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Abstract: QT interval on an electrocardiogram (ECG) trace is a widely used 

surrogate parameter in drug development to detect the potential of drugs to cause 

life threatening cardiac arrhythmias. It changes inversely with the magnitude of 

heart rate (Heart rate=60/RR, RR stands for RR interval on an ECG reading) and 

is often corrected to a heart rate independent value known as the corrected QT 

interval (QTc). Various parametric QT correction formulae have been proposed 

by specifying the QT and heart rate relationships explicitly by a fixed number of 

parameters. This paper proposes to use the Box-Cox transformation to fit the QT-

RR relationship, and develops a new method for correcting the QT interval for 

heart rate. The six commonly used parametric models are the special cases of 

Box-Cox transformed model. We discuss the model parameter estimation and 

assess the performance of QT correction formulae derived from four types of 

Box-Cox transformations using four off-drug ECG datasets and one on-drug ECG 

dataset, as well as a simulated dataset.  The results show that all four derived QT 

correction formulae from Box-Cox transformation generate a heart rate 

independent QTc and that the QT correction formula derived from transformation 

of both QT and RR generates QTc with smaller variations. The Box-Cox 

transformation represents a very flexible family for modelling QT-RR 

relationships including the six commonly used parameter models, thus providing a 

potentially better QT correction method than the existing parametric models. 

 

Key words: ECG; Box-Cox transformation; QTc; QT interval correction; horough 

QT study. 

 

1. Introduction 

QT interval on an electrocardiogram (ECG) trace (Goldenberg et al., 2006), representing 

electrical depolarization and repolarization of the ventricles, is an important and widely used 

surrogate parameter to identify drugs that have the potential to cause life threatening cardiac 

arrhythmias. Prolongation of cardiac repolarisation is recognised to be associated with various 

serious arrhythmias, e.g. Torsade de Point (TdP) and this has thus become an important safety 

issue attracting a great deal of attention from both regulatory agencies and the pharmaceutical 

industry (ICH, 2005). 
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Over the past decade, a number of drugs have been shown to prolong cardiac repolarisation 

and this effect has become an important safety issue attracting a great deal of attention from 

both regulatory agencies and the pharmaceutical industry. Since the 1990’s, new and existing 

drugs have been subjected to close scrutiny for their potential adverse effect on QT. This was in 

response to the finding that terfenadine, the first and very popular non-sedating antihistamine 

for therapeutic use, caused numerous cases of sudden death and TdP in association with 

prolonged QT interval. At the time the drug manufacturer was considering a regulatory 

application for terfenadine to become a non-prescription medication available over the counter. 

However, due to its effect on QTc, terfenadine was withdrawn from the market in 1997. 

The QT interval changes inversely with the magnitude of heart rate (Heart rate 

(HR)=60/RR, RR stands for RR interval on an ECG reading) and is often corrected to a heart 

rate independent value known as the corrected QT interval (QTc), which is widely used in 

clinical practice to assess drug safety (Malik 2001; ICH, 2005; Goldenberg et al., 2006). The 

QTc interval represents the QT interval at a standardised heart rate of 60/minute. The goal of 

heart rate correction is to provide QTc interval values that are independent of the corresponding 

RR interval values. 

Deriving a QT correction formula usually involves two steps. The first step is to fit a 

regression model with unknown parameters to describe the QT-RR relationship. For example, 

we assume that there is a linear relationship between QT and RR, e.g. QT=β+αRR, where (β, α) 

can be estimated using the least square method. The second step is to derive a correction 

formula based the fitted model. This is done by canceling out the parameter β using the 

condition that QTc=QT when RR=1. For the above example, we have QTc=QT+α(1-RR). 

