
Journal of Data Science 14(2016), 67-96

Understanding Variable Effects from Black Box Prediction:

Quantifying Effects in Tree Ensembles Using Partial Dependence

Guy Cafri,Barbara A. Bailey

University of California, San Diego

San Diego State University

Abstract: Scientific interest often centers on characterizing the effect of one or more

variables on an outcome. While data mining approaches such as random forests are

flexible alternatives to conventional parametric models, they suffer from a lack of

interpretability because variable effects are not quantified in a substantively

meaningful way. In this paper we describe a method for quantifying variable effects

using partial dependence, which produces an estimate that can be interpreted as the

effect on the response for a one unit change in the predictor, while averaging over

the effects of all other variables. Most importantly, the approach avoids problems

related to model misspecification and challenges to implementation in high

dimensional settings encountered with other approaches (e.g., multiple linear

regression). We propose and evaluate through simulation a method for constructing

a point estimate of this effect size. We also propose and evaluate interval estimates

based on a non-parametric bootstrap. The method is illustrated on data used for the

prediction of the age of abalone.

Key words: Bagging, Bootstrap, Data Mining, Random Forest, Partial Dependence

1. Introduction

Most science is concerned with characterizing the effect of one or more variables on an

outcome, in particular the nature and strength of the relationship. Data mining methods are

generally distinguished by a great deal of flexibility in the number of predictor variables than can

be considered and how their effects are “modeled”, but it is often at the expense of being able to

adequately characterize their effects. Traditional parametric models such as multiple linear

regression require correct model specification in order for estimates to be trustworthy and become

unreliable when the number of predictors (p) approaches the number of observations (n). In

contrast, data mining approaches such as random forests (Breiman, 2001) do not require any

model specification and can be used irrespective of the size of p relative to n. However, random

forests suffer from an inability to characterize variable effects in a substantively meaningful way.

By comparison, a regression coefficient from a multiple linear regression is informative to the

extent that it conveys the strength and direction of a variable’s effect on the response (in the

original scale of both variables), while controlling for the effect of other variables. The absence

68 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

of methods to quantify variable effects in random forests in a similar manner is possibly one

reason that they have not yet enjoyed widespread use in scientific applications, where

interpretation of a numerical quantity that describes a variable’s effect is of central importance

(Dasgupta et al., 2012; Friedman, 2001). Even in research contexts where prediction might be

the primary objective, it is often also desirable to be able to interpret variable effects using effect

sizes with an interpretation similar to coefficients from a multiple linear regression. In this paper

we address this problem by proposing an effect size based on the method of partial dependence

(Friedman, 2001), which avoids problems related to model misspecification and implementation

in high dimensional settings by using random forests as the basis of the estimation.

Tree-based methods are among the best for data mining applications in a predictive context,

allowing for diverse inputs and an ability to identify relevant predictors from a large pool (Hastie,

Tibshirani, and Friedman, 2009). Random forests (Breiman, 2001) represent an important

advancement over prior tree-based methods in generating accurate predictions. The improved

prediction accuracy in random forests is achieved by combining bagging (i.e., bootstrap

aggregating (Breiman, 1996)) with random predictor selection at each tree split. Bagging reduces

the variance through its averaging of identically distributed trees, an effect that is enhanced by

random feature selection, which further reduces the variance by de-correlating the trees (Breiman,

2001; Hastie, Tibshirani, and Friedman, 2009). This improvement in prediction accuracy comes

at the cost of interpretability however, because the simplicity of a single tree is replaced by an

ensemble of trees.

To date several approaches have been described that could be used to interpret variable

effects in random forests. One option is to use permutation importance (Hastie, Tibshirani, and

Friedman, 2009) or conditional permutation importance (Strobl et al., 2008). Generally,

permutation importance does not characterize variable effects in a way that is substantively

meaningful, as it only describes the predictive ability of a variable relative to other variables in

the forest. Another possibility is to identify the most important variables (e.g., via permutation

importance) and to then use this predictor variable subset in a conventional parametric statistical

model that can be used for variable interpretation. Although such an approach does convey

variable effects in a substantively meaningful way given the availability of regression coefficients,

it is somewhat unsatisfactory. Specifically, it may omit variables that are important and will not

control for the effects of all variables when estimating the effects of variables that are in the

subset, unless a rather inclusive variable retention strategy is adopted (Strobl, Malley, and Tutz,

2009). Furthermore, this approach relies on correct model specification of all variables. Yet

another alternative is partial dependence (Friedman, 2001), which can be interpreted as the effect

of one or more variables on the response (in their original scale), averaging over the effects of

other variables used to grow the forest. Although this method is appealing given its similarity to

interpretation of coefficients from a multiple linear regression, to date this method has been

limited in application to graphical depictions. In this paper we describe a method that can be used

to generate point estimates and confidence intervals based on the method of partial dependence.

We propose and evaluate through simulation a method for constructing a point estimate and

 Guy Cafri,Barbara A. Bailey 69

interval estimates based on a non-parametric bootstrap (Efron, 1987; Efron and Tibshirani, 1993)

The method is illustrated using data for the prediction of the age of abalone.

2. Methodology

2.1. Random Forests

Random forests can be described in several steps. Adopting the notation of Hastie et al.

(2009), the first step is to take 𝐵 bootstrap samples of size 𝑁 from the data, where 𝑁 corresponds

to the total number of observations in the data. Grow a tree 𝑇𝑏 on each bootstrap sample for 𝑏 =
1, … , 𝐵. The tree growing process is based on what is typically used for decision trees (Breiman

et al., 1984) except that at each split a subset, 𝑚, of the total number of variables, 𝑝, is selected

at random. Furthermore, trees are not pruned, with terminal nodes occurring when the minimum

node size is reached. Prediction for an observation 𝑥 in the context of regression is based on

taking the average value on the response for the terminal node in the 𝑏th tree where 𝑥 appears,

�̂�𝑏(𝑥), and averaging over all trees in the forest:

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ �̂�𝑏(𝑥)𝐵

𝑏=1 (1)

In the context of classification, letting �̂�𝑏(𝑥) be the class prediction of the 𝑏th tree, the prediction is

conventionally based on:

 �̂�𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {�̂�𝑏(𝑥)}1

𝐵 (2)

In the case of two classes, if the relative frequency of the event class is greater than .5 in the

terminal node of 𝑥 for the 𝑏th tree, an event would be predicted, whereas if it is less than .5 then

no event is predicted. Then, a tree-averaged prediction for an observation is based on whether or

not the proportion of trees predicting an event exceeds .5.

