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Abstract: Identifying influential observations is an important part of the model 

building process in linear regression. There are numerous diagnostic measures 

based on different approaches in linear regression analysis. However, the problem 

of multicollinearity and influential observations may occur simultaneously. 

Therefore, we propose new diagnostic measures based on the two parameter ridge 

estimator defined by Lipovetsky and Conklin (2005) alternative to the usual ridge 

regression and ordinary linear regression. We define two parameter ridge-type 

generalizations of DFFITS and Cook’s distance. Moreover, we obtain approximate 

case deletion formulas and provide approximate versions of new measures. Finally, 

we illustrate the benefits of proposed measures in real data examples. 
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1. Introduction and Motivation 

Consider the usual multiple linear regression model with intercept which is defined as 

 

0 11y X                                                          (1.1) 

 

where X  is an n t  data matrix centered and standardized, y  is an 1n  response vector, 

0  is an unknown scalar parameter, 1  is a 1t  vector of unknown coefficients and   is an 

1n  random error vector following normal distribution  2~ 0, nN I   such that 

    20, var nE I     . Now, let  1Z X  is the n p  design matrix. 

The ordinary least square (OLS) estimator of  0 1,    
 

 is  
1ˆ Z Z Z y


   and the 

vector of fitted responses is ˆŷ Z . The unbiased estimator of 
2  is  2 /s e e n p   where 

 ˆ
ne y y I H y     is the residual vector and H  is the hat or projection matrix having 
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diagonal elements  
1

ii i ih z Z Z z
   called leverages such that iz  is the 

thi  row of Z  . We refer 

to a couple  ,i iy z  as a case, as suggested by Cook and Weisberg (1982). 

 Not all data points in a data set have the same importance in determining the coefficient 

estimates, t-values and some other statistics. Some points may affect the analysis or estimates 

remarkably. Therefore it is crucial to detect this kind of points in the analysis.  This process is 

called as influence diagnostics. 

 After the seminal study of Cook (1977), numerous diagnostic measures have been 

developed to identify influential observations in literature, for example see: Belsey et al. (1980), 

Atkinson (1981), Cook and Weisberg (1982), Chatterjee and Hadi (1986), and Shi (1997). 

However, influential observations and the problem of multicollinearity may occur at the same 

time. Belsey et al. (1980) stated that using biased estimators to overcome multicollinearity may 

affect influence of some cases. The most common method of detecting influential observations 

is to use single-case deletion approach as Cook (1977) did. Therefore, Walker and Birch (1988) 

defined a ridge regression (Hoerl and Kennard, 1970) scheme with case deletion method and 

obtained the approximate case deletion formulas for the detection of influential cases and 

proposed ridge generalizations of Cook’s distance (Cook, 1977) and DFFITS (Belsey et al., 1980) 

which are the most commonly used statistics based on the case deletion method in the ordinary 

linear regression. 

After Walker and Birch (1988), generalized versions of Cook’s distance and DFFITS of some 

biased estimators used for combating multicollinearity have been defined, for example, Jahufer 

and Jianbao (2009) obtained global influential observations by using a modified ridge regression 

scheme, Ullah et al. (2013) defined Liu versions and Ertas et al. (2013) obtained Liu and modified 

Liu versions of the mentioned single case diagnostics. 

The purpose of this paper is to introduce new influence diagnostics based on a two-parameter 

ridge estimator defined by Lipovetsky and Conklin (2005) and obtain generalized versions of 

Cook’s distance and DFFITS and approximate case deletion formulas for this estimator. 

The organization of the paper is as follows: We give some quick background information 

and review the influence measures in ordinary linear regression in section 2. In section 3, we 

introduce new diagnostic measures in two-parameter ridge regression and obtain case deletion 

formulas. Applications of real data sets are illustrated in section 4. 

 

2. Background Information 

The main purpose of influence analysis is to measure the changes occurred in a defined aspect 

of the research when there is perturbation in the data. As we mentioned, one approach is to use 

case omission perturbation technique. We follow this technique throughout this article and we 

assume that the reader is familiar with the basic concepts of leverages and influence analysis in 

ordinary least squares.  
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Although there are various types of single case diagnostic methods, one popular method is 

the difference in fit standardized called DFFITS (Belsey et al., 1980) ,which is the standardized 

change in the fitted value of a case when it is deleted, can be evaluated at the 
thi  case as 

 

 
   

1/2
( )

?