Various statistical models have been proposed and developed to fit QT-RR relationships 

(ICH, 2005; Goldenberg et al., 2006).  Six most commonly used regression models are used to 

fit the QT-RR relationships (Bazett, 1920; Fridericia, 1920; Hodges et al., 1983; Malik et al., 

2002; Sagie et al., 1992; Goldenberg et al., 2006; Wang et al., 2012) 

 

Model 1: Linear model 

QT=β+αRR 

Model 2: Hyperbolic model 

QT=β+α/RR 

Model 3: Parabolic model 

QT=βRRα 

Model 4: Logarithmic model 

QT=β+αln(RR) 
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Model 5: Shifted logarithmic model 

QT=ln(β+αRR) 

Model 6: Exponential model 

QT=β+αe-RR 

Each of the above six regression models has two parameters: α and β. Once they are 

estimated, they can then be converted to the following generic heart rate correction formulae 

using the condition QTc=QT when RR=1: 

 

Model 1: Linear model 

QTc=QT+α(1-RR) 

Model 2: Hyperbolic model 

QTc=QT-α(1/RR-1) 

Model 3: Parabolic model 

QTc=QT/RRα 

Model 4: logarithmic model 

QTc=QT-αln(RR) 

Model 5: Shifted logarithmic model 

QTc=ln(eQT+α(1-RR)) 

Model 6: Exponential model 

QTc=QT-α(e-RR-1/e) 

 

We propose in this paper to use Box-Cox transformation model to fit the QT-RR 

relationships, and develop a new method for correcting QT interval for heart rate. We will show 

that the above six parametric models are the special cases of Box-Cox model. We will assess 

performances of Box-Cox correction formulae using four off-drug ECG datasets and one on-

drug ECG dataset, as well as a simulated dataset. 

 

2. Methods 

2.1 Box-Cox approach to QT correction 
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The simple linear regression model   XY 0   assumes that the dependent Y has 

linear relationship with plus a random error component . This linear parametric approach can be 

successful provided the assumed model is appropriate. When the relationship between the 

dependent and independent variable is unknown or inexact, linear parametric regression can 

yield erroneous and even misleading results (Friedman and Stuetzle, 1981). 

Instead of imposing preconceived models, we seek insight into the nature of relationships in 

the data set and, if possible, the underlying phenomena that might have produced the observed 

data values. The objective of fully exploring and explaining the effect of covariate on a 

dependent variable in regression analysis is facilitated by properly transforming the dependent 

variable and independent variable. A number of parametric transformations for continuous 

variables in regression analysis have been suggested (Tukey, 1957; Box and Tidwell, 1962; 

Box and Cox, 1964; Carroll and Ruppert, 1988; Wang and Murphy, 2004). Tukey (1957) 

introduced a family of parametric power transformations such that the transformed values are a 

monotonic function of the observed Y : 
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where Y>0. This family was later modified by Box and Cox (1964) to take account of 

the discontinuity at λ = 0, so that the transformed values are a monotonic function of 

the observations, 
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and for the unknown parameter λ, 

  XY 0
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This transformation may provide approximately normally distributed errors and make the 

variance more nearly constant over data points of  . Substantial research has been conducted on 

the theoretical aspects of Box-Cox transformation and a review of this topic was provided by 

Sakia (1992). 

Box-Cox transformation can be extended to transform both dependent variable and 

independent variable as follows: 

   )(

0

)( XY  

where 
)(Y  and 

)(X  are the transformed dependent and independent variables, respectively, 

and   represents the random errors.  

The key to the application of Box-Cox transformation technique is to estimate the 

transformation parameter θ and λ. Box-Cox (1964) proposed two approaches: Maximum 
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likelihood approach and Bayesian approach. The maximum likelihood approach is commonly 

used as it is conceptually easy and the profile likelihood function is easy to compute.   

In this paper, we propose using the Box-Cox transformation to fit the QT-RR relationship 

so that we can derive the corresponding correction formulae. We describe next four types of 

Box-Cox transformations following the terminology used in the Stata (StataCorp, 2009). 