2.2. Partial Dependence

Using the notation of Hastie et al. (2009), consider the subvector 𝑋𝑆 of 𝑙 < 𝑝 for the input

predictor variables 𝑋′ = (𝑋1, 𝑋2, … 𝑋𝑝) with 𝑆 ⊂ {1,2, … , 𝑝}. Further, let 𝐶 be the complement

set with 𝑆 ∪ 𝐶 = {1,2, … , 𝑝}. 𝑋𝑆 is a set of variables whose ‘target’ effect is of interest, and 𝑋𝐶

is the set of all other variables in the data which we seek to average over. Partial dependence is

then defined as (Friedman, 2001):

𝑓𝑆(𝑋𝑆) = E𝑋𝐶
𝑓(𝑋𝑆, 𝑋𝐶) = ∫ 𝑓(𝑋𝑆 , 𝑋𝐶)𝑝𝐶(𝑋𝐶) 𝑑𝑋𝐶 (3)

with marginal probability density 𝑝𝐶(𝑋𝐶) = ∫ 𝑝(𝑋) 𝑑𝑋𝑆, where 𝑝(𝑋) is the joint density over all

inputs.

70 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

The quantity in (3) for a single tree in a forest is estimated by (Friedman, 2001):

 𝑓�̅�(𝑋𝑆) =
1

𝑁
∑ 𝑓(𝑋𝑆, 𝑥𝑖𝐶)𝑁

𝑖=1 (4)

where 𝑥𝑖𝐶 , 𝑥2𝐶 , … , 𝑥𝑁𝐶 are the values of 𝑋𝐶 with 𝑁 observations. To obtain an estimate of partial

dependence for a forest, we would average over the 𝑏 trees in the forest:

�̂�𝑑 =
1

𝐵
∑ 𝑓�̅�(𝑋𝑆)𝑏

𝐵
𝑏=1 (5)

where 𝑑 = 1, … , 𝐷, corresponding to the distinct combination of values taken on by 𝑋𝑆 .

Generally, 𝑋𝑆 can be comprised of multiple variables, each variable having two or more unique

values. In this general case 𝐷 would correspond to the total number of distinct combinations of

values across those variables. The utility of considering multiple variables in a partial dependence

approach, which might be referred to as ‘multivariable partial dependence’, is that it allows the

possibility of examining interactions among two or more variables while averaging over the

effects of all other inputs. More common however is to consider only a single variable partial

dependence (hereafter the only type of partial dependence that is considered). In this case 𝐷

would correspond simply to the number of distinct values a single variable takes on in a dataset.

To obtain a prediction for a particular value, 𝑋𝑆 = 𝑥, from an individual tree that has been grown,

all observations in the dataset are assigned the value of 𝑥 while keeping the values of all other

variables as they are. This synthetic data is then passed through the tree to construct the prediction.

To obtain the forest averaged prediction for 𝑥, do the same for the remaining 𝐵 trees and take an

average of the predictions. Finally, repeat this process for all other values of 𝑋𝑆 occurring in the

data. Typically, partial dependence plots have distinct values of 𝑋𝑆 plotted on the X-axis and their

forest-averaged prediction on the Y-axis.

2.3. An Effect Size Based on Partial Dependence

The general idea of the proposed approach is to use the output produced as part of partial

dependence to fit a parametric model, which in turn is used to obtain a point estimate. It is

important to note that partial dependence for a single variable will only have the functional form

for that variable specified (if that variable is nominal and treated as a categorical input then no

restriction on functional form is placed), all the remaining variable inputs which are being

averaged over are not subject to parametric restrictions, one of the distinct advantages of using

random forests. Of course any misspecification of functional form can be mitigated by fitting a

model that corresponds to the form observed in a partial dependence plot.

For continuous outcome data a point estimate is based on the regression coefficient from a

weighted least squares regression, with weights corresponding to the frequency with which each

distinct value of 𝑋𝑑, 𝑑 = 1 … 𝐷, appears in the original dataset. In this case the model is:

�̂�𝑑 = 𝑋𝑑𝛽 + 𝜀𝑑 (6)

 Guy Cafri,Barbara A. Bailey 71

with �̂� = (𝑋′Ω−1𝑋)−1𝑋′Ω−1�̂�

and Ω = 𝑑𝑖𝑎𝑔 (𝑛1, … , 𝑛𝐷) where 𝑛 is a frequency

𝛽 from above can be interpreted as an average treatment effect (ATE) (Imbens, 2004). This

is the effect, in the population, of moving all subjects from being untreated to treated (i.e., in the

case of a binary explanatory variable characterized by the presence or absence of treatment). The

ATE interpretation follows from the manner in which the outcome, �̂�𝑑, is calculated. That is,

predictions are averaged over all observations for each level of an explanatory variable.

Confidence intervals for �̂� can be based on a nonparametric bootstrap. One option is the

percentile method (Efron, and Tibshirani, 1993). A two-sided confidence interval is calculated

by using the sorted bootstrap distribution of the estimated effect, �̂�∗, to identify the values of the

lower and upper bound given 𝐵 bootstrap replicates:

(�̂�𝐵(𝛼/2)
∗ , �̂�

𝐵(1−(
𝛼

2
))

∗) (7)

A better interval is the bias-corrected and accelerated confidence interval (BCa), which corrects for

bias and skewness in the shape of the bootstrap distribution (Efron, 1987).

 To summarize, the proposed algorithm consists of the following:

1) Grow a forest.

2) Estimate partial dependence (for a single variable).

a. Create 𝐷 datasets (𝑑 = 1, … , 𝐷). For all observation in the 𝑑𝑡ℎ dataset only

let them take on one value for the variable of interest while keeping values

of all other variables unchanged.

b. Pass the 𝑑𝑡ℎ dataset through each tree and average the predictions over the trees in

the forest.

c. Repeat Part b for each of the 𝐷 datasets

3) Construct a point estimate of the proposed effect size by fitting a weighted least squares

model with response based on the tree-averaged predicted values obtained in Step 2, the

explanatory variable corresponding to the value used to generate each tree-averaged

prediction, and weight based on the frequency each value the explanatory variable takes on

in the original data.