ˆ 1

i i
i ii

i

iii

z e h
DFFITS

s i hse z

 




 


                                         (2.1) 

where ( )
ˆ

i  is the OLS estimator of   when the 
thi  case is deleted and 

        2 2 / 1 / 1i iis i n p s e h n p        is the OLS estimator of   without the 
thi case. 

Another popular and useful measure is Cook’s distance (Cook and Weisberg, 1982), which is 

a measure of the change in the fitted values when  the 
thi   case is deleted, is defined by 

 

   
 

2

22 2

( ) ( )
? ?

.
1

i ii
i

ii

i iZ Z e h
D

ps ps h

   


 
 


                                  (2.2) 

 

where It is observed from the above measures that the influence of a case can be interpreted 

as a function of residuals and leverages. Moreover, it is important to emphasize that these 

measures are useful for exploring the individual or single influential cases. Shi and Wang (1999) 

stated that measures based on the case deletion method may suffer from the masking problem 

which occurs in the presence of another influential cases.  

iD  detects the case causing the most change in the estimates when it is deleted, moreover, 

iDFFITS  also considers the effect on the estimates of variance 
2s  (Brown and Lawrance, 2000). 

If the values of iD   and iDFFITS   exceed some well-defined cutoff points, then it is said that 

the 
thi   observation is influential. However, the cutoff points for these measures are not clear. 

Cook and Weisberg (1982) suggested as 1iD    and Bollen and Jackman (1990) indicated that   

4 /iD n  might be used. 2 /iDFFITS p n  is a commonly used cut-off point (Belsey et 

al., 1980). However, it is important to note that these influence measures are only useful for 

identifying single cases with high-influence. 
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3. Influence Measure in Two-Parameter Ridge Estimator 

3.1 Two-Parametere Ridge Estiamator(TPR) 

When the explanatory variables are correlated to each other, the variance of unbiased OLS 

estimator becomes inflated so that we cannot make stable estimations. Therefore, there are 

various studies proposing biased estimators in literature. Among them, ridge estimator (RE)  

 
1ˆ , 0k Z Z kI Z y k


      defined by Hoerl and Kennard (1970) and Liu estimator (Kejian, 

1993)    1? , 0 1d Z Z I Z y d d 


       are the popular ones.  

In this study, we consider a two-parameter ridge estimator (TPR) defined by Lipovetsky and 

Conklin (2005). Although RE is a popular estimator, its quality of fit is worse than OLS and does 

not satisfy the orthogonality assumptions. Therefore Lipovetsky and Conklin (2005) obtain TPR, 

a generalization of RE to two parameter model, considering a simultaneous minimization of the 

model errors, deviations from orthogonality between regressors and errors and deviations of the 

solutions from the pairwise regressions.  

Now, let us denote the objective function of the sum of squared errors of OLS as follows: 

 

   2 2 1 2S y Z y Z r C                                         (3.1) 

 

where C Z Z   and r Z y   which are in the correlation forms. The minimization of 

(3.1) is satisfied by the following normal system of equations 

 

    .C r                                                                         (3.2) 

 

Solution of this system gives us the usual OLS estimator 
1ˆ .C r   The determination 

coefficient 
2R   estimates the quality of the model such that 

 

 
2 21 2 .R S r C C                                 (3.3) 

 

We can describe the relation (3.2) as 

 

0Z                                                 (3.4) 

 

expressing the orthogonality of each regressor (column of Z  ) to the error vector. 

 Similarly, we can obtain the objective function of RE as 
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2 22 1 2 .S k r C k                               (3.5) 

 

Minimizing (3.5) gives us RE as    
1 1ˆ , 0k Z Z kI Z y C kI r k
 

        . We can 

conclude that RE does not satisfy the orthogonality assumption(3.4). Therefore Lipovetsky and 

Conklin (2005) constructed a multi-objective least squares for a regression as follows: 

 

      
2 22 2 22

1 2 3 4 5 .S q y Z q Z y Z q Z y q y y Z q              

(3.6) 

 

Minimizing the equation (3.6) yields the following matrix equation  

 

   2

1 2 3 4 5 1 2 3 4 .q C q C q I q rr q I q I q C q I q I r              (3.7) 

 

Taking 2 0q    and after some algebraic calculations (see Lipovetsky and Conklin (2005) for 

details), TPR is obtained as follows: 

 

     
1ˆ ,k q q C kI r


                                      (3.8) 

 

where the parameter  q  is chosen to maximize the function of regression fit which is 

given by 

 

     
1 1 12 22R qr C kI r q r C kI C C kI r
  

                    (3.9) 

