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Abstract: In this paper, we introduce an extended four-parameter Fr échet model 

called the exponentiated exponential Fr échet distribution, which arises from the 

quantile function of the standard exponential distribution. Various of its 

mathematical properties are derived including the quantile function, ordinary and 

incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean 

residual life, mean waiting time, generating function, Shannon entropy and order 

statistics. The model parameters are estimated by the method of maximum 

likelihood and the observed information matrix is determined. The usefulness of 

the new distribution is illustrated by means of three real lifetime data sets. In fact, 

the new model provides a better fit to these data than the Marshall-Olkin Fr échet, 

exponentiated-Fr échet and Fr échet models. 
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1. Introduction 

The Fr échet distribution is a well-defined limiting distribution for the maximum of random 

variables with non-negative real support. It is a popular and widely used model for characterizing 

variables having extreme phenomenons like floods, rains, cash flow (finance), etc. A random 

variable Z has the two-parameter Fr échet (Fr) distribution with scale parameter δ > 0 and shape 

parameter θ > 0, if its cumulative distribution function (cdf) is given by 
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The probability density function (pdf) corresponding to (1) is 

 

 
 

Henceforth, we denote by Z ∼Fr(δ, θ) the random variable having density (2) with parameters δ 

and θ. 

The rth ordinary moment of Z (for r < θ) is given by 

 

 

where Γ(·) is the gamma function. The mean and variance of Z are E(Z) =δ Γ(1 − 
1

𝜃
 ) and Var(Z) 

= δ2 .[Γ(1 − 
2

𝜃
 ) − Γ2(1 − 

1

𝜃
 )] , respectively. 

The rth incomplete moment of Z can be expressed as 

 

 
 

where Γ(p, x) = ∫ 𝑤p−1 e−wdw
∞

𝑥
 (for p > 0) is the upper incomplete gamma function. 

Let T , R and Y be random variables with cdfs FT (x) = P(T ≤ x), GR(x) = P(R ≤ x) and DY(x) 

= P (Y ≤ x). The corresponding quantile functions (qfs) are QT(p), QR(p) and QY(p), where the qf 

is defined by QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If the densities exist, we denote them by fT(x), 

gR(x) and dY(x). We assume that the random variables T ∈ (a, b) and Y ∈ (c, d), for  

−∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞. Alzaatreh et al. (2014) defined the cdf of the T-R{Y} 

family of distributions by 

 

 
The pdf and hazard rate function (hrf) corresponding to (5) are given by (Alzaatreh et al., 2014) 

 

 
and 

 
respectively.  
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Let T have the exponentiated exponential (EE) distribution with pdf 

 
Then, by using the qf of the standard exponential distribution, QY(p) = − log(1 − p), the cdf 

of X follows from (5) is 

 
The pdf of X is given by 

 

 
 

For simplicity, the family (9) will be called the exponentiated exponential-R (“EE-R”) family. 

Cordeiro et al. (2013) and Ghosh and Alzaatreh (2015) studied some general properties of (9). 

Some of its special models have been proposed in the literature such as the EE-logistic by Ghosh 

and Alzaatreh (2015). 

The paper is organized as follows. In Section 2, we define an extended Fr échet model, named 

the exponentiated-exponential Fr´echet (“EEFr”) distribution, and discuss the shapes of its pdf 

and hrf. In Section 3, some of its mathematical properties are obtained. The density of its order 

statistics is derived in Section 4. In Section 5, the model parameters are estimated by the method 

of maximum likelihood and the observed information matrix is determined. In Section 6, we 

explore the usefulness of the proposed distribution by means of three real data sets. Finally, 

Section 7 offers some concluding remarks. 
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2. The Exponentiated-Exponential Fr échet Distribution 

If R follows the Fréchet distribution, then from equations (8) and (9), the cdf and pdf of the EEFr 

distribution are given by 

 

 
and 

 
 

respectively. Henceforth, a random variable having pdf (11) is denoted by X ∼EEFr(α, β, δ, θ).  
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Some special sub-models of the EEFr distribution are now cited: 

(i) If β = 1 in (11), the EEFr distribution is equal to the exponentiated-Fr échet distribution. 

(ii) If β = 1 and α = 1 in (11), the EEFr distribution reduces to the Fr´echet distribution. 

Note that the distribution in (11) is constructed using the qf of the standard exponential 

distribution in (5). By using different qf’s of other distributions with support (0, ∞), we can 

propose different versions of the EEFr distributions. Table 1 lists some EEFr distributions using 

the qfs of the Weibull, log-logistic, Rayleigh, Dagum and Lomax distributions. 

