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Abstract

Proteins play a key role in facilitating the infectiousness of the 2019 novel coronavirus. A
specific spike protein enables this virus to bind to human cells, and a thorough understanding of
its 3-dimensional structure is therefore critical for developing effective therapeutic interventions.
However, its structure may continue to evolve over time as a result of mutations. In this paper,
we use a data science perspective to study the potential structural impacts due to ongoing
mutations in its amino acid sequence. To do so, we identify a key segment of the protein and
apply a sequential Monte Carlo sampling method to detect possible changes to the space of low-
energy conformations for different amino acid sequences. Such computational approaches can
further our understanding of this protein structure and complement laboratory efforts.
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1 Introduction

The COVID-19 disease is an ongoing public health concern since the 2019 novel coronavirus,
formally known as SARS-CoV-2 (Gorbalenya et al., 2020), has spread throughout the world.
Much research has been devoted to understand the mechanism by which the virus attacks human
cells (e.g., Hoffmann et al., 2020; Zhang et al., 2020). Such a scientific understanding is critical
to the ongoing development of therapeutic interventions and vaccines for COVID-19, see, e.g.,
Amanat and Krammer (2020) for a review of efforts to date. Proteins play key roles in facilitating
the entry of viruses into cells, and specifically for SARS-CoV-2, the spike (S) glycoprotein that
protrudes from its viral membrane (Walls et al., 2020). Genome sequencing of SARS-CoV-2
has shown that this new coronavirus has moderate genetic similarity to the SARS-associated
coronavirus (formally SARS-CoV) that caused the 2002-2003 outbreak, having between 75-80%
of their genetic material in common (Lu et al., 2020). In particular, both SARS-CoV and SARS-
CoV-2 utilize a spike protein to bind to the ACE2 (Angiotensin Converting Enzyme 2) receptor
in human cells (Ou et al., 2020). Laboratory work has now shown that the 3-dimensional (3-D)
structures of these two spike proteins are broadly similar; however, they are sufficiently different
such that antibodies for SARS-CoV are not effective against SARS-CoV-2 (Wrapp et al., 2020).

As a result of Anfinsen’s Nobel prize-winning work in the 1970s, it has been known that a
protein generally has a stable 3-D structure that is largely determined by its amino acid sequence
(Anfinsen, 1973). A broad consequence of this discovery, that has been verified in the subse-
quent decades of laboratory experimental work, is that similarities in amino acid sequences often
correspond to similarities in 3-D structure (Krissinel, 2007). However, laboratory techniques for
determining protein structure are laborious and cannot be applied to all possible amino acid
sequences of interest, e.g., in drug design applications (Khoury et al., 2014). Further, the atomic
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coordinates of amino acids sometimes cannot be ascertained, and will thus be missing data in the
published 3-D structures (Brandt et al., 2008). Thus, to complement laboratory work, there has
been much interest in developing computational methods to tackle the protein folding problem,
that is, to predict the 3-D structure of a protein based on its amino acid sequence (Friesner
et al., 2002). While much progress has been made in the past five decades towards improving
the accuracy of such computation-based structure predictions (Dill and MacCallum, 2012), the
protein folding problem is still considered unsolved in general. The most successful competitor to
date, as assessed by the most recent biannual blinded protein folding competition in 2018 known
as CASP13 (Critical Assessment of Structure Prediction; http://predictioncenter.org), was
the deep learning method AlphaFold developed by Google’s DeepMind team (AlQuraishi, 2019).

We briefly summarize the timeline of key milestones in the scientific understanding of the
SARS-CoV-2 spike protein, to provide context for the contribution of this paper. Using modern
RNA sequencing technology, scientists were quickly able to determine the original first known
SARS-CoV-2 genome (Wu et al., 2020), including the amino acid sequence of its S protein,
by early January 2020. On the basis of this sequence and its similarities with related proteins,
including previously-determined 3-D structures of SARS-CoV and MERS, preliminary 3-D struc-
ture predictions of the SARS-CoV-2 S protein could be generated using computational methods
(e.g., https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-coronavirus/). Sub-
sequently, thanks to worldwide attention and rapid research efforts, a UT Austin laboratory was
the first to release a 3-D structure of the SARS-CoV-2 S protein in mid-February 2020, using
cyro-EM techniques (Wrapp et al., 2020). A limitation was that several segments of the protein
were not successfully determined, and thus missing from the published structure. Nonetheless,
this ground-breaking work verified that it is a key segment of the S protein, known as the receptor-
binding domain (RBD), that has the ability to bind with human ACE2 when the RBD is in its
“open” state. Further, Wrapp et al. (2020) showed that in comparison with the corresponding
RBD of the SARS-CoV S protein, the two have noticeable similarity in their overall structures,
but they have significant deviations in some local segments. In particular, their binding sites are
sufficiently different such that SARS-CoV antibodies cannot recognize SARS-CoV-2. By early
March 2020, the 3-D structure of the RBD of the SARS-CoV-2 S protein, in a structural complex
bound together with ACE2, was also published via laboratory efforts (Yan et al., 2020).