 

which can be obtained by using the equations (3.8) and (3.3). The optimal value of the 

parameter q   is computed by 

 

 
 

   

1

1 1

r C kI r
q

r C kI C C kI r



 

 


  
                                  (3.10) 

 

which is always bigger than 1. The authors also claimed that all the orthogonality 

assumptions hold for TPR. 
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3.2 Leverage and Residuals in TPR 

Using TPR given in (3.8), we can obtain the vector of fitted values 

   ˆˆ , , ( , )y k q Z k q H k q y   where  
1

( , )H k q qZ C kI Z


   is the hat matrix for TPR, 

plays the same role as the hat matrix H  of ordinary least squares. We can interpret the 
thi  fitted 

value in terms of the elements of ( , )H k q  as    
1

ˆ , ,
n

i ji j

j

y k q h k q y


  ; consequently, 

 
 

ˆ ,
,

i

ii

i

y k q
h k q

y





 which is the 

thi  diagonal element of ( , )H k q  . We can see the diagonal 

elements  ,iih k q  as the leverages for TPR regression as in the least square. Note that the matrix 

( , )H k q  is not idempotent, thus it is not a projection matrix.  

Furthermore, we can consider canonical reduction by applying the singular value 

decomposition (SVD) (Mandel, 1982) so that 
1/2Z U V    where   is a diagonal matrix 

consisting of eigenvalues 1 2 ... p      of the matrix Z  and the columns of the matrix V  

are the eigenvectors of Z  such that Z Z V V    . The  i j  element of the n p  matrix U  is 

such that 
i j ju   is the projection of 

thi  row iz  onto the 
thj  eigenvector of Z  . By using the 

SVD theorem, 
thi  leverage of TPR can be written as follows: 

 

   

   

1 1

1 1

2

1

,

.

ii i i

j ii i i ii j

p
j

i j

j j

h k q qz C kI C z

q u v V V kI V V v u

q
u

k

 





 

 



 

     






                          

 

We observe from the above result that if q  approaches to one when k  is fixed, then 

 ,iih k q  approaches to the ridge leverages  iih k  . If k  approaches to zero when 1q   , 

then  ,iih k q  values goes to the OLS leverages iih  . Moreover, we conclude that 

 min / 1k q    implies    ,ii ii iih k q h h k   and  max / 1k q    implies 

   ,ii ii iih h k q h k   where min  and max  are the minimum and maximum eigenvalues of 

Z Z . 
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The 
thi   residual of TPR is also given by 

 

   

 

  

ˆ, ,

ˆ ,

1 , .

i i i

i i i

ii i

e k q y y k q

y z k q

h k q y



 

 

 

 

 

We conclude similar results such that if q  approaches to one when k  is fixed, then 

 ,ie k q approaches to the ridge residuals  ie k . If k  approaches to zero when 1q  , then 

 ,ie k q  values goes to the OLS residuals ie . 

 

3.3   Cook’s Distance and DFFITS in TPR 

We define a new version of DFFITS for TPR as  

 

 
      

  

      

   
1/2

2

1

? ?, , , ,
,

ˆ ,
,

i i

i
n

i

i j

j

i i
z k q k q z k q k q

DFFITS k q
se z k q

s i h k q

   





 
 

 
 
 


      (3.11) 

where 
   ˆ ,
i

k q  is the TPR estimator (3.8) without the 
thi  case and denominator is an 

estimator of the standard error of the TPR fitted value,     
1/2

2

1

ˆ , ,
n

i i j

j

se z k q s h k q


 
  

 
  

such that k  and q  are assumed to be non-stochastic and  
   

1/2
2 2 / 1

1

i iin p s e h
s i

n p

   
  

  
 

is the OLS estimator s  of   without the 
thi  case. The OLS estimators s  and  s i  are used as 

measures of scale since the MSE function consists of the response and the fitted values which are 

both not depend on the eigenvalues of Z Z  so that s  and  s i  are not affected by collinearity. 

 We also define two versions of Cook’s iD  for TPR, namely, 

                   * 2 ? ?, 1/ , , , ,i i i
D k q ps k q k q Z Z k q k q   


    (3.12) 

and 
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                   1** 2 2 ? ?, / , , , ,i k ki i
D k q q ps k q k q C Z Z C k q k q   


  

       (3.13) 

such that  ** ,iD k q  is based on the fact that    2 2 1 1ˆvar , k kk q q C Z ZC     where 

kC C kI  .  