 

Table 1: Special EEFr distributions. 

 
 

The survival function (sf) (S(x)), hrf (h(x)) and cumulative hazard rate function (chrf) (H(x)) 

of X are given by 

 

 
and 

 
 

respectively. 

Figures 1 and 2 display some plots of the pdf and hrf of X for selected parameter values. 

Figure 1 indicates that the EEFr distribution is well-suited for right-skewed data. Further, Figure 

2 shows that the EEFr hrf can produce shapes such as increasing, decreasing and reversed-J.  
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Figure 1: Plots of the EEFr densities. 

 

 
Figure 2: Plots of EEFr hazard rates. 

 

2.1. Shapes of the Density and Hazard Rate Functions 

 

The shapes of the density and hazard rate functions can be described analytically. 

The critical points of the EEFr density are the roots of the equation: 

 
 

where z = [1 − e−(δ/x)θ 

]. There may be more than one root to (13).  
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The critical point of h(x) = h(x; α, β, δ, θ) are obtained from the equation 

 

 
 

There may be more than one root to (14). 

 

3. Mathematical Properties 

Established algebraic expansions to determine some structural properties of the EEFr 

distribution can be more efficient than computing those directly by numerical integration of its 

density function. We provide some of its mathematical properties in the next sections. 

 

3.1 Expansion of the EEFr Density 

 

In order to obtain a simplified form for the EEFr pdf, we expand (11) in power series. 

Let 

 
 

By using the generalized binomial expansion, the quantity A reduces to 

 

 
where βk = β(β − 1) · · · (β − k + 1) is the descending factorial. 

Inserting this result in (11), we have 

 

 
Letting B = {1 − e−(δ/x) } and using the generalized binomial expansion again, 

 

 
Let Zj+1 be a Fr random variable with scale parameter (j + 1)1/θ δ > 0 and shape parameter 

θ > 0 and pdf hj+1(x) = hj+1(x; δ, θ). Combining the last two results,  
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we obtain 

 
In a more simplified form, the last equation becomes 

 
where 

 
Equation (15) reveals that the density function of X is a mixture of Fr échet densities. So, several 

mathematical properties of the EEFr distribution can be derived from those of the Fr distribution. 

This equation is the main result of this section. 

 

3.1 Quantile Function and Simulation 

 

The qf of a distribution has many uses in both the theory and applications of statistics. The qf 

of X is obtained by inverting (10). We have 

 
If U has a uniform distribution in (0, 1), then X = Q(U ) has the EEFr(α, β, δ, θ) distribution. 

The analysis of the variability of the skewness and kurtosis on the shape parameters α and β 

can be investigated based on quantile measures. The Bowley skewness (Kenney and Keeping, 

1962) based on quartiles is given by 

 
The Moors kurtosis (Moors, 1998) based on octiles is given by 
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1 

These measures are less sensitive to outliers and they exist even for distributions without moments. 

In Figure 3, we plot the measures B and M of X. They indicate the variability of these measures 

on the shape parameters. Further, it is clear from Figure 3 that the EEFr is a right-skewed 

distribution. 

 
Figure 3: Skewness (a) and Kurtosis (b) plots of the EEFr distribution. 

 

3.2 Moments 

 

The rth moment of X can be expressed from (15) as 

 

 
Using (3), we obtain 

 
 

Setting r = 1 in (17), it follows the mean µ1
′  = E(X). 

The central moments (µ𝑛) and cumulants (κ𝑛) of X are obtained from equation (17) as 

 

 
 

respectively, where κ1 = µ1
′  . The skewness and kurtosis can be calculated from the third and 

fourth standardized cumulants as γ1 = 𝜅3 𝜅2
3 2⁄⁄  and γ2 = 𝜅4 𝜅2

2⁄ .  
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They are also important to derive Edgeworth expansions for the cdf and pdf of the standardized 

sum and mean of independent and identically distributed random variables having the EEFr 

distribution. 

 

3.3 Incomplete Moments 

 

Using (4), the rth incomplete moment of X follows from (15) as 

 
The main application of the first incomplete moment refers to the Bonferroni and Lorenz 

curves. These curves are very useful in several fields. For a given probability π, they are defined 

by B(π) = m1(q)/(πµ1
′  ) and L(π) = m1(q)/ µ1

′  , respectively, where m1(q) comes from (18) with r 

= 1 and q = Q(π) is evaluated from (16). 