These 3-D structures are publicly available in the Protein Data Bank (PDB) (Bernstein
et al., 1977), and are a vital piece of the puzzle in the ongoing development of interventions to
neutralize the SARS-CoV-2 virus. It is also well-known, however, that viral genomes mutate
over time with varying rates (Drake, 1993). Mutations underlie, for example, why the prevalent
strain of influenza may be difficult to predict when designing the annual flu vaccine (Cohen, 2017).
Mutations are changes in the viral genome that occur as the virus replicates; possible results of
mutations include changes in the amino acid sequence of its proteins – via additions, deletions,
or substitutions of individual amino acids (Sanjuán et al., 2010). Thus, scientists continue to pay
close attention to variations in sequenced SARS-CoV-2 genomes over time (Tang et al., 2020).
At the time of this writing, among sequenced SARS-CoV-2 genomes there have already been two
amino acid substitutions observed in a key segment of its S protein RBD, as we shall subsequently
detail. Therefore, there is concern about the impact of such mutations on the protein structure,
and in turn on the binding ability and infectiousness of SARS-CoV-2 as it continues to evolve
worldwide (Jia et al., 2020). It is infeasible to use laboratory-based structure determination
to study all potential sequence mutations, thus we may instead use computational methods to
assess the potential structural impacts and complement laboratory efforts.

These considerations provide the main motivation of this paper. Our goal is to adopt a
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data science perspective in studying the potential effects of mutations on the 3-D structure of
the RBD. Towards this objective, our specific contributions may be summarized as three major
points. First, by taking the SARS-CoV-2 S protein as a case study, we highlight the importance
of the protein structure prediction problem, and introduce the challenges and opportunities it
presents to data scientists. Second, we describe how sequential Monte Carlo (SMC) sampling
methods can be adapted to yield insight into the structural impact of protein sequence mutations.
Third, we discuss our findings based on applying the methodology to a key segment of the SARS-
CoV-2 S protein RBD.

2 The SARS-CoV-2 S Protein as a Case Study: Background on
Protein Sequence and Structure

2.1 The SARS-CoV-2 S Protein Sequence

The SARS-CoV-2 S protein consists of a linear sequence of 1273 amino acids, and our focus is
its RBD which consists of the amino acid positions 329 to 522 (Wrapp et al., 2020), and we
shall use this SARS-CoV-2 sequence to reference positions for the remainder of the paper. This
sequence may be compared to that the SARS-CoV S protein, which is overall slightly shorter at
1255 amino acids long, with its corresponding RBD located from amino acids 316 to 508. The
two RBDs share 144 (74%) of their amino acids in common, and the SARS-CoV-2 RBD has one
extra amino acid (Valine) inserted at position 483. It is also worth noting that there are existing
known protein sequences with higher degree of similarity to SARS-CoV-2 than SARS-CoV: the S
protein of the bat coronavirus known as RaTG13 (Zhou et al., 2020) has an amino acid sequence
that matches 97% of the SARS-CoV-2 S protein. Thus RaTG13 S may be even more structurally
similar to SARS-CoV-2 S; however, there is no 3-D laboratory-determined structure currently
available for RaTG13 S in the PDB. To visualize, Figure 1 lays out the RBDs of these three
sequences in an optimally aligned fashion that shows their matching, or conserved, amino acids
using the blue shaded colors. There are 20 amino acid types, with each being represented by its
one-letter abbreviation. The dash symbol (–) indicates the position where SARS-CoV has one
fewer amino acid compared to SARS-CoV-2 and RaTG13. At the sequence level, it can be seen
that SARS-CoV-2 S and SARS-CoV S differ the most in the segments 437 to 461 and 469 to
487, the latter being indicated by the red box.