 

Left-hand-side-only Box-Cox model 

 

The most common application of the Box-Cox transformation in linear regression analysis 

is to transform the dependent variable only using the parameter θ. As the dependent variable is 

on the left-hand side of the linear regression equation, this model is known as the left-hand-

side-only Box-Cox model (we omit random error term   for the convenience of expression): 

RRQT  )(
     (2.1) 

 

After estimating the parameters θ, α and β in the equation (2.1), we can then derive the 

corresponding QT correction formulae. Considering that QTc interval represents the QT interval 

at a standardised heart rate of 60/minute (or QTc= QT when RR=1), the corresponding QT 

correction formulae can be written as: 

  /1)]1([ RRQTQTc    if θ ≠ 0 

)]1(exp[ RRQTQTc     if θ = 0 

Right-hand-side-only Box-Cox model 

 

The second model leaves the dependent variable untransformed and transforms the 

independent variable RR only using the parameter λ, forming a right-hand-side-only Box-Cox 

model. In this model, the dependent variable, QT, is expressed as: 

 

)( RRQT       (2.2) 

 

The resulting correction formula from (2.2) can be shown as: 

)1( 




RRQTQTc    if λ ≠ 0 

)ln( RRQTQTc    if λ = 0 

Lambda model 
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The third model, called Lambda model, performs the same transformation on both the 

dependent variable QT and independent variable RR using the parameter λ: 

)()(   RRQT       (2.3) 

 

Using the relationship QTc= QT when RR=1 in equation (2.3), we have the following 

correction formula: 

  /1)]1([ RRQTQTc   if λ ≠ 0 

RRQTQTc /    if λ = 0 

Theta model 

 

The most general model is to transform the dependent variable and independent variable 

differently. 

)()(   RRQT       (2.4) 

 

Where the dependent variable, QT, is transformed by a Box-Cox model with parameter θ, and 

the independent variable, RR, is subject to a Box-Cox transformation with parameter λ. We call 

this model (2.4) as the Theta model. 

Once the parameters θ, λ, α and β are estimated, we can derive a correction formula so that 

QTc=QT when RR=1. The derived correction formula can be shown as: 

 





 /1)]1([ RRQTQTc   if θ ≠ 0 and λ ≠ 0 

  /1)]ln([ RRQTQTc    if θ ≠ 0 and λ = 0 

)]1ln(exp[ 




RRQTQTc  if θ = 0 and λ ≠ 0 

RRQTQTc /    if θ = 0 and λ = 0 

It can be shown that Models 1, 2, 3, and 4 described in Section 1 are special cases of Box-

Cox model. For example,  

when θ=1 and λ=1, we have QTc=QT+α(1-RR), linear model (Model 1);  

when θ=1 and λ=-1, we have QTc=QT+α(1-1/RR),  hyperbolic model (Model 2);  

when θ=0 and λ=0, we have QTc=QT/RRα, parabolic model (Model 3);  

when θ=1 and λ=0, we have QTc=QT- αln(RR), loagrithmic model (Model 4); 
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For Models 5 and 6,  although there are no specific θ and λ values that can be used to 

express explicit relationships, their correction formulae could be approximated by the Box-Cox 

model. For example, the Model 5 QT=ln(β+αRR) or exp(QT)=β+αRR, can be approximated by 

the left-hand-side-only Box-Cox model
RR

QT







1

. If we could find the θ that satisfies 

the relationship 

 1
)exp(




QT
QT

, we can then establish that Model 5 is a special case of left-

hand-side-only Box-Cox model. There is no explicit expression for θ and finding out θ needs 

numerical calculations. 

 

A Box-Cox correction formula can be derived in three steps and we demonstrate the 

procedures using the Theta model.  The first step is to estimate the parameters θ and λ in a Box-

Cox model by the maximum likelihood method. This can be done using Stata (StataCorp, 2009). 

The second step is to calculate the Box-Cox transformed QT (i.e.
)(QT
) and RR (i.e.