4) For confidence intervals, repeat Steps 1-3 for as many bootstrap samples as desired

3. Numerical Examples

3.1. Simulation Design

The design of the simulation is based on manipulating the magnitude of the target variable’s

effect and sample size. We used 10,000 simulated cases per condition to evaluate bias and overall

72 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

accuracy (root mean square error (RMSE)) of the point estimate, and 1,000 simulated cases per

condition to evaluate interval estimates with 1,000 bootstrap replicates per simulated case. Bias

was calculated as the parameter minus the estimate, averaged over the number of simulations.

The RMSE was calculated by taking the square root of the average squared distance of the

estimate from the parameter. Coverage was calculated as the proportion of times the parameter

is captured by the 95% bootstrap confidence interval.

Data Generation Process 1

Data generation process (DGP) 1 is based on the following model:

𝑌𝑖 = 𝛽0𝑋𝑖0 + 𝛽1𝑋𝑖1
∗ + ⋯ + 𝛽12𝑋𝑖12

∗ + 𝜀𝑖

with, 𝑋𝑖𝑝
∗ denoting a standardized value corresponding to:

𝑋𝑖1, 𝑋𝑖3, 𝑋𝑖4, 𝑋𝑖5, 𝑋𝑖6, 𝑋𝑖7~𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,30)

𝑋𝑖2, 𝑋𝑖8, 𝑋𝑖9, 𝑋𝑖10, 𝑋𝑖11, 𝑋𝑖12~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (.5)

𝜀𝑖~𝑁(0,1)

Here 𝑋𝑖0 equals 1 for all 𝑖, therefore 𝛽0 represents the intercept. The remaining variables in the model

were independently drawn from the indicated distributions with effects that were zero for all but 𝛽1

and 𝛽2. We consider the situation where 𝑐𝑜𝑟𝑟(𝑋𝑖𝑗 , 𝑋𝑖𝑗′) = 0 𝑓𝑜𝑟 𝑗 = 1, … ,12, which is motivated

by a desire to initially evaluate and the proposed method in the simplest of contexts, a relatively small

number of inputs with no correlation.

Data Generation Process 2

Additional simulations considered the more realistic situation where there is a correlation

among the inputs 𝑐𝑜𝑟𝑟(𝑋𝑖𝑗 , 𝑋𝑖𝑗′) ≠ 0 for some 𝑋𝑖𝑗𝑠 combined with higher dimensional noise

(adding 30 binary variables with null effects), using the following DGP:

𝑌𝑖 = 𝛽0𝑋𝑖0 + 𝛽1𝑋𝑖1
∗ + ⋯ + 𝛽42𝑋𝑖42

∗ + 𝜀𝑖

with, 𝑋𝑖𝑝
∗ denoting a standardized value corresponding to:

𝑋𝑖3, 𝑋𝑖4, 𝑋𝑖5, 𝑋𝑖6, 𝑋𝑖7~𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,30)

𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖8, 𝑋𝑖9, … , 𝑋𝑖42~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (.5)

𝜀𝑖~𝑁(0,1)

 Guy Cafri,Barbara A. Bailey 73

with 𝑐𝑜𝑟𝑟(𝑋𝑖2, 𝑋𝑖8) = 𝑐𝑜𝑟𝑟(𝑋𝑖1, 𝑋𝑖8) = 𝑐𝑜𝑟𝑟(𝑋𝑖1, 𝑋𝑖2) = 𝜌 and zero correlation otherwise

Values of 𝜌 were set to 0, .25, .50, or -.33 (this was the maximum negative correlation that

could be simulated in this context without obtaining a non-positive definite covariance matrix).

We changed 𝑋𝑖1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (.5) from the previous simulation in order to generate data from a

multivariate bernoulli distribution with the desired correlation structure. We also added 30 binary

noise variables.

 Standardization of variables in both DGP 1 & 2 facilitated assigning values to 𝛽1 and 𝛽2

that were comparable. Parameters 𝛽1 and 𝛽2 were set to be equal and may take on values

of .050, .331, 1.134 corresponding to small, medium, or large associations on a correlation scale

(r= .05, .30, .60), respectively. The choice of simulating from a discrete uniform distribution is

based on a desire to mimic the effect of a continuous random variable. Unfortunately, use of a

truly continuous random variable would be computationally too expensive in the context of a

simulation study (but not necessarily in an applied context) because it would require generating

as many datasets as there are distinct values of the continuous random variable, and then passing

each through each tree in the forest. The 𝑋𝑖1, … , 𝑋𝑖12 variables were inputs into the random forest

for the DGP-1 and 𝑋𝑖1, … , 𝑋𝑖42 for DGP-2. The effect based on partial dependence was calculated

using (6) and confidence intervals were constructed using the nonparametric bootstrap described

in (7), as well as a bias-corrected and accelerated version of this interval estimator. We considered

3 effects (.050, .331, 1.134) X 5 sample sizes (40, 100, 250, 500, 1000) x 5 correlation

structures/inputs (𝜌=0/12inputs, 𝜌=0/42 inputs, 𝜌=.25/42 inputs, 𝜌=.50/42 inputs, 𝜌=-.33/42

inputs) for point estimation, and for interval estimates we evaluated a more limited number of

conditions, in particular excluding conditions with N=1000 given the substantial computational

burden.

Computation

The DGPs and fitting of random forests was undertaken in R, the latter based on the

randomForest package. The DGP for correlated Xs was based on the MultiOrd package, which

implements the method of Emrich and Piedmonte (1991). The default methods in the

randomForest package were used for all except one parameter, the number of trees. This was set

to 300 because we found little evidence of improvement with increasing number of trees.

Nonparametric bootstrapping was implemented using the boot package of R for both the

percentile and the bias-corrected and accelerated confidence intervals. The number of bootstrap

replicates used for the construction of each interval for each simulated cases was 1000. Given the

computationally burdensome design, simulating cases was done in parallel using the snowfall

package. Evaluation of point estimation accuracy was executed in parallel on a desktop PC with

multi-core processor, whereas larger tasks involving evaluation of interval estimates for any one

condition was more problematic (1000 simulated cases x 1000 bootstrap replicates= 1,000,000

random forests) and therefore required use of a computing cluster, the Triton Shared Computing

Cluster at the University of California-San Diego.

3.2. Results

74 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

3.2.1. DGP 1 Results

 Our initial simulations manipulated the number of variables considered at each split.

Table 1 displays the results of selecting the number of variables considered at each split (mtry)

to be chosen based on a search function (tuneRF) that minimizes the out of bag error for each

simulated case. Selection of the number of predictors begins with 4 predictors at each split, and

increases or decreases the number of predictors by a factor of 2 (or truncated to the maximum

number of predictors-12), stopping when the level of improvement in the out of bag error is less

than .01. The results in Table 1 are less than ideal. In Figure 1 we illustrate the effect of manual

selection of different numbers of predictors to be used at each split on parameter estimation. The

figure conveys a clear improvement with increasing mtry, with the best performance occurring

when mtry is set at the maximum. For this reason simulations reported hereafter only considered

mtry set at its maximum.