2.2 From Sequence to Structure

A standard metric for comparing two 3-D protein structures is the root-mean-square deviation
(RMSD) between the corresponding pairs of atomic Cartesian coordinates, after applying the
optimal translation and rotation to superimpose the structures. Specifically, it is standard prac-
tice to use backbone atoms for RMSD calculations, which are the N, C, Cα, and O atoms that
are common to all 20 amino acid types and link adjacent amino acids together. The side chains
are functional groups extending from the Cα atom and are unique for each of the 20 amino acid
types. That is, we may equivalently say that an amino acid substitution implies that a change
in the side chain has occurred at that position.

Based on the SARS-CoV-2 S protein sequence and previously known structures in the PDB,
researchers at University of Washington used their Robetta structure prediction server (Kim
et al., 2004) to build a preliminary 3-D structure prediction for the entire SARS-CoV-2 S protein
(available for download from http://new.robetta.org/results.php?id=15652). Subsequently,

http://new.robetta.org/results.php?id=15652
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Figure 1: Aligned amino acid sequences for the RBDs of SARS-CoV-2, RaTG13, and SARS-
CoV spike glycoproteins. Positions where all three sequences have the same amino acid type are
shaded in dark blue, while positions where two of the sequences have the same amino acid type
are shaded in light blue. The red box marks the segment consisting of positions 469 to 487 that
has substantive amino acid differences among the three sequences. The position (483) where
SARS-CoV has one less amino acid compared to SARS-CoV-2 and RaTG13 is marked by the
dash symbol. Visualized with Jalview software.

3-D structures were laboratory-determined and also became publicly available in the PDB: the
accession codes are 6VSB for the full standalone SARS-CoV-2 S protein (Wrapp et al., 2020),
and 6LZG for the structural complex of the RBD bound together with the ACE2 receptor (Yan
et al., 2020). Thus this provides a good test case to comment on the accuracy of Robetta’s
structure prediction, as it represents the efforts of one of the current leading research groups in
computational protein folding.

We find that the 6VSB PDB structure (chain A, which has the RBD observed in its “open”
state that enables binding with human ACE2) is missing the coordinates of all the amino acids in
the segment 444 to 491 and two other short RBD segments, likely due to experimental difficulty.
In contrast, the 6LZG PDB structure (chain B is the SARS-CoV-2 RBD) has a continuous
and complete set of RBD atomic coordinates. The Robetta RBD structure prediction has an
RMSD of 0.933 to the available atomic coordinates of 6VSB, and an RMSD of 2.411 to 6LZG.
However, if the segment 444 to 491 in 6LZG is ignored in the calculation, the RMSD drops to
1.208. Thus, the Robetta prediction is quite accurate for most of the RBD structure; however,
it has difficulty with the segment that includes the positions 469 to 487 noted in Figure 2. This
result highlights a limitation of current computational approaches: it is still challenging to build
accurate predictions for segments that have little sequence similarity with existing proteins in the
PDB. Therefore, further advances in computational methods for structure prediction continue to
be needed. We address this point in greater detail in Section 4.2, by evaluating and comparing
the prediction accuracy achieved by state-of-the-art methods on this challenging segment of the
SARS-CoV-2 RBD and the corresponding segment of the SARS-CoV RBD.

2.3 Structure Comparison between SARS-CoV and SARS-CoV-2

We now specifically examine the available 3-D structures for the RBDs of SARS-CoV-2 and
SARS-CoV, using public data from the PDB. For this purpose we also download the structural
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Figure 2: RMSDs between the 3-D structures of the SARS-CoV-2 and SARS-CoV RBDs in
their bound complex with ACE2, calculated at each amino acid position. Black circles indicate
positions where the sequences are conserved (i.e., having the same amino acid type), while red
squares indicate positions with different amino acid types. The dashed lines indicate positions
469 and 487, the key segment of interest in this paper.

complex of the RBD bound together with the ACE2 receptor for SARS-CoV (PDB code: 2AJF)
to compare with that of SARS-CoV-2 (PDB code: 6LZG). These structural complexes have
more complete atomic coordinates for the RBD, compared to structures of the full standalone
S protein which are missing key RBD segments (PDB codes: 5X58 for SARS-CoV, 6VSB for
SARS-CoV-2). The RMSD may be computed on the two RBDs after alignment; positions 389
to 394 of SARS-CoV-2 are excluded from the calculation as the atomic coordinates atoms of the
corresponding positions in the SARS-CoV 3-D structure are missing, and position 483 is also
excluded as SARS-CoV-2 has an extra amino acid at that position. The RMSD between the
two RBDs calculated in this way is 1.69, indicating a strong level of similarity in the overall
structures.