)(RR ) 

using the parameter derived in Step 1. In the third step, the correction factor α is determined 

using the simple least square linear regression model 
)()(   RRQT 
. Introducing the 

estimated parameters θ, λ, α into 





 /1)]1([ RRQTQTc 
gives the QTc formula under the 

Theta model. 

 

2.2 Assessment of the performances of Box-Cox QT correction methods 

To assess the performances of the four correction formulae, we use the following five 

measurements. 

For regression models, the Root Mean Squared Error (RMSE) is often used to assess the 

goodness-of-fit of various QT-RR relationship models.  The RMSE is defined as 
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A smaller RMSE value indicates a better model fitting but does not necessarily mean a 

better QT correction formula.  The purpose of a correction formula is to generate QTc values 

that are uncorrelated with RR intervals. Pearson correlation coefficient (ρ) between QTc and 

RR is often used to assess if there is a linear relationship between the QTc and RR. If ρ is zero, 

QTc is considered to be independent of RR (Bazett, 1920; Malik et al., 2002; Camm and Malik, 

2002; Wang et al., 2010). A correlation of 0 means there is no linear relationship between the 
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two variables. However, zero correlation coefficient between QTc and RR does not necessarily 

mean their statistical independence if the relationship between QTc and RR is non-linear 

(Wang et al., 2010). Therefore, the slope from regression of QTc on RR has been used to assess 

if there is non-linear correlation between QTc and RR (Desai et al., 2003), and the slope of 

QTc-RR regression is expected to be zero when QTc values are independent of RR values.  

A correction formula would be much preferable in design of a thorough QT study if its 

resulting QTc intervals are less variable (Desai et al., 2003; Malik et al., 2004; Zhang and 

Machado, 2008; Tsong et al., 2008; Wang et al., 2012). For example, a smaller sample size 

would be needed if the standard deviation of QTc is reduced. We therefore use two 

measurements of QTc variation: standard deviation and range. 

 

3. Results 

3.1 Example 1.  Randomised Clinical Trials Data 

Our first example is a sample from 4 thorough QT trials conducted at Richmond 

Pharmacology from 2007 to 2008.  In these trials, the ECG databases were derived from the 

collection of standard 12-lead surface ECGs performed during the trials. In order to address 

intrinsic variability of the QT/QTc interval, which can be influenced by many factors including 

activity level, postural changes, circadian patterns, emotional state or food ingestion, the ECGs 

were collected at multiple times using 12 lead ECG recordings.  At each time point, the ECGs 

were recorded in triplicate, to reduce variance and improve the precision of measurement. Each 

ECG lasted 10 seconds and the triplicates were performed at 1-minute intervals. Before any 

ECG recording, the subjects maintained an undisturbed supine resting position for at least 10 

minutes. The subjects were asked to avoid postural changes during the ECG recordings.  

In this example, we used the baseline ECGs which were not affected by study drugs. This is 

a common practice in thorough QT trials in order to derive the individual correction formula 

(Malik 2001; ICH, 2005). A total 38,467 ECGs were used in this example and these ECGs were 

contributed by 225 healthy volunteers aged between 20 and 50 years. The ranges for QT and 

RR were 0.310-0.498 seconds and 0.521-1.667 seconds, respectively. 

Table 1 presents mean values of various measurements of QT correction performance over 

225 subjects by four Box-Cox models with their correction factors. The absolute values of 

correlation coefficient and regression slope of QTc-RR were used for calculating their mean 

values. Several observations can be made from this table. An optimum case is the model with 

the smallest value out of the four models for a subject’s ECG profile. 

Firstly, there is no universally applicable correction formula that produces consistently best 

performance in terms of the five measurements for assessing QT correction formulae as 

reflected in the number of optimum cases. This suggests that the best QT correction is often 

data driven: a correction method may work better for one ECG profile than another. 

 Secondly, the values of the mean absolute correlation coefficient and the mean absolute 

regression slope of QTc-RR are close to zero for all four QT correction formulae. This suggests 
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that the independence between QTc and RR, the primary objective of QT correction, can be 

achieved using the QT correction formulae derived from Box-Cox transformations.   

Thirdly, although the ‘Right hand-sided only model’ as described in equation (2.2) has the 

smallest mean values for  RMSE, ρ and slope, the Theta model in equation (2.4) has the 

smallest mean values for standard deviation and range of QTc.  

Fourthly, the ‘Right hand-sided only model’ generates the smallest variability in the 

correction factor α whereas the Lambda model in (2.3) and Theta model in (2.4) yield the QTc 

with very large standard variation of 434.106 and 649.531, respectively, due to some extreme 

values of θ and λ for some subjects. 

 

3.2 Example 2. Simulation Study 

In this example, we use the simulated dataset to assess the performance of four Box-Cox 

models. The aim of the simulation is to get a wide range of possible QT-RR patterns. First, we 

randomly selected 10 subjects from 225 subjects in Example 1 and then randomly selected 10% 

of ECG data from each of 10 subjects to form a new subject. This strategy was also used by 

Malik et al. (2004) in their simulation studies. This process is independently repeated 1000 

times, generating a new sample of 1000 subjects.  

Table 2 presents the mean values of various measurements of QTc by four different models 

using the simulated dataset. The simulation results are generally in agreement with those 

observed in Table 1. However, the variation in correction factor α for all four models becomes 

smaller compared with that in Table 1. This is because ranges of θ and λ estimated from newly 

simulated datasets become smaller than those from the original 225 subjects. 

 

3.3 Example 3. 4-way Crossover Study 

Our third example is a single-centre, randomised, placebo-controlled, double blind, 4x4 

crossover trial in 64 healthy volunteers who were randomised into a 4 period crossover 

comparison of placebo, moxifloxacin and levofloxacin. Twelve-lead ECGs were recorded using 

a MAC1200®  recorder (GE Healthcare) and stored electronically on the MUSE CV®  

information system (GE Healthcare).  This trial has 24,893 ECGs in total, of which 14,241 are 

off-drug ECGs and 10,652 on-drug ECGs. 

This example is different from Example 1 in that it not only contains the off-drug ECGs but 

also on-drug ECGs, enabling us to evaluate various QT correction methods under the real-life 

scenario of a thorough QT study. To analyse this dataset, we first estimated the individual 

correction factors α using the 14,241 off-drug ECGs at baseline and then applied the individual 

correction formulae to both off-drug and on-drug ECGs and calculated mean values of various 

measurements of QT correction evaluation for 64 subjects in this study (Table 3).   

The results in Table 3 are generally consistent with those observed from Example 1 and 2. 

In particular, all four QT correction formulae derived from the Box-Cox transformation yield 
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QTc that are independent of RR, and QTc from the Theta model and Lambda model have 

smaller variability. 

 

4. Discussion 

QT interval is an important parameter of surface resting ECG and is used as a surrogate 

endpoint in drug development to detect the potential of drugs to cause life threatening cardiac 

arrhythmias (Malik 2001; ICH, 2005; Goldenberg et al., 2006). As a result, the assessment of 

drug-induced QT interval prolongation has attracted significant attention from both 

pharmaceutical companies and the regulatory authorities (Malik 2001; ICH, 2005). 

Box-Cox transformation has been widely used in medical research since it was first 

proposed (Box and Cox, 1964; Carroll and Ruppert, 1988).  In this study, we propose to use the 

Box-Cox transformation to fit the QT-RR relationships in order to derive new QT correction 

formulae. Box-Cox model represents a parametric family for fitting a relationship between two 

or more variables. Box-Cox approach is particularly useful for the following situations: (1) The 

relationship between two variables is expected to be of a complex form and not easily 

characterised by standard linear or non-linear models. (2) There is no a priori reason for using a 

particular model. (3) One wants the data itself to suggest what the most appropriate functional 

form is. QT correction often involves these situations, it is therefore preferable to use Box-Cox 

transformation model to analyse the QT interval data. We have shown that the six commonly 

used QT correction models are the special cases of the Box-Cox model.  