The amount of scatter in a population is measured to some extent by the totality of deviations 

from the mean and median defined by δ1 = ∫ |x − µ1
′  |𝑓 (𝑥)𝑑𝑥

∞

0
 and δ2(x) =∫ |x − 𝑀 |𝑓 (𝑥)𝑑𝑥

∞

0
, 

respectively, where  µ1
′  = E(X) is the mean and M = Q(0.5) is the median. These measures can be 

expressed as δ1 = 2 µ1
′ F (µ1

′  ) − 2m1(µ1
′  ) and δ2 =  µ1

′  − 2m1(M ), where F(µ1
′  ) comes from (10). 

Further applications of the first incomplete moment are related to the mean residual life and 

mean waiting time given by m(t; α, β, δ, θ) = [1 − m1(t)]/S(t) − t and µ(t; α, β, δ, θ) = t − [m1(t)/F 

(t)], respectively, where F (t; α, β, δ, θ) and S(t; α, β, δ, θ) = 1 − F (t; α, β, δ, θ) are obtained from 

(10). 

 

3.3 Generating Function 

 

The moment generating function (mgf) of a random variable X provides the basis of an 

alternative route to analytical results compared with working directly with the pdf and cdf of X. 

The mgf of the Fréchet distribution (for t < θ) is given by 

 

 
 

The calculations of the integral in (19) involve the generalized hypergeometric function defined 

in equation (2.3.1.14) (Prudnikov et al., 1986, p. 322). 

For a > 0 and s > 0, if b = p/q (p ≥ 1 and q ≥ 1 co-primes integers), we can  
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write 

 
where z = (−1)p+q sp aq/(pp qq), △(k, a) represents the sequence 

 
 

mFn denotes the generalized hypergeometric function defined by 

 
 

and (c)k = c(c + 1) . . . (c + k − 1) denotes the ascending factorial. 

Numerical routines for computing the generalized hypergeometric function are available in 

most mathematical packages, e.g., MAPLE, MATLAB, MATHE-MATICA and Ox. Nadarajah and 

Kotz (2005) and Nadarajah (2007) also used this result to obtain the properties of the distribution 

of the difference between two independent Gumbel variates, and to Iacobellis and Fiorentino 

(2000), and Fiorentino et al. (2006)’s model for peak streamflow. 

By using (20), the mgf of the Fr distribution follows as 

 
Based on the representation (15), the mgf of X can be expressed as 

 
and then using (21), M (t) reduces to 
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Equation (22) is the main result of this section. 

 

3.4 Shannon Entropy 

 

Entropy has been used in various situations in science as a measure of variation of the 

uncertainty. Numerous measures of entropy have been studied and compared in the literature. 

The Shannon’s entropy (Shannon, 1948) is used as a measure of uncertainty and plays an 

important role in many fields such as engineering and information theory. Shannon’s entropy of 

a random variable X with pdf f (x) is defined as ηX = −E[log(f (X))]. According to Ghosh and 

Alzaatreh (2015), the Shannon’s entropy for the EE-X family in (8) is given by 

 

 
 

where T ∼ EE(α, β) and ψ(·) is the digamma function. 

For the EEFr distribution, we have 

 

 
 

First, we consider E[log(1−e−T )]. By expanding log(1−e−T ) in Taylor series, one can get 

 

  
where B(·, ·) is the beta function. Setting u = − log(1 − e−t) gives 

 
 

Using (23)-(26) and the fact that v0 = 0, the Shannon’s entropy of X reduces to 

 
 

where C = log(δ/θ) − log(αβ) + [ψ(β) − ψ(1)](1 − α−1) + 1 − β−1.  



 

178                      An Extended Fr echet Distribution: Properties and Applications 

 

4. Order Statis 

Order statistics make their appearance in many areas of statistical theory and practice. 

Suppose X1, . . . , Xn is a random sample from the EEFr distribution. Let Xi:n denote the ith order 

statistic. Then, the pdf of Xi:n can be expressed as 

 
 

Inserting (10) and (11) in the last equation and after some algebra, we obtain 

 
Hence, 

 
where 

 
 

and fα,(i+j)β,δ,θ (x) is the EEFr density with parameters (α, (i+j)β, δ, θ). Equation (27) is the main 

result of this section. It reveals that the pdf of the EEFr order statistics is a linear combination of 

EEFr densities. So, several mathematical quantities of these order statistics like ordinary and 

incomplete moments, factorial moments, mgf, mean deviations and several others can be derived 

from those quantities of the EEFr distribution. 