To examine how this variation is distributed over the length of the RBD, in Figure 2 we
plot the RMSDs of the backbone atoms for each amino acid position separately. Positions where
the two protein sequences are conserved are indicated by the circles, while the square markers
indicate positions where the amino acid types differ. From the plot, it can be seen that there
are two distinct segments with high RMSD values between the two RBDs: the first is the five
amino acids before the gap of missing coordinates in the SARS-CoV structure, and the second is
the segment 469 to 487 as indicated by the dashed lines, where we previously noted a low level
of sequence similarity. It can also be observed that while there are many sequence differences in
the segment 437 to 461 as well, these have less of an effect on structural difference. In Yan et al.
(2020), the authors also note that while there is overall similarity between the two RBDs, there
are non-trivial differences in the positions where the RBDs forms chemical bonds with ACE2.
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Table 1: Amino acid sequences for positions 469 to 487 in the spike proteins of SARS-CoV-2 and
its known mutants, RaTG13, and SARS-CoV. The Identifier column shows the sequence ID as
given in the nr database searched via BLAST; ‘PDB’ indicates that a 3-D structure is available for
that protein. The bold letters in the Sequence column indicate amino acid differences compared
to the first known SARS-CoV-2 sequence.
# Name Identifier Sequence

1 SARS-CoV-2 original PDB:6VSB_A STEIYQAGSTPCNGVEGFN
2 SARS-CoV-2 mutant 1 QIQ49882.1 STEIYQASSTPCNGVEGFN
3 SARS-CoV-2 mutant 2 QIS30165.1 STEIYQAGSTPCNGAEGFN
4 Bat coronavirus RaTG13 QHR63300.2 STEIYQAGSKPCNGQTGLN
5 SARS-CoV PDB:5X58_A SNVPFSPDGKPCTP-PALN

In particular, positions 474 and 486 of the SARS-CoV-2 RBD were identified as binding sites,
where there is substantial structural dissimilarity with the SARS-CoV RBD.

Since this structural comparison reveals that 469 to 487 is likely a critical segment affected
by amino acid substitutions, we will focus in this paper on the potential impact of mutations
to this segment. Indeed, this is also a segment where the SARS-CoV-2 sequence is noticeably
distinct from its closest known related sequence RaTG13, with 4 of the 22 substitutions in
the RBD occurring this segment; resulting structural differences here may partially explain its
inability to infect humans. Using BLAST (Altschul et al., 1997) on the nr sequence database
on April 23, 2020, we find that there are already two amino acid substitutions observed within
the segment 469 to 487 among existing SARS-CoV-2 genomes. These are shown in Table 1,
along with the RaTG13 and SARS-CoV sequences for this segment. Further, the BLAST output
shows that there are otherwise no prior sequences in the entire database, besides these four,
that share more than 10 amino acids in common with this segment of SARS-CoV-2. Thus, we
may emphasize that the 3-D structure of this segment would be especially challenging to predict
using computational methods, e.g., as seen in the Robetta results (Section 2.2), as the known
structures of existing sequences in the PDB can provide very limited guidance in this case.

For these challenging segments, sampling-based methods can be used to more effectively
explore the space of plausible 3-D structures. Thus in what follows, we assess and quantify
the structural uncertainties associated with mutations of this segment, assuming the rest of
the SARS-CoV-2 S protein is held fixed. To do so, we will use an energy function to guide the
sampling, for each of the five sequences identified in Table 1. A powerful method for this purpose
is via SMC, which we motivate and review next.

3 SMC Method for Sampling Protein Structures

The energy landscape theory of Onuchic et al. (1997) suggests that a protein structure stabilizes
at the 3-D arrangement of atoms, or conformation, with the lowest potential energy. This
principle can be leveraged by sampling methods designed to explore the space of possible low
energy conformations for a given amino acid sequence. SupposeH is a given energy function, that
takes a conformation x as input, and outputs a scalar value for energy. Then for a given amino
acid sequence, we may conceptualize sampling conformations from the Boltzmann distribution:

π(x) ∝ exp {−H(x)/T} , (1)
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where T is the effective temperature that may be set to 1 by appropriately scaling the energy
function.

