Results 

Kernel Parameter range Best parameters Execution time 

RBF 𝐶 = 10−3 − 105 

𝛾 = 10−3 − 102 

𝐶 = 10 

𝛾 = 10−2 

44h 27m 54s 

Linear 𝐶 = 10−3 − 102 𝐶 = 10−1 23h 45m 14s 

Polynomial 𝐶 = 10−3 − 1011 

𝑑 = 2, 3, 4 

𝐶 = 107 

𝑑 = 3 

36h 13m 22s 

Sigmoid 𝐶 = 10−3 − 105 

𝛾 = 10−3 − 102 

𝐶 = 102 

𝛾 = 10−3 

28h 38m 04s 
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3.1. Tuning SVM models 

In this study, five-fold cross validation was used to find the best values for tuning 

parameters (cost constant in Equation 1 and free parameter of kernel functions in Table 1) of 

SVM models that can maximize the predictive power on unseen future data. First, the values of 

tuning parameters were selected from a grid spanning an appropriate parameter space. For 

example, an SVM model using an RBF kernel chooses two values for C and 𝛾 from a two 

dimensional parameter space. Then, the training set was randomly divided into five sets of 

roughly equal size with similar proportions of positive and negative instances, and an SVM 

model with the selected tuning parameter values was fit using all samples in the training set 

except for one subset. The samples in the held-out set, which played a role of future data 

because they were not used in the model building process, were then used to estimate the 

performance of the SVM model with these particular parameter values. These processes were 

repeated five times with a different subset of the training set being used as a held-out set. The 

average of the five estimates of predictive power was used to represent how well an SVM 

model with specific tuning parameters would work when it is given new problem solving data 

in the future. 

In this study, the predictive power of an SVM model is measured by Area Under the Curve 

(AUC) obtained from a Receiver Operating Characteristic (ROC) curve analysis. When applied 

to a binary classification problem, an ROC curve is a plot of false positive rate (1 − specificity) 

vs. true positive rate (sensitivity) derived from the posterior probability of each data point 

estimated by the learning algorithm (Equation 3). Since a good classification model will report 

a small false positive rate and a large true positive rate, the area under the ROC curve of a good 

classification model will has a large AUC value. AUC can vary from 0.5 (predictive power not 

better than simple guessing) to 1.0 (perfect predictive power), and it is known to be equal to the 

probability that a learning algorithm ranks a randomly chosen positive instance higher than a 

randomly chosen negative one (Fawcett, 2006). 

Figure 1 shows the AUC values of an SVM model using an RBF kernel which has two 

tuning parameters, C and 𝛾 . The 𝛾  parameter of an RBF kernel determines how far the 

influence of data points in the training set selected as support vectors can reach. A large 𝛾 value 

means that the influence of support vectors will be limited to the data points close to them. As a 

result, when 𝛾 is large (𝛾 = 1, 10, 102 in Figure 1), AUC does not change much. When 𝛾 is 

small, on the other hand, AUC shows significant changes and the largest AUC value (0.755) 

was obtained at C = 10, 𝛾 = 10−2. 
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Figure 1:  AUC values of an RBF kernel SVM model computed over different C and 𝛾 

values 

Table 3 summarizes the best tuning parameters of each SVM model and the execution time 

that was needed to find them. Since each SVM model converged differently in the parameter 

space, different parameter ranges had to be explored. In the case of a polynomial kernel SVM 

model, for example, a much wider range of C values had to be examined because its AUC 

value changed rather slowly, compared to other kernels such as a linear kernel whose AUC 

value was peaked at 𝐶 = 10−1 and leveled off quickly. On a standard desktop computer with 

an Intel Core i5 processor (3.40 GHz) and 8 GB of memory, the parameter tuning of SVM 

models took about one or two days. 

 

 

3.2. Comparing SVM models to standard BKT model 

The final SVM prediction models were built by fitting the entire training set with the best 

tuning parameters determined from the five-fold cross validation procedure explained above 

(see Table 3). For each student in the test set, their class membership, CORRECT (get the 

problem solving step correct at their first attempt without using any hints available in the 

computer-based learning environment) vs. WRONG (either get the problem solving step wrong 

or requested a hint), and the posterior probability of being in the CORRECT class were 

computed using Equation 2 and 3. 
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Figure 2:  Comparison of ROC curves and their AUC values of prediction models 

 

Figure 2 compares the ROC curves of four SVM models and the standard BKT model built 

from a publicly available C++ code (https://github.com/IEDMS/ standard-bkt). Four SVM 

models yielded much larger AUC values, ranging from 0.73 to 0.77, than the standard BKT 

model (AUC = 0.58), indicating that these SVM models would make more accurate predictions 

than the standard BKT model. 