 

5. Estimation and Information Matrix 

Here, we consider the estimation of the unknown parameters of the new distribution by the 

maximum likelihood method. The maximum likelihood estimates (MLEs) enjoy desirable 

properties that can be used when constructing confidence intervals and regions and deliver simple 

approximations that work well in finite samples. The resulting approximation for the MLEs in 

distribution theory is easily handled either analytically or numerically. Let x1, . . . , xn be a sample   
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of size n from the EEFr distribution given by (11). The log-likelihood function for the vector of 

parameters Θ = (α, β, δ, θ)T can be expressed as 

 
 

Let zi = [1 − e−(δ/xi)θ]. Then, we can write A as 

 
 

The components of the score vector U (Θ) are given by 

 
Setting these equations to zero and solving them simultaneously yields the maximum likelihood 

estimates (MLEs) of the model parameters. There is no closed-form expression for the MLE Θ̂ 

and its computation has to be performed numerically using a nonlinear optimization algorithm. 

The Newton-Raphson iterative technique could be applied to solve the likelihood equations and 

obtain Θ̂ numerically.  
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For interval estimation of the parameters, we require the 4 × 4 observed information matrix 

J(Θ) = {−Jrs} (for r, s = α, β, δ, θ) given in Appendix A. 

This matrix can be evaluated numerically from standard maximization routines as part of their 

output; e.g., one can use the R functions optim or nlm, the Ox function MaxBFGS, the SAS 

procedure NLMixed, among others, to compute J(Θ) numerically. 

Under standard regularity conditions, the multivariate normal N4(0, J(Θ̂)−1) distribution can 

be used to construct approximate confidence intervals for the model parameters. Here, J(Θ̂) is the 

total observed information matrix evaluated at Θ̂ . Then, the 100(1 − γ)% confidence intervals 

for α, β, δ and θ are given by 𝛼 ̂ ± 𝑧𝛾∗/2  ×  √𝑣𝑎𝑟(𝛼 ̂), 𝛽 ̂ ± 𝑧𝛾∗/2  × √𝑣𝑎𝑟( �̂�), 𝛿 ̂ ±  𝑧𝛾∗/2  ×

 √𝑣𝑎𝑟(𝛿 ̂), and 𝜃 ̂ ±  𝑧𝛾∗/2  ×  √𝑣𝑎𝑟(𝜃 ̂), respectively, where the var(·)’s denote the diagonal 

elements of J(Θ̂)−1 corresponding to the model parameters, and 𝑧𝛾∗/2 is the quantile (1 − γ∗/2) of 

the standard normal distribution. 

The likelihood ratio (LR) statistic can be used to check if the EEFr distribution is strictly 

“superior” to the Fr distribution for a given data set. Then, the test of H0 : α = β = 1 versus H1 : 

H0 is not true is equivalent to compare the EEFr and Fr distributions and the LR statistic becomes 

w = 2{ l (�̂�, �̂�, 𝛿, 𝜃) − l (1, 1, δ̃, θ̃)}, where �̂�, �̂�, 𝛿, and 𝜃 are the MLEs under H1 and 𝛿, and �̃� 

are the estimates under H0. 

 

6. Applications 

In this section, we provide three applications to real data to illustrate the importance of the 

EEFr distribution. The model parameters are estimated by the method of maximum likelihood 

and five goodness-of-fit statistics are evaluated to compare the EEFr distribution with other 

competing models. 

Data set 1: Epoxy Strands Failure at 90% Stress Level. The first data set consists of 101 

observations, which represent the stress-rupture life of 49 kevlar epoxy strands. They were 

subjected to constant sustained pressure at the 90% stress level until all had failed, so that we 

have complete data with exact failure times. These times in hours are given by Barlow et al. 

(1984) and Andrews and Herzberg (1985). The data have recently been used by Cooray and 

Ananda (2008), Pescim et al. (2010) and Cordeiro et al. (2013).The data are: 0.01, 0.01, 0.02, 

0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09,0.10, 0.10, 0.11, 0.11, 0.12, 

0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34 ,0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 

0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 

0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 

1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 

1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.  
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Data set 2: Rainfall data. The second data set consists of annual maximum daily precipitation 

(unit:mm) at Busan, Korea for the 1904-2011 period. The data were obtained from the Korean 

Meteorological Administration (KMA(http://www.kma.go.kr) 2013). This data set has recently 

been used by Jeong et al. (2014). The data are: 24.8, 140.9, 54.1, 153.5, 47.9, 165.5, 68.5, 153.1, 

254.7, 175.3, 87.6, 150.6, 147.9, 354.7, 128.5, 150.4, 119.2, 69.7, 185.1,153.4, 121.7, 99.3, 126.9, 