In practice, nature’s ‘true’ energy function is not known, and so various approximate energy
functions have been developed, often with parameters trained on structure data such that realistic
conformations (i.e., those closer to the ‘truth’ as determined by laboratory techniques) generally
have lower energies than those that are not (Zhang et al., 2007b). All trained energy functions
are imperfect, in the sense that a conformation with larger RMSD from the truth may sometimes
have lower energy than a conformation with smaller RMSD. For this study, we adopt an energy
function that has been used with reasonable success in Wong et al. (2018), and our previous work
shows that it is useful for the purpose of quantifying the space of low-energy conformations.

Protein geometric contraints (including bond lengths and angles) allow x to be more simply
parametrized in terms of free dihedral angles, rather than Cartesian coordinates. Each amino acid
in the sequence has three such angles (φ, ψ, ω) that determine the placements of its backbone
atoms, along with 0-4 additional angles denoted χ governing the placement of its side chain
atoms. The goal then is to draw samples (conformations) from the high-density regions of π(x),
or equivalently from the low-energy regions. Considering the five amino acid sequences identified
in Table 1, we note that the sampling problem is difficult: the segment of interest is 19 amino
acids long, which is a high dimensional space with > 60 geometric degrees of freedom (backbone
plus side chain for each amino acid). Further, the energy landscape is highly multimodal and
rough due to the numerous pair-wise atomic interactions within the protein. Due to the difficulty
of this sampling problem, most previous sampling methods have focused on shorter segments,
e.g., of lengths 12 to 17 (Tang et al., 2014).

A powerful approach that can be leveraged for this sampling problem comes from Monte
Carlo methods, and specifically SMC. The original conformation sampling algorithm for protein
segments based on sequential sampling techniques was proposed in Zhang et al. (2007a), which
outperformed other approaches on 2-D and 3-D lattice models. In subsequent work, sampling
methods inspired by SMC were also shown to be successful on real protein structures (Tang
et al., 2014; Wong et al., 2018). This paper adopts the SMC methodology presented in Wong
et al. (2018). A brief overview of the method is provided here and the interested reader may
refer to that paper for details. The key idea is to sequentially sample the angles of x one
amino acid at a time, and this provides a natural incremental distribution for SMC where each
particle is a partially constructed conformation. At the i-th SMC step, we sample from the
conditional distribution of amino acid i in the sequence, given the previously sampled amino acids,
1, 2, . . . , i−1. That is, we sample (φi, ψi, ωi, χi), conditional on (φ1:i−1, ψ1:i−1, ω1:i−1, χ1:i−1) when
i > 1, according to an incremental energy function ∆H(φi, ψi, ωi, χi|φ1:i−1, ψ1:i−1, ω1:i−1, χ1:i−1).
The incremental energy helps to (a) rule out the possibility of atomic clashes, and (b) ensure
that the segment connects properly with the two fixed ends of the rest of the protein. The
pool of partial conformations is expanded and then filtered at each step to ensure that a diverse
set of low-energy particles is maintained. A secondary filtering step is embedded to handle the
sampling of the amino acid side chains. The final output of the SMC sampler is a set of sampled
conformations for the input sequence, that can be considered to represent the low-energy space
of (1). Thus analysis of these SMC samples can yield insight into the differences between the
conformational spaces corresponding to the different input sequences.

We close this section with some technical details. To obtain our main results, we will apply
the SMC method to each of the five amino acid sequences identified in Table 1. Since the focus
is on potential local structural impacts of amino acid substitutions, we hold the rest of the S
protein fixed at the coordinates in the PDB structure 6VSB. We note that this is a simplifying
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assumption, as we cannot rule out the possibility that local substitutions can have more global
impacts on the protein structure. Nonetheless, this is common practice in the bioinformatics
literature on loop modeling (e.g., Soto et al., 2008; Tang et al., 2014; Wong et al., 2017; Marks
et al., 2017), and likewise we expect this approach to yield useful information here. Following,
we then examine the sampled conformations for the five sequences, and the comparison of their
distributions can provide insight into the impacts of the amino acid substitutions. To prepare the
data, we take the coordinates from the PDB file 6VSB as the base 3-D structure for the SARS-
CoV-2 S protein. Recall that the 6VSB PDB structure is missing the coordinates of many amino
acids in the RBD, while 6LZG is overall complete. By superimposing the coordinates of the 150
RBD amino acids present in both 6LZG and 6VSB, we find a RMSD of 0.95. Thus, given their
overall similarity, we proceed with an approximation by imputing the missing RBD coordinates
from 6VSB with those from 6LZG after optimal superposition. Using this base structure, we
then create mutants by substituting the sequences in Table 1 for the segment 469 to 487. We
then use the SMC method to generate conformations for this segment, in all of the sequence
variants as well as the base structure, as a basis for comparisons.