The results presented here from 225 individual QT-RR profiles from the 4 clinical trials 

demonstrate that the QT correction formulae derived from the Box-Cox transformations could 

generate the QTc independent of RR, the primary purpose of QT correction. The results from 

the simulated 1000 individual ECG data and on-drug ECG data confirmed the above 

observation. Furthermore, our analyses demonstrate that the Theta model and Lambda models 

generate QTc with smaller variations. This is a desirable property because a smaller variation in 

QTc means more precise estimate (a narrower interval) of treatment effect. The Theta and 

Lambda models include the parabolic model QT=βRRα (the Bazzet and Fridericia correction 

are the special cases of the parabolic model) (Bazett, 1920; Fridericia, 1920). This finding is 

consistent with Wang et al study (2012). 

Over the last several decades, many authors have attempted to find a “true” and universally 

applicable correction formula, assuming that the investigated QT and RR relationship is 

representative of a “physiological” mechanism that is the same in every healthy subject or at 

least in a same subject of a well-defined population (e.g., healthy men) (Malik, 2001; Malik, 

2002). Empirical results have appeared to demonstrate that such attempts are futile (Malik, 

2001; Malik, 2002; Wang et al., 2012).  Our results also confirm this observation and show that 

there is no universally applicable correction formula that produces consistently better 

performance in terms of all five measurements for assessing QT correction formulae. 
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5. Conclusions 

The Box-Cox transformation represents a very flexible family for modelling QT-RR 

relationships including the six commonly used parameter models, thus providing a potentially 

better QT correction method than the existing parametric models. Furthermore, the 

implementation of Box-Cox transformation proposed in this study can be easily implemented 

through Stata software. Lastly, although all four QT correction formulae derived from the Box-

Cox transformation generate QTc independent of heart rate RR, the Box-Cox transformation of 

both QT and RR generates QTc with smaller variations.   
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Table 1: Summary statistics of model parameters and measurements of QT correction performance for 225 

subjects (38467 ECGs) from 4 thorough QT studies 

 Parameter Statistics 

Left hand  

sided only 

model 

Right hand 

sided only 

model 

Lambda  

model 

Theta 

model 

Model 

parameter 

θ  Mean 1.334  -0.362 0.019 

 SD 3.244  2.175 3.576 

  Median 1.080  -0.151 -0.074 

  Minimum -7.323  -10.393 -10.421 

  Maximum 8.868  4.679 9.063 

 λ Mean  -0.137 -0.362 -0.419 

  SD  2.156 2.175 2.321 

  Median  0.196 -0.151 -0.252 

  Minimum  -16.198 -10.393 -15.777 

  Maximum  4.463 4.679 4.824 



 

202  Box-Cox Approach to QT Interval Correction for Heart Rate 

 

 Parameter Statistics 

Left hand  

sided only 

model 

Right hand 

sided only 

model 

Lambda  

model 

Theta 

model 

 α Mean 4.075 0.153 37.351 67.865 

  SD 20.708 0.052 434.106 649.531 

  Median 0.126 0.147 0.398 0.376 

  Minimum 0.000 0.030 0.002 0.000 

  Maximum 235.332 0.503 6480.573 9567.549 

Model 

performance 

RMSE Mean 6.989 6.899 6.933 6.910 

 Optimum 

cases 

3 174 19 34 

 ρ Mean 0.003 0.001 0.009 0.003 

  Optimum 

cases 

42 134 18 36 

 slope Mean 0.000 0.000 0.001 0.000 

  Optimum 

cases 

42 135 18 35 

 QTc SD Mean 7.024 6.924 6.700 6.725 

  Optimum 

cases 

35 55 56 84 

 QTc 

Range 

Mean 37.674 37.676 36.554 36.223 

 Optimum 

cases 

46 52 59 73 

RMSE=Root Mean Squared Error, SD=Standard Deviation, Range=Maximum-Minimum 

 