150.1, 149.1, 143, 125.2, 97.2, 179.3,125.8, 101, 89.8, 54.6, 283.9, 94.3, 165.4, 48.3, 69.2, 147.1, 

114.2, 159.4, 114.9, 58.5, 76.6, 20.7, 107.1, 244.5, 126, 122.2, 219.9, 153.2, 145.3, 101.9, 135.3, 

103.1, 74.7, 174, 126, 144.9, 226.3, 96.2, 149.3, 122.3, 164.8, 188.6, 273.2, 61.2, 84.3, 130.5, 

96.2, 155.8, 194.6, 92, 131, 137, 106.8, 131.6, 268.2, 124.5, 147.8, 294.6, 101.6, 103.1, 247.5, 

140.2, 153.3, 91.8, 79.4, 149.2,168.6, 127.7, 332.8, 261.6, 122.9, 273.4, 178, 177, 108.5, 115,241, 

76, 127.5, 190, 259.5, 301.5. 

Data set 3: Survival Times of 72 Guinea Pigs. The third data set consists of 72 survival times 

of guinea pigs injected with different amount of tubercle bacilli and was studied by Bjerkedal 

(1960). Guinea pigs are known to have high susceptibility of human tuberculosis, which is one 

of the reasons for choosing this species. The data represent the survival times of Guinea pigs in 

days.The data are given below: 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 

54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 

83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 

233, 258, 258, 263, 297, 341, 341, 376. 

We fit the EEFr model to the three data sets and compared it with other models, namely: the 

Marshall-Olkin extended Fr échet (MOFr) (Krishna et al., 2013a; 2013b), exponentiated Fr échet 

(EFr) (Nadarajah and Kotz, 2003) and Fr distributions. The densities of the MOFr and EFr 

distributions are: 

 

 
 

Some well-known measures of goodness-of-fit statistics including the log-likelihood function 

evaluated at the MLEs ( ), the Akaike information criterion (AIC), the Anderson-Darling (𝐴∗), 

the Cram ér–von Mises (𝑊∗) and the Kolmogrov-Smirnov (K-S) statistics. They are evaluated 

to compare the fitted models. The statistics 𝑊∗  and 𝐴∗  are described in details in Chen and 

Balakrishnan (1995). In general, the smaller the values of these statistics, the better the fit to the 

data. The required computations are carried out using the R-software. 
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Table 2: MLEs and their standard errors (in parentheses) for the data sets 1, 2 and 3. 

 
 

Table 2 lists the MLEs and their corresponding standard errors (in parenthe- ses) of the model 

AIC, 𝐴∗ , 𝑊∗ parameters for data sets 1, 2 and 3. The numerical values of the statistics , 

and K-S, and p-values are listed in Table 3. We note from the figures of this table that the EEFr 

AIC, 𝐴∗ , 𝑊∗ , K-S statistics and the largest p-values model has the lowest values of, 

among the fitted MOFr, EFr and Fr models, thus suggesting that the EEFr distribution yields the 

best fit, and therefore could be chosen as the best model. The histogram of the data sets 1, 2 and 

3 and the estimated pdfs and cdfs of the EEFr distribution and its competitive models are 

displayed in Figure 4. It is clear from Table 3 and Figure 4 that the EEFr model provides the best 

fits to the histogram of the three data sets and could be chosen as the best model. 
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Table 3: The statistics ,   AIC, 𝐴∗, 𝑊∗ and K-S for the data sets 1, 2 and 3. 

 
 

7. Concluding Remarks 

In this paper, we propose an extended Fr échet distribution, called the exponentiated 

exponential Fr échet, which arises from the quantile function of the exponential distribution. We 

study some mathematical properties of the extended Fr échet distribution including an expansion 

for the density function and explicit expressions for the moments, generating function, mean 

deviations, quantile function, Shannon entropy and order statistics. The maximum likelihood 

method is employed for estimating the model parameters and the observed information matrix is 

determined. We fit the new distribution to three real data sets to demonstrate its flexibility. The 

proposed model provides consistently better fit than other competing models. We hope that the 

new model will attract wider application in areas such as engineering, survival and lifetime data, 

hydrology, economics, among others. 
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Figure 4: Plots of the estimated pdfs and cdfs of the EEFr, MOFr, EFr and Fr models for data sets 1, 2 & 

3. 

Appendix A 

The observed information matrix for the parameter vector Θ = (α, β, δ, θ)T  
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is given by 

 
whose elements are 
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where zi = [1 − 𝐞−(𝛅/𝐱𝒊)𝜽
], and 
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