4 Results

We present our main results in Section 4.1: the SMC method is applied to the sequences listed
in Table 1, and the potential differences in their 3-D conformational spaces are quantified. Fol-
lowing in Section 4.2, the protein segment prediction accuracies of state-of-the-art methods are
evaluated on the known structures of SARS-CoV and SARS-CoV-2, highlighting the need for
further advances in structure prediction algorithms.

4.1 Conformational Analysis of SARS-CoV-2 Mutant Sequences

For each of the five sequences in Table 1, the SMC method was run multiple (six) times, each with
60000 particles to ensure good coverage of the low-energy conformational space. This required
a total runtime of approximately 3 hours per sequence, on an 8-core Xeon 3.7GHz CPU. In
the subsequent comparative analysis, we kept the 20000 lowest energy conformations among the
SMC samples as the representatives for each sequence. We shall denote these samples as x(k)i ,
for sequences i ∈ {1, 2, 3, 4, 5} and conformations k ∈ {1, 2, . . . , 20000}.

To gain insight into the distributions of these conformations in 3-D space, we performed
RMSD calculations on the segment of interest, namely positions 469 to 487. Specifically, we
computed pairwise RMSDs between conformations, where we define sets of RMSDs grouped
according to sequences i, j ∈ {1, 2, 3, 4, 5}:

dij
.
=

{
RMSD(x

(k)
i , x

(l)
j )

}
for all k, l ∈ {1, 2, . . . , 20000} if i 6= j,

and dii
.
=

{
RMSD(x

(k)
i , x

(l)
i )

}
for k, l ∈ {1, 2, . . . , 20000} such that k 6= l. (2)

Thus the set dij approximately represents the distribution that would be obtained by repeat-
edly drawing one random conformation from the low-energy space of sequence i, one random
conformation from the low-energy space of sequence j, and computing the RMSD between those
conformations. Histograms of dij then provide a simple way to compare these distributions
among the five sequences: if the distribution of dii is very different from that of dij for j 6= i,
then that suggests that the plausible low-energy conformations for the two sequences are located
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in very distinct regions of 3-D space. Equivalently, that suggests the amino acid differences
between the two sequences can potentially lead to significant changes in the corresponding 3-D
structure, including its binding capacity.

We plot dij for all pairs i, j in Figure 3, where the i-th panel includes all the distributions dij ,
j = 1, 2, 3, 4, 5 to facilitate visual comparison. Kernel density estimation (KDE) was applied to
obtain the probability densities shown, using the KDE implementation from Botev et al. (2010).
We may draw several key observations from these results:
• First, the SARS-CoV amino acid sequence is the most dissimilar from the others, and the

bottom panel shows that its low-energy conformational space is also very distinct from the
others: the long-dashed curve shows that most conformations sampled for SARS-CoV are
within 2 to 10 RMSD of each other, but mostly > 10 RMSD away from conformations
sampled for the other four sequences. This relates to Figure 2: the segment 469 to 487 had
large structural differences between the PDB structures of SARS-CoV and SARS-CoV-2,
likely due to the large number of amino acid differences in that segment as well as other parts
of the sequence. Our analysis shows that if only this segment of SARS-CoV was substituted
into SARS-CoV-2, keeping the rest of the sequence fixed, there would likely still be a large
difference between the 3-D structures within that segment.
• Second, the bat coronavirus RaTG13 sequence appears to have a conformational space that is

much more similar to SARS-CoV-2 compared to SARS-CoV, as seen in the fourth panel. With
four amino acid substitutions in the segment 469 to 487 compared to the three SARS-CoV-
2 variants, its resulting RMSD distribution could be somewhat distinct from SARS-CoV-2:
RaTG13 has a larger mode at ∼ 3 RMSD and a smaller mode at ∼ 10 RMSD compared to
all three SARS-CoV-2 variants.
• Third, the SARS-CoV-2 mutation at position 483 (Mutant 2) appears to possibly have a more