Table 2: Summary statistics of model parameters and measurements of QT correction performance 

for 1000 simulated subjects (171048 ECGs) 

 Parameter Statistics 

Left hand  

sided only 

model 

Right hand 

sided only 

model 

Lambda  

model 

Theta 

model 

Model 

parameter 

θ  Mean 0.683  -0.422 -0.627 

 SD 1.838  1.401 2.164 

  Median 0.750  -0.459 -0.735 

  Minimum -5.869  -4.609 -7.121 
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 Parameter Statistics 

Left hand  

sided only 

model 

Right hand 

sided only 

model 

Lambda  

model 

Theta 

model 

  Maximum 6.927  5.342 8.523 

 λ Mean  0.128 -0.422 -0.404 

  SD  1.234 1.401 1.428 

  Median  0.085 -0.459 -0.480 

  Minimum  -3.782 -4.609 -5.046 

  Maximum  4.391 5.342 4.391 

 α Mean 0.751 0.146 1.130 3.559 

  SD 2.467 0.021 1.882 12.420 

  Median 0.180 0.147 0.553 0.671 

  Minimum 0.001 0.080 0.002 0.000 

  Maximum 55.483 0.211 23.097 228.545 

Model 

performance 

RMSE Mean 12.797 12.497 12.571 12.522 

 Optimum 

cases 

18 764 67 164 

 ρ Mean 0.004 0.002 0.014 0.005 

  Optimum 

cases 

213 618 51 131 

 slope Mean 0.000 0.000 0.001 0.000 

  Optimum 

cases 

211 614 52 136 

 QTc SD Mean 12.614 12.534 12.341 12.157 

  Optimum 

cases 

87 216 230 480 

 QTc 

Range 

  

Mean 65.424 64.843 63.307 62.822 

 Optimum 

cases 

172 197 286 358 

RMSE=Root Mean Squared Error, SD=Standard Deviation, Range=Maximum-Minimum 

 

Table 3: Summary statistics of model parameters and measurements of QT correction performance 

for 64 subjects from a 4x4 crossover trial (24546 ECGs) 
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 Parameter Statistics 

Left hand  

sided only 

model 

Right hand 

sided only 

model 

Lambda  

model 

Theta 

model 

Model 

parameter 

θ  Mean 1.388  -0.716 -0.221 

 SD 3.346  2.391 3.761 

  Median 1.444  -0.567 -0.249 

  Minimum -5.835  -6.290 -8.871 

  Maximum 7.505  4.679 7.459 

 λ Mean  -0.410 -0.716 -0.722 

  SD  2.146 2.391 2.470 

  Median  -0.501 -0.567 -0.425 

  Minimum  -6.595 -6.290 -7.182 

  Maximum  3.829 4.679 4.824 

 α Mean 2.819 0.151 10.763 57.308 

  SD 10.943 0.059 35.253 226.511 

  Median 0.100 0.139 0.496 0.387 

  Minimum 0.000 0.074 0.004 0.000 

  Maximum 82.940 0.490 207.546 1369.067 

Model 

performance 

RMSE Mean 6.190 6.103 6.138 6.112 

 Optimum 

cases 

2 47 4 11 

 ρ Mean 0.003 0.001 0.010 0.002 

  Optimum 

cases 

10 39 4 11 

 slope Mean 0.000 0.000 0.001 0.000 

  Optimum 

cases 

10 40 4 10 

 QTc SD Mean 6.072 6.117 5.782 5.736 

  Optimum 

cases 

12 11 20 21 

 QTc 

Range 

Mean 34.905 36.207 34.203 32.907 

 Optimum 

cases 

11 9 19 25 

RMSE=Root Mean Squared Error, SD=Standard Deviation, Range=Maximum-Minimum 