It is better to express these new measures as functions of leverages and residuals. However, 

this is not possible because of the scale dependency of the TPR estimator. Since the TPR 

estimator is not scale invariant,  Z i  , the Z  matrix without the 
thi  row, is needed to be 

rescaled before computing 
   ˆ ,
i

k q  . In the following subsection, we provide some 

approximate case deletion formulas to obtain the approximate versions of these measures. 

 

3.4   Approximate Case Deletion Formulas for TPR 

            
1

ˆ ,
i

k q q Z i Z i kI Z i y i


     is the TPR estimator without the  
thi  case,   

 y i  is the response vector without the 
thi   element. We can write  

   ˆ ,
i

k q  in the following 

form: 

       
1

ˆ , .i i i ii k q q Z Z kI z z Z y z y


       

Now, we apply Sherman-Morrison-Woodbury (SMW) theorem (Rao, 1973) to the matrix  

   
1 1

i i k i iZ Z kI z z C z z
 

      and obtain 
   ˆ ,
i

k q   as follows: 
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 
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1

ˆ ,
1
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q qy y k q
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e C z
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






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


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

     (3.14) 

Where 
1

kM ZC Z    , 
1

ii i k im z C z    and   * ˆ ,i i ie qy y k q    is a vector (not residual). 

Thus we obtain the following difference formula: 

 

        
* 1

? , , .
1

i k i

ii

i

e C z
k q k q

m
 

 
 


                                      (3.15) 

 

Based on the above result, we present the approximate versions of (3.11), (3.12) and (3.13) 

respectively as follows: 

 

    

 
     

 

     

* 1

1/2
2

1

*

1/2
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1

,

1 ,

,
,

1 ,

a i i k i
i

n

ii i jj

ii i

n

ii i jj

e z C z
DFFITS k q

m s i h k q

m e k q

m s i h k q










 
 


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 





                          (3.16) 
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 
   
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 

 
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2 1* 1 12
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22
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2
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1

1
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1
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i i i
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e z C C Z Z C C zq
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e z Z Z zq
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e hq
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














                       (3.18) 

 

4. Numerical Examples  

In this section, we illustrate an application of new influence statistics to the widely 

investigated data set used by Longley (1967). There are 16 observations of response variable as 

total derived employment and 6 predictors namely, GNP implicit price deflator  111954 00 x , 

gross national product  2x  , unemployment  3x  , size of armed forces  4x  , non-

institutional population 14 years of age and over  5x  and the time  6x . 

This data set has been used to identify influential observations by Cook (1977), Walker and 

Birch (1988), Jahufer and Jianbao (2009), and Ullah et al. (2013) and some other authors. To be 

consistent with these papers, we use the model (1.1) with the following notations: 

0 1 11y X      where 1 is a vector of 16 ones and  1 1 2 6...X x x x  is centered and 

standardized so that 1 1X X  is in correlation form. We use the matrix  11Z X  as the design 

matrix. Thus, we use  diag 0,1,1,...,1  as the identity matrix as used in Walker and Birch (1988).  

We used the Matlab program to compute all of the given information, so there may be some 

differences between our results and the literature. The condition number of the matrix Z  is 

computed as max min/ 42473     which shows that there is strong multicollinearity 

problem with this data set. 
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Cook (1977) considered this data set and found the cases  5,16,4,10,15  as the most 

influential cases in this order. Walker and Birch (1988) obtained the cases  16,10,4,15,1  as the 

influential cases in this order using the generalization of Cook’s distance in ridge regression. 

Jahufer and Jianbao (2009) also used the same data set and identify the cases with the following 

new order  16,4,1,10,15  by using the modified ridge regression generalization of the usual 

diagnostics. Very recently, Ullah et al. (2013) computed the influential points for different values 

of the parameter d  used in Liu regression such that  16,10,4,6,1 ,  16,10,4,6,5  , 

 16,5,4,10,15 respectively for 0.1,0.5,0.9d  . 

We obtained the values of  ,a

iDFFITS k q ,  * ,aiD k q and  ** ,aiD k q  for different values 

of the parameters k  and q  and identify the most influential observations as given in Table 1. 

We provide the values regarding the observations whose  ,a

iDFFITS k q  value exceeds the 

cut-off value which is computed as 1.0445  and the five observations having largest Cook’s 

distances  * ,aiD k q  and  ** ,aiD k q  . 

We used four different estimators of the parameter k  chosen from the literature and the 

optimal value of the parameter obtained by using (3.10) to minimize the mean squared error 

function as follows: 
2

1 ?

ps
k

 



 , (Hoerl et al., 1975