substantive effect compared than the mutation at position 478 (Mutant 1). Mutant 2 involves
the substitution of Valine (V) with Alanine (G), which has a less bulky side chain with two
fewer methyl (CH3) groups. The resulting RMSD distributions comparing this mutant to
the other SARS-CoV-2 variants and RaTG13 (third panel) become nearly indistinguishable.
Any biological basis for this phenomenon would, of course, require further investigation.
To close this section, in Figure 4 we visualize the five lowest energy conformations among

the SMC samples, for each of the sequences. Since the segment from 469 to 487 is sampled with
the rest of the protein held fixed, the panels show close-ups focusing on the protein backbone
for that region of the 3-D structure, along with the nearby amino acids to which this segment
is connected. The five lowest energy conformations are shown with different color strands, as
indicated in the figure. Some structural variability can be observed within these low-energy
samples for each sequence, indicating the SMC sampler is successful at discovering distinct
conformations with similarly low energy values. Much greater structural variability can be seen
between SARS-CoV-2, RaTG13, and SARS-CoV overall than between the three SARS-CoV-2
variants.

4.2 Comparison of Structure Prediction Accuracy

The segment of the RBD studied in this paper poses a challenging test for structure prediction
algorithms designed to tackle protein segments. We evaluate and compare three such recent
methods: the SMC method of Wong et al. (2018); the DiSGro method of Tang et al. (2014);
the next-generation KIC (NGK) method in the Rosetta suite (Stein and Kortemme, 2013); the
Robetta server described in Section 2.2 is the automated structure prediction pipeline for entire
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Figure 3: Probability densities of the pairwise RMSDs dij , comparing the five sequences in
Table 1. For example, in the top panel, the solid curve shows the distribution of pairwise RMSDs
among the 20000 low-energy conformations sampled for the original SARS-CoV-2 sequence,
while the long-dashed curve in the same panel shows the distribution of pairwise RMSDs when
comparing the samples of the original SARS-CoV-2 sequence with those of SARS-CoV.
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SARS-CoV-2 original
STEIYQAGSTPCNGVEGFN

SARS-CoV-2 mutant 1
STEIYQASSTPCNGVEGFN

SARS-CoV-2 mutant 2
STEIYQAGSTPCNGAEGFN

Bat coronavirus RaTG13
STEIYQAGSKPCNGQTGLN

SARS-CoV
SNVPFSPDGKPCTP-PALN

Figure 4: For each sequence in Table 1, the conformations of the five SMC samples with the lowest
energy are displayed in these close-ups (colored in order of ascending energy: grey, turquoise,
yellow, blue, orange). A portion of the fixed part of the protein is visible: the white strands
where this segment connects to the rest of the protein, along with some nearby helices and sheets.
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proteins, built on the Rosetta modeling suite. All of these methods are sampling-based and do
not rely on the knowledge of existing sequences in the PDB. We use the known structures of
SARS-CoV-2 and SARS-CoV to provide two specific test cases:
• Segment 469 to 487 of the SARS-CoV-2 RBD, the main segment of interest in this paper.

We use the true structure provided by PDB code 6LZG, as it has a complete set of atomic
coordinates for this segment.
• Segment 456 to 473 of the SARS-CoV RBD, which is the corresponding segment in SARS-CoV

as shown in Figure 1 in the red box. The true structure with complete atomic coordinates
for this segment is provided by PDB code 5X5B.
To prepare a test case, the segment is deleted from the protein while holding the rest

of the 3-D structure fixed at the truth. To assess a method, we use it to draw 500 samples
representing the conformational space of the given segment, and the lowest-energy conformation
is the method’s structure prediction for the missing segment. Accuracy is evaluated using the
RMSD of the reconstructed segments to the known truth. For the SMC method (Wong et al.,
2018), we used 60000 particles as in Section 4.1, and outputted 500 final conformations. For
the DiSGro method (Tang et al., 2014), we used the authors’ program and increased the default
setting of 5000 generated conformations to 100000 to obtain the best possible results; the lowest-
energy 500 conformations were kept as the representative samples. For the NGK method (Stein
and Kortemme, 2013), we used the version included in the most recent release of Rosetta 3.12
on April 9, 2020 along with the optimal settings as recommended by the online guide (https://
guybrush.ucsf.edu/benchmarks/benchmarks/loop_modeling), and ran the program 500 times
to obtain the desired samples.