The confusion matrices of the standard BKT model and the RBF kernel SVM model reveal 

that the RBF kernel SVM model performed better across the board (see Figure 3). The RBF 

kernel SVM model showed higher recalls (0.78 vs. 0.72 for Wrong; 0.61 vs. 0.40 for Correct) 

and precisions (0.73 vs. 0.62 for Wrong; 0.66 vs. 0.50 for Correct) when students were 

predicted to be able to solve the problem by themselves if the posterior probability, Pr⁡(𝑦 =

1|𝑥 ), is greater than 0.5. 
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Figure 3:  Comparison of confusion matrices of prediction models (Cut-off probability = 0.5) 

 

4. Discussion 

The results of this study suggest that SVM may be able to make better predictions on the 

problem solving performance of students, compared to the standard BKT model, the most 

widely used computational method in educational data mining research. The possible reason for 

this result is that SVM models used more information about how students solved relevant 

problems in the past, compared to the standard BKT model; SVM models have 13 predictors 

(number of unique problems and steps students solved, fraction of correct steps/problems, 

fraction of incorrect steps/problems, fraction of steps/problems with a hint re- quest, streaks of 

correct answers, anonymized student ID, problem name, step name, and KC) whereas the 

standard BKT model has only one predictor variable (sequence of correct or wrong responses 

on each KC). This interpretation is in line with Pardos and Heffernan (2011)’s study where they 

were able to achieve performance gains by including the difficulty of problems in the standard 

BKT model. It would be important to further investigate whether other predictors or some 

combinations of predictors can be used to improve the performance of SVM models because 

adding non-relevant predictors can hurt the performance of a data mining algorithm. 

Another reason for the poor performance of the standard BKT model is that it does not take 

into account the ability of students. Obviously, academically stronger students would show 

better problem solving performance than academically weaker students. However, the standard 

BKT model does not incorporate the ability of students, resulting in a prediction model for 

average students. Recently Yudelson, Koedinger and Gordon (2013) proposed an 

individualized BKT model to allow the standard BKT model to include the ability of students. 

It would be interesting to compare the individualized BKT model to SVM models when the 

individualized BKT model’s code becomes available for researchers to use in the future. 

Finally, recent research has shown that ensemble methods can help build a better predictive 

model of how students solve problems in the computer-based learning environment (Pardos, 

Gowda, Baker and Heffernan, 2012). As a future work, various ensemble models, such as 

Random Forest (Breiman, 2001), Ada Boost (Freund and Schapire, 1999) and Gradient 
Boosting Machine (Friedman, 2001), will be developed to compare their predictive power to 

that of the SVM models reported in this study. 
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Appendix 

import pandas as pd  

import numpy as np 

from sklearn.cross validation import train test split  

from sklearn.preprocessing import StandardScaler 

from sklearn.grid search import GridSearchCV 

from sklearn.svm import SVC 

 

# Read the preprocessed data file 

data = pd.read_csv(’../ dataFile.txt’ ,sep=’\t ’)  

y = data[’CFA’] 

X = data.drop(’CFA’, axis=1) 

 

# Create dummy variables for categorical predictors 

X_student_dummy = pd.core.reshape.get_dummies(X[’Student’])  

X_problem_dummy = pd.core.reshape.get_dummies(X[’Problem’])  

X_step_dummy = pd.core.reshape.get_dummies(X[’Step’]) 

X_kc_dummy = pd.core.reshape.get_dummies(X[’KC’])  

X_num = X.drop([’Student’, ’Problem’, ’Step’, ’KC’], axis=1) 

 

# Create training and test sets 

X = np.concatenate((X_num, X_student_dummy, X_problem_dummy, 

X_step_dummy, X_kc_dummy) , axis=1) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size 

=0.2, random_state=1128)  

 

# Normalize non−categorical predictors 

scaler = StandardScaler().fit(X_train_num) 

X_train_num_transformed = scaler.transform(X_train_num)  

X_test_num_transformed = scaler.transform(X_test_num) 

X_train_transformed = np.concatenate((X_train_num_transformed, 

X_train_cat), axis=1) 

X_test_transformed = np.concatenate((X_test_num_transformed, 

X_test_cat), axis=1) 

 

# Find the best parameters for an SVM model using training set  

param_grid = {’C’: 10.0∗∗np.arange(−3, 3), ’gamma’: 10.0∗∗np.arange(−3, 
3), ’kernel’: [’rbf’]} 

clf = GridSearchCV(SVC(probability=True) ,param_grid , cv=5, 

scoring=’roc_auc’) 

clf.fit(X_train_transformed, y_train) 

 

# Predict class membership of test set 

predicted_class = clf.predict(X_test_transformed) 

 

# Predict posterior probability of test set 

predicted_prob = clf.predict_proba(X_test_transformed) 
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