Table 2 displays bias and RMSE as a function of the parameter value and sample size for

non-null effects. One result that is immediately clear is that any underestimation bias and overall

inaccuracy (as indexed by RMSE) is attenuated by increasing the magnitude of the effect (this

decreases the relative bias) and increasing sample size. We have found that the pattern of reduced

bias and improved accuracy with increasing effect and sample size corresponds to a greater

frequency of these non-null variables appearing in the first two splits of a tree (see Appendix A).

Therefore, appearance in early splits appears to be an important determinant of obtaining accurate

point estimates. In contrast, for parameters with null effects in the model (e.g., 𝛽3 = 𝛽8 =0), the

bias was calculated to be less than .001 irrespective of the sample size and the magnitude of

parameters with non-null effects in the model. As expected, for those variables with null effects

the RMSE does decrease with increasing sample size (Table 2).

Based on the coverage reported in Table 3 for non-null effects, we observed improved

coverage with increasing effect size and sample size, which is not surprising given the

aforementioned improvement in parameter estimation with increasing sample size and effect size.

Interestingly, the BCa intervals generally provide superior coverage to the percentile method with

medium and large effects while the percentile method appears superior with small and null effects.

The difference between the two methods generally decreases with increasing sample size,

therefore for larger datasets the decision about which method to use may be less important. In

practice, we might prefer BCa intervals when, for instance, there is a notable difference between

the mean of the bootstrap estimates and the estimate from the full sample. It is worth noting that

we did not find evidence of improvement with an increase in the number of bootstrap replicates.

For instance, we used 5,000 bootstrap replicates for the N=40, 𝛽 =.050 condition, the coverage

with BCa intervals for the non-null effects was .758/.590, which is not substantially different

from the Table 3 values of .769/.612.

3.2.2. DGP 2 Results

 Guy Cafri,Barbara A. Bailey 75

It does not appear that increasing the number of noise variables alone alters the degree of

bias in the estimates (cf. Table 4 for 𝜌=0 to Table 2 entries). A positive correlation among the

inputs leads to less bias in non-null effects than when there is no correlation among the inputs,

and this effect increases with increasing positive correlation. In a few limited conditions there is

a tendency for positive correlation to lead to an overestimation bias, but the magnitude of the bias

is relatively small. In contrast, when there is a negative correlation among the inputs, this leads

to increased underestimation bias relative to when there is no correlation for both non-null effects

and null effects. We should note for conditions with a negative correlation, the bias decreases

with increasing sample size. Collectively, this suggests that higher dimensional noise has little

effect on estimation, but the sign of the correlation among inputs can either improve or worsen

estimation of this quantity, with improvements generally resulting with increasing sample size.

3.3. Application to Prediction of Abalone Age

The data for this example originates from the Tasmanian Aquaculture and Fisheries Institute,

obtainable from the UCI machine learning repository. One way of regulating the harvesting of

abalone is through limiting which abalone can be harvested based on their age. Age of abalone

can be determined by counting the rings on its shell. Unfortunately, this requires cutting the shell,

which would not be an effective way of regulating its harvesting. Therefore, if the age of the

abalone can be determined from other physical measurements that would be preferable. The data

contained in the dataset aim to achieve this goal. The input variable used in the prediction of the

number of rings (+1.5 is a proxy for Abalone age) included: Sex (Infant, Male, Female), Length,

Diameter, Height, Whole Weight, Shucked Weight, Viscera Weight, and Shell Weight. We fit a

random forest with rings as the response and the variables described above as inputs. We used

300 trees for the random forest and the maximum mtry (8). We used 5000 bootstraps replicates

to construct 95% Percentile and BCa confidence intervals. We report on the effects of two

variables, sex and length using the proposed method. R programming syntax for this example is

provided as supplementary material.

The partial dependence plot for length is provided in Figure 2. The estimate for length was

-.562, comparison of infants to females was -.242, and comparison of males to females was .004.

There was notable bias in the estimate of length (i.e., estimate of mean from full sample-mean of

bootstrap estimates= -.151), suggesting that BCa would be more appropriate. Similar bias was

not present for either of the estimates involving comparison of the sex variable (-0.009 (I) & -

0.007 (M)). For length the BCa method gives 95% confidence intervals of (-1.325, 0.264) and

percentile (-1.671, 0.067). For the infant effect the BCa method gives 95% confidence intervals

of (-0.368, -0.035) and percentile (-0.394, -0.077). For the male effect the BCa method gives 95%

confidence intervals of (-0.075, 0.094) and percentile (-0.093, 0.079).

4. Discussion

 Quantifying a variable’s effect is important for the adoption of random forests in future

scientific applications. Our simulations suggest estimates are less biased and more accurate with

76 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

increasing effect and sample size. An important determinant for obtaining unbiased and accurate

results appears to be whether variables with true effects appear in early splits. Confidence

intervals constructed using a non-parametric bootstrap appears to be an effective method, one

that improves with increasing effect and sample size as well.

There are several limitations associated with the simulation study that could lead to fruitful

directions for future research. First, we did not consider dichotomous outcome data. One

implementation of an approach involving such outcome data could involve calculating partial

dependence predictions based on the proportion of events in the terminal nodes of each tree

averaged over the trees in the forest, as opposed to predictions based on majority vote, which

have been shown in some simulations to be less accurate (Malley et al., 2012). If interest only

centers on interpreting binary explanatory variables, it would be straightforward to calculate the

risk difference, risk ratio, or odds ratio based on probabilities obtained via partial dependence.

For explanatory variables with many response options a feasible alternative would be a weighted

beta regression model (Ferrari and Cribari-Neto, 2004) with use of a logit link function leading

to an odds ratio interpretation of the exponentiated regression coefficients. Yet another outcome

type that is often of interest is time to event, and quantification of a variable’s effect could be

based on a survival probability calculated using partial dependence at a fixed time point

(Ishwaran et al., 2008)

There are alternative modeling approaches that could be considered to achieve the same goals

as those considered in this paper. One option that has recently been proposed in the data mining

literature is counterfactual machines (Dasgupta et al., 2014). In the simple case of a binary

explanatory variable, two forests are built, each using only data from observations belonging to

each level of the variable. Predictions for each observation then are based on passing each

observation through the forest they were not used to construct, thus providing counterfactual

inferences regarding what would have happened if the observation belonged to the other level of

the explanatory variable. Although this is an appealing approach, it can present challenges in

implementation when explanatory variables are not binary. Yet another approach might involve

the use of propensity scores in a conventional parametric model (Rosenbaum and Rubin, 1983).

It should be noted however that such approaches rely on correct specification of the propensity

score model, which may be difficult to achieve. One possibility is use of a tree-based ensemble

method, such as random forests, to estimate each observation’s probability of receiving

“treatment” (Lee, Lessler, and Stuart, 2010). However, there are important practical limitations

with the use of propensity scores. One such problem is that going through the process of using

propensity scores for each variable that might be of interest (in terms of the effect that variable

has on the outcome) in a research study with a large number of explanatory variables can be quite

cumbersome. Therefore, the method proposed in this paper might be considered a reasonable

alternative.

Several factors may make the implementation of the methods described in this paper

challenging. Larger sample sizes, numbers of inputs, and response options for input variables

whose effect will be calculated will increase computing time. In particular, bootstrapping

confidence intervals in this context can be a computationally expensive proposition. Fortunately,

 Guy Cafri,Barbara A. Bailey 77

bootstrapping is a task that is easily parallelized and computation can be sped up by parallelizing

on a multi-core processor or a computing cluster. We provide R programming syntax for the

empirical example that illustrates how this can easily be accomplished with a multi-core

processor. Moreover, increasing computing speeds over time will further increase the feasibility

of bootstrapping with large datasets. The method proposed in this paper represents a reasonable

approach to quantifying the effect in random forests. The method will allow for a wider adoption

of random forest methodology, in particular to applications where the nature and strength of a

variable’s effect on the outcome is of interest.

78 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

References

[1]. Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, 123–140.

[2]. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.

[3]. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and

Regression Trees. New York: Chapman & Hall.

[4]. Dasgupta, A., Szymczak, S., Moore, J.H., Bailey-Wilson, J.E., and Malley, J.D.

(2014). Risk estimation using probability machines. BioData Mining, 7, 1-17.

[5]. Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. London, U.K.:

Chapman & Hall.

[6]. Efron, B. (1987). Better Bootstrap Confidence Intervals. Journal of the American

Statistical Association, 82, 171-200.

[7]. Emrich, L.J., and Piedmonte, M.R. (1991). A method for generating high-dimensional

multivariate binary variates. American Statistician, 45, 302-304.

[8]. Ferrari, S.L.P. and Cribari-Neto, F. (2004). Beta regression for modeling rates and

proportions. Journal of Applied Statistics, 31, 799–815.

[9]. Friedman, J. (2001). Greedy Function Approximation: The Gradient Boosting

Machine. Annals of Statistics, 29, 1189-1232.

[10]. Hastie,T., Tibshirani, R., and Friedman, J. (2009).The Elements of Statistical

Learning: Prediction, Inference and Data Mining. New York: Springer Verlag.

[11]. Imbens, G.W. (2004). Nonparametric estimation of average treatment effects under

exogeneity: A review. The Review of Economics and Statistics, 86, 4–29.

[12]. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S. (2008). Random survival

forests. Annals of Applied Statistics, 2, 841-860.

[13]. Lee, B.K., Lessler, J., and Stuart, E.A. (2010). Improving propensity score weighting

using machine learning. Statistics in Medicine, 29, 337-346.

[14]. Malley, J.D., Kruppa, J., Dasgupta, A., Malley, K.G., Ziegler, A. (2012). Probability

machines: consistent probability estimation using nonparametric learning machines.

Methods of Information in Medicine, 51, 74-81.

 Guy Cafri,Barbara A. Bailey 79

[15]. Rosenbaum, P.R., and Rubin, D.B. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika, 70, 41–55.

[16]. Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis A. (2008). Conditional

variable importance for random forests. BMC Bioinformatics, 9, 307.

[17]. Strobl, C., Malley, J., and Tutz, G. (2009).An Introduction to Recursive Partitioning:

Rationale, Application and Characteristics of Classification and Regression Trees,

Bagging and Random Forests. Psychological Methods, 14, 323–348.

80 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

Table 1. Bias and RMSE for DGP 1 with Numerical Search for Optimal Mtry

 N=40 N=100 N=250 N=500 N=1000

Bias

𝛽 =.050 .031/.038 .026/.033 .023/.029 .024/.028 .024/.026

𝛽 =.331 .187/.224 .145/.168 .110/.117 .097/.093 .089/.078

𝛽 =1.134 .400/.369 .218/.084 .094/.034 .076/.0267 .068/.023

RMSE

𝛽 =.050 .083/.060 .067/.050 .044/.041 .036/.036 .031/.031

𝛽 =.331 .217/.242 .174/.191 .135/.141 .118/.113 .103/.093

𝛽 =1.134 .449/.467 .262/.169 .130/.091 .106/.067 .092/.050
Note: Bias=parameter-estimate. The value to the left of the slash corresponds to the discrete

uniform random variable and to the right is the Bernoulli random variable.

Table 2. Bias and RMSE for DGP 1 with Maximum Mtry

 N=40 N=100 N=250 N=500 N=1000

Bias (Non-Null Effects)

𝛽 =.050 .019/.038 .011/.033 .008/.028 .005/.025 .004/.020

𝛽 =.331 .111/.208 .062/.132 .027/.053 .018/.015 .011/.002

𝛽 =1.134 .321/.328 .164/.039 .041/.004 .024/.000 .014/.000

RMSE (Non-Null Effects)

𝛽 =.050 .123/.064 .099/.053 .057/.043 .043/.038 .030/.032

𝛽 =.331 .188/.245 .129/.182 .073/.105 .050/.059 .034/.034

𝛽 =1.134 .377/.443 .209/.136 .079/.069 .053/.047 .036/.033

RMSE (Null Effects)

𝛽 =.050 .122/.049 .098/.038 .055/.029 .041/.022 .030/.017

𝛽 =.331 .115/.045 .084/.033 .050/.023 .038/.019 .028/.014

𝛽 =1.134 .081/.037 .055/.024 .043/.019 .034/.016 .026/.013
Note: Bias=parameter-estimate. The value to the left of the slash corresponds to the discrete

uniform random variable and to the right is the Bernoulli random variable. Bias for null effects is

<.001 in all simulated conditions of this design

 Guy Cafri,Barbara A. Bailey 81

Table 3. Coverage for Non-Null and Null Effects from DGP 1 with Maximum Mtry

 N=40 N=100 N=250 N=500

Non-Null Effects

BCa

𝛽 =.050 .769/.612 .796/.637 .869/.662 .879/.742

𝛽 =.331 .832/.737 .868/.886 .911/.918 .899/.955

𝛽 =1.134 .739/.944 .762/.966 .908/.911 .898/.904

Percentile

𝛽 =.050 .905/.629 .902/.657 .919/.645 .920/.697

𝛽 =.331 .749/.450 .831/.636 .865/.792 .873/.890

𝛽 =1.134 .471/.644 .567/.876 .835/.914 .858/.912

Null Effects

BCa

𝛽 =.050 .766/.722 .809/.760 .860/.760 .858/.780

𝛽 =.331 .783/.743 .859/.764 .875/.778 .889/.833

𝛽 =1.134 .893/.817 .845/.830 .856/.840 .861/.848

Percentile

𝛽 =.050 .950/.951 .939/.939 .917/.929 .919/.921

𝛽 =.331 .939/.966 .950/.953 .934/.925 .940/.933

𝛽 =1.134 .975/.975 .955/.985 .950/.970 .928/.953

Note: The value to the left of the slash for non-null effects corresponds to the

discrete uniform random variable and to the right the Bernoulli random variable.

82 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

Table 4. Bias for Null and Non-Null Effects for DGP 2 with Maximum Mtry

 N=40 N=100 N=250 N=500 N=1000

𝜌=0

Non-Null Effects

𝛽 =.050 .042/.042 .038/.038 .034/.034 .030/.030 .027/.026

𝛽 =.331 .232/.232 .150/.153 .064/.064 .019/.018 .000/.000

𝛽 =1.134 .266/.268 .006/.005 .000/-.001 .000/.000 .000/.000

Null Effects

𝛽 =.050 .000/.000 .000/.000 .000/.000 .000/.000 .000/.000

𝛽 =.331 .000/.000 .000/.000 .000/.000 .000/.000 .000/.000

𝛽 =1.134 .000/.000 .000/.000 .000/.000 .000/.000 .000/.000

𝜌=.25

Non-Null Effects

𝛽 =.050 .040/.040 .036/.036 .032/.031 .027/.026 .022/.022

𝛽 =.331 .194/.191 .105/.104 .050/.048 .016/.018 .000/.002

𝛽 =1.134 .161/.162 .005/.008 .001/-.001 .000/.000 .001/.000

Null Effects

𝛽 =.050 .000/-.003 .000/-.005 .000/-.005 .000/-.006 .000/-.005

𝛽 =.331 .000/-.018 .000/-.014 .000/-.008 .000/-.003 .000/.000

𝛽 =1.134 .001/-.016 .000/-.001 .001/.000 -.001/.000 .000/.000

𝜌=.50

Non-Null Effects

𝛽 =.050 .040/.039 .034/.034 .029/.029 .025/.024 .019/.019

𝛽 =.331 .156/.156 .071/.070 .042/.039 .020/.019 .002/.004

𝛽 =1.134 .130/.132 .020/.010 -.001/.001 .001/.000 .000/.000

Null Effects

𝛽 =.050 .000/-.006 .001/-.008 .000/-.009 .000/-.009 .000/-.001

𝛽 =.331 .000/-.040 .001/-.027 .000/-.016 .000/-.009 .000/-.002

𝛽 =1.134 .000/-.045 .001/-.007 .000/.000 -.001/.000 .000/.000

𝜌= -.33

Non-Null Effects

𝛽 =.050 .045/.044 .042/.042 .039/.040 .037/.037 .035/.035

𝛽 =.331 .283/.283 .241/.241 .160/.159 .086/.086 .040/.040

𝛽 =1.134 .686/.685 .221/.223 .091/.092 .070/.071 .055/.056

Null Effects

𝛽 =.050 -.001/.004 .002/.006 .000/.009 .000/.010 .000/.011

 Guy Cafri,Barbara A. Bailey 83

𝛽 =.331 .000/.039 .000/.059 .000/.067 .000/.053 .000/.034

𝛽 =1.134 .000/.188 -.001/.157 .000/.094 .000/.076 .000/.058

Note: Bias=parameter-estimate. The values to the left and right of the slash both correspond

to Bernoulli random variables for non-null effects. The value to the left of the slash in the

null case corresponds to a discrete uniform random variable and to the right a Bernoulli

random variable.

84 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

Figure 1. Effect of Mtry on Parameter Estimation

Note: For each simulated case N=250. Dashed line is the parameter 𝛽 = .331

 Guy Cafri,Barbara A. Bailey 85

Figure 2. Partial Dependence on Length

86 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

Appendix A

Here we considered the effect of variable splits on increasing effect size, sample size, and

mtry. To examine this issue in greater depth we examined the nature of variable splits that take

place in the simulated conditions. We focused on two effects (𝛽 =.050 vs. 1.134), two sample

sizes (N=40 vs. 1000), and two values of mtry (2 vs. 12). We considered whether or not a variable

was used in the first two splits of a tree. These results were averaged over all trees in the forest

and over all simulated cases. Table A1 displays the result.

Table A1. Proportion of

Times Variables

Appear in First Two

Splits

Note: 𝑋1is a discrete uniform random variable with a population effect>0

and 𝑋3 with a population effect=0. 𝑋2 is a Bernoulli random variable

with a population effect>0 and 𝑋8 with a population effect=0.

We can see in all conditions that the variables with the effect (𝑋1 & 𝑋2) appear more often

in the first two splits of a tree than the variables without the effect (𝑋3 & 𝑋8). This is much more

pronounced in the large effect conditions, especially those with larger mtry. Increasing sample

size increases the appearance of a variable in the first two splits if the variable has any effect,

otherwise it decreases a variable’s appearance. The appearance of variables in early splits

parallels the general pattern of results related to bias and RMSE.

 𝑋1 𝑋3

 mtry N=40 N=1000 N=40 N=1000

𝛽 =1.134 2 0.271 0.286 0.187 0.192

 12 0.853 1.000 0.076 0.000

𝛽 =.050 2 0.212 0.241 0.211 0.223

 12 0.253 0.415 0.250 0.259

 𝑋2 𝑋8

 mtry N=40 N=1000 N=40 N=1000

𝛽 =1.134 2 0.242 0.302 0.082 0.078

 12 0.610 1.000 0.013 0.000

𝛽 =.050 2 0.095 0.131 0.093 0.090

 12 0.043 0.099 0.038 0.027

 Guy Cafri,Barbara A. Bailey 87

When a variable has a relationship to the response, increasing mtry, effect size, and sample

size will increase a variable’s appearance in the first two splits of a tree. Therefore, it seems that

appearance in early splits is an important determinant of obtaining accurate and unbiased point

estimates. One explanation for the effect of mtry is that in random forests with mtry less than the

maximum, non-null variables will be omitted in some early tree splits simply due to random

feature selection. This will lead to a systematic attenuation of the effect of those variables, leading

to bias and inaccuracy. However, this cannot happen in bagging (i.e., when mtry is the maximum)

because all variables have a chance to appear in all tree splits, most importantly the early ones,

leading to less bias and inaccuracy. While all variables are considered at early splits in bagging,

some variables with null population effects may still be chosen just by chance. When the effect

sizes for the variables that have non-null population effects are small, it is increasingly likely that

variables with null population effects will be chosen in their place, which in turn attenuates the

estimate of the effect and increases bias and inaccuracy. However, with increasing effect size the

chances that variables with null population effects are selected decreases, limiting the bias and

inaccuracy. Lastly, when the sample sizes are small the “true” effect of a variable will be less

reliable, decreasing the chances that it will be chosen when it has a non-null population effect, a

situation that improves with increasing sample size.

88 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

SUPPLEMENTARY MATERIALS

Steps to implementing Abalone example: 1) Load library 2) create new partialPlot function called
partialPlot.mod

Load necessary libraries
library(randomForest)
library(boot)

#Creating a modified partialPlot function called partialPlot.mod (uses distinct X values in data to
construct partial dependence for non-factor #variables)
partialPlot.mod<-function (x, pred.data, x.var, which.class, w, plot = TRUE, add = FALSE,
 n.pt = min(length(unique(pred.data[, xname])), 51), rug = TRUE,
 xlab = deparse(substitute(x.var)), ylab = "", main = paste("Partial Dependence on",
 deparse(substitute(x.var))), ...)
{
 classRF <- x$type != "regression"
 if (is.null(x$forest))
 stop("The randomForest object must contain the forest.\n")
 x.var <- substitute(x.var)
 xname <- if (is.character(x.var))
 x.var
 else {
 if (is.name(x.var))
 deparse(x.var)
 else {
 eval(x.var)
 }
 }
 xv <- pred.data[, xname]
 n <- nrow(pred.data)
 if (missing(w))
 w <- rep(1, n)
 if (classRF) {
 if (missing(which.class)) {
 focus <- 1
 }
 else {
 focus <- charmatch(which.class, colnames(x$votes))
 if (is.na(focus))
 stop(which.class, "is not one of the class labels.")
 }
 }

 Guy Cafri,Barbara A. Bailey 89

 if (is.factor(xv) && !is.ordered(xv)) {
 x.pt <- levels(xv)
 y.pt <- numeric(length(x.pt))
 for (i in seq(along = x.pt)) {
 x.data <- pred.data
 x.data[, xname] <- factor(rep(x.pt[i], n), levels = x.pt)
 if (classRF) {
 pr <- predict(x, x.data, type = "prob")
 y.pt[i] <- weighted.mean(log(ifelse(pr[, focus] >
 0, pr[, focus], .Machine$double.eps)) - rowMeans(log(ifelse(pr >
 0, pr, .Machine$double.eps))), w, na.rm = TRUE)
 }
 else y.pt[i] <- weighted.mean(predict(x, x.data),
 w, na.rm = TRUE)
 }
 if (add) {
 points(1:length(x.pt), y.pt, type = "h", lwd = 2,
 ...)
 }
 else {
 if (plot)
 barplot(y.pt, width = rep(1, length(y.pt)), col = "blue",
 xlab = xlab, ylab = ylab, main = main, names.arg = x.pt,
 ...)
 }
 }
 else {
 if (is.ordered(xv))
 xv <- as.numeric(xv)
 x.pt <- sort(unique(xv))
 y.pt <- numeric(length(x.pt))
 for (i in seq(along = x.pt)) {
 x.data <- pred.data
 x.data[, xname] <- rep(x.pt[i], n)
 if (classRF) {
 pr <- predict(x, x.data, type = "prob")
 y.pt[i] <- weighted.mean(log(ifelse(pr[, focus] ==
 0, .Machine$double.eps, pr[, focus])) - rowMeans(log(ifelse(pr ==
 0, .Machine$double.eps, pr))), w, na.rm = TRUE)
 }
 else {
 y.pt[i] <- weighted.mean(predict(x, x.data),
 w, na.rm = TRUE)

90 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

 }
 }
 if (add) {
 lines(x.pt, y.pt, ...)
 }
 else {
 if (plot)
 plot(x.pt, y.pt, type = "l", xlab = xlab, ylab = ylab,
 main = main, ...)
 }
 if (rug && plot) {
 if (n.pt > 10) {
 rug(quantile(xv, seq(0.1, 0.9, by = 0.1)), side = 1)
 }
 else {
 rug(unique(xv, side = 1))
 }
 }
 }
 invisible(list(x = x.pt, y = y.pt))
}

Data available from UCI machine learning repository @
http://archive.ics.uci.edu/ml/datasets/Abalone
abalone <- read.table("C:/Documents and Settings/M931496/Desktop/abalone.data.dat",sep=",")
abaloneNames <-
c("Sex","Length","Diameter","Height","Whole.weight","Shucked.weight","Viscera.weight","Shell.w
eight","Rings")
colnames(abalone) <- abaloneNames

rf<-randomForest(Rings~., data=abalone, mtry=8, ntree=300)

Calculating point estimates

#Sex
predictdep.Sex<-partialPlot(x=rf, pred.dat=abalone, x.var=Sex, plot=TRUE)
lm(y~x, data=predictdep.Sex, weights=table(abalone$Sex))

#Length
predictdep.Length<-partialPlot.mod(x=rf, pred.dat=abalone, x.var=Length, plot=TRUE)
lm(y~x, data=predictdep.Length, weights=table(abalone$Length))

 Guy Cafri,Barbara A. Bailey 91

#Bootstrapping CI

bs<-function(d,z){
d2<-abalone[z,]
rf<-randomForest(Rings~., data=d2, mtry=8, ntree=300)

#Sex
predictdep.Sex<-partialPlot(x=rf, pred.dat=abalone, x.var=Sex, plot=FALSE)
marg.model.Sex<-lm(y~x, data=predictdep.Sex, weights=table(abalone$Sex))
beta.Sex<-data.frame(marg.model.Sex$coefficients)
marg.effect.Sex1<-beta.Sex[2,]
marg.effect.Sex2<-beta.Sex[3,]

#Length
predictdep.Length<-partialPlot.mod(x=rf, pred.dat=abalone, x.var=Length, plot=FALSE)
marg.model.Length<-lm(y~x, data=predictdep.Length, weights=table(abalone$Length))
beta.Length<-data.frame(marg.model.Length$coefficients)
marg.effect.Length<-beta.Length[2,]

all<-rbind(marg.effect.Length, marg.effect.Sex1, marg.effect.Sex2)
return(all)

}

#This can take a while when using a single core with a large number of bootstrap replicates with
the Abalone dataset
To reduce time consider parallel processing (see further below for implementation)

results<-boot(data= abalone, statistic=bs, R=5000)

boot.ci(results, type="bca", index=)
boot.ci(results, type="bca", index=1)
boot.ci(results, type="perc", index=1)
boot.ci(results, type="bca", index=2)
boot.ci(results, type="perc", index=2)
boot.ci(results, type="bca", index=3)
boot.ci(results, type="perc", index=3)

#Parallel Computing
Load some more libraries

92 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

#Using parallel library just to get number of cores on my computer
library(parallel)
detectCores()

library(snow)
library(rlecuyer)

#detectCores tells me I have 4 cores so making a cluster of 4
cl <- makeCluster(4)
#Setting up independent random number generation streams on each core
clusterSetupRNG(cl, seed=245)
#confirming independence of streams
clusterCall(cl, runif, 4)
#Exporting dataset to each core
clusterExport(cl, "abalone")
#Loading libraries on each core
clusterEvalQ(cl, library(boot))
clusterEvalQ(cl, library(randomForest))
#Loading the new function on each core
clusterEvalQ(cl,
partialPlot.mod<-function (x, pred.data, x.var, which.class, w, plot = TRUE, add = FALSE,
 n.pt = min(length(unique(pred.data[, xname])), 51), rug = TRUE,
 xlab = deparse(substitute(x.var)), ylab = "", main = paste("Partial Dependence on",
 deparse(substitute(x.var))), ...)
{
 classRF <- x$type != "regression"
 if (is.null(x$forest))
 stop("The randomForest object must contain the forest.\n")
 x.var <- substitute(x.var)
 xname <- if (is.character(x.var))
 x.var
 else {
 if (is.name(x.var))
 deparse(x.var)
 else {
 eval(x.var)
 }
 }
 xv <- pred.data[, xname]
 n <- nrow(pred.data)
 if (missing(w))
 w <- rep(1, n)

 Guy Cafri,Barbara A. Bailey 93

 if (classRF) {
 if (missing(which.class)) {
 focus <- 1
 }
 else {
 focus <- charmatch(which.class, colnames(x$votes))
 if (is.na(focus))
 stop(which.class, "is not one of the class labels.")
 }
 }
 if (is.factor(xv) && !is.ordered(xv)) {
 x.pt <- levels(xv)
 y.pt <- numeric(length(x.pt))
 for (i in seq(along = x.pt)) {
 x.data <- pred.data
 x.data[, xname] <- factor(rep(x.pt[i], n), levels = x.pt)
 if (classRF) {
 pr <- predict(x, x.data, type = "prob")
 y.pt[i] <- weighted.mean(log(ifelse(pr[, focus] >
 0, pr[, focus], .Machine$double.eps)) - rowMeans(log(ifelse(pr >
 0, pr, .Machine$double.eps))), w, na.rm = TRUE)
 }
 else y.pt[i] <- weighted.mean(predict(x, x.data),
 w, na.rm = TRUE)
 }
 if (add) {
 points(1:length(x.pt), y.pt, type = "h", lwd = 2,
 ...)
 }
 else {
 if (plot)
 barplot(y.pt, width = rep(1, length(y.pt)), col = "blue",
 xlab = xlab, ylab = ylab, main = main, names.arg = x.pt,
 ...)
 }
 }
 else {
 if (is.ordered(xv))
 xv <- as.numeric(xv)
 x.pt <- sort(unique(xv))
 y.pt <- numeric(length(x.pt))
 for (i in seq(along = x.pt)) {
 x.data <- pred.data

94 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

 x.data[, xname] <- rep(x.pt[i], n)
 if (classRF) {
 pr <- predict(x, x.data, type = "prob")
 y.pt[i] <- weighted.mean(log(ifelse(pr[, focus] ==
 0, .Machine$double.eps, pr[, focus])) - rowMeans(log(ifelse(pr ==
 0, .Machine$double.eps, pr))), w, na.rm = TRUE)
 }
 else {
 y.pt[i] <- weighted.mean(predict(x, x.data),
 w, na.rm = TRUE)
 }
 }
 if (add) {
 lines(x.pt, y.pt, ...)
 }
 else {
 if (plot)
 plot(x.pt, y.pt, type = "l", xlab = xlab, ylab = ylab,
 main = main, ...)
 }
 if (rug && plot) {
 if (n.pt > 10) {
 rug(quantile(xv, seq(0.1, 0.9, by = 0.1)), side = 1)
 }
 else {
 rug(unique(xv, side = 1))
 }
 }
 }
 invisible(list(x = x.pt, y = y.pt))
}
)

#Doing the bootstrap
Result<-boot(data= abalone, statistic=bs, R=5000, parallel= "snow", ncpus=4, cl=cl)

boot.ci(results, type="bca", index=)
boot.ci(results, type="bca", index=1)
boot.ci(results, type="perc", index=1)
boot.ci(results, type="bca", index=2)
boot.ci(results, type="perc", index=2)
boot.ci(results, type="bca", index=3)

 Guy Cafri,Barbara A. Bailey 95

boot.ci(results, type="perc", index=3)

Received December 15, 2015; accepted January 10, 2016.

Barbara A. Bailey, PhD

San Diego State University

bbailey@mail.sdsu.edu

Correspondence:

Guy Cafri, PhD

Child & Adolescent Services Research Center

3665 Kearny Villa Road, Ste 200N

San Diego, CA 92123

Phone: (813) 486-9875

Fax: (858) 408-3850

Email: guycafri@gmail.com

96 Understanding Variable Effects from Black Box Prediction: Quantifying Effects in Tree Ensembles Using

Partial Dependence