We note that the DiSGro and SMC methods can each complete the entire sampling and
prediction task for a test case in under 30 minutes on an 8-core workstation, with DiSGro
requiring only about 10 CPU minutes. However, NGK is significantly more computationally
intensive: generating one sample requires about 45 CPU minutes, so ∼2 days is needed to obtain
500 samples on the same 8-core workstation. The results are shown in Table 2, where we present
two RMSD calculations for each method and test case: (A) the RMSD of the conformation
closest to the truth among the 500 samples, (B) the RMSD of the prediction (i.e., the lowest-
energy conformation of the 500 according to that method). Column (A) shows that in both
test cases NGK’s samples have a conformation closer to the truth than SMC and DiSGro, while
SMC has better samples than DiSGro. Column (B) shows that the final predictions are not
very accurate for any of the methods: the RMSDs are much larger than column (A), showing
that none of the energy functions used by the methods can correctly identify the best RMSD
conformation among the samples in this challenging prediction test. SMC has the best prediction
for SARS-CoV-2 (RMSD = 6.97), while NGK has the best prediction for SARS-CoV (RMSD
= 4.36). In particular, the high computational cost of NGK has some apparent advantages for
sampling conformations, but has only comparable final prediction accuracy to SMC in these two
cases. These results show that there is an overall need to further improve structure prediction
algorithms in future research.

5 Discussion

In this paper, we used SMC to investigate the possible effects to the 3-D structure of the SARS-
CoV-2 spike protein due to mutations in its amino acid sequence. SMC is potentially a powerful
technique for this purpose, as it is effective at sampling conformations with low energy for the

https://guybrush.ucsf.edu/benchmarks/benchmarks/loop_modeling
https://guybrush.ucsf.edu/benchmarks/benchmarks/loop_modeling
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Table 2: Evaluating the SMC, DiSGro, and NGK methods on sampling and predicting segments
in the known structures of SARS-CoV-2 and SARS-CoV. The smallest RMSD among the 500
samples and RMSD of the prediction are shown for each method.

A. Smallest RMSD sampled B. RMSD of prediction

SMC DiSGro NGK SMC DiSGro NGK

SARS-CoV-2 2.55 2.64 1.90 6.97 10.06 8.26
SARS-CoV 3.24 4.02 2.18 5.02 9.60 4.36

segment of interest. Thus, by comparing the sampled conformations for several sequences, the
method can help detect changes to the low-energy regions of the 3-D conformational space as
a result of the amino acid differences among the sequences. Our results are consistent with the
observed differences between the known 3-D structures for the specific variants of SARS-CoV-2
and SARS-CoV in the Protein Data Bank, and also provide some preliminary intuition about the
potential role of mutations that are being observed in SARS-CoV-2. Given the current public
health concern posed by COVID-19 as a result of the SARS-CoV-2 virus, potential effects of
mutations to key viral proteins are of high importance, as structural changes may affect the
efficacy of ongoing medical developments. Thus, our work here highlights one problem where
sampling methods and data scientists can have an important role.

We view this paper as a foray into the area that combines data science with structural biology
for COVID-19 research, that we hope can spur further statistical and scientific investigations.
Thus we list some limitations of the current study along with potential directions to take. First,
there may be other interesting ways to summarize and compare the SMC samples from different
sequences. Here, we extracted the 20000 conformations with the lowest energies and treated
them equally; for example, all the samples might be kept and weighted according to energies for
a more comprehensive analysis. Second, here we only investigated one segment of the SARS-CoV-
2 spike protein, amino acids 469 to 487. If mutations occur in different locations of the sequence,
it could be useful to simultaneously sample conformations for multiple disjoint segments together
(e.g., Tang et al., 2015). Third, we took the energy function as given as in Wong et al. (2018).
Different energy functions could be tried for further insights. Fourth, we note that this work is
inherently exploratory in nature: insights about a protein’s conformational space discovered in
this way would require solid scientific corroboration to have a solid biological basis, given the
need for further advances in the accuracy of structure prediction algorithms in general. Thus our
work is consistent with the role of computational methods for protein folding that was noted in
the Introduction: computation can complement and help provide focus to ongoing medical and
scientific efforts.

Supplementary Materials

The data and R code needed to reproduce the results in this paper can be found at the Journal
of Data Science website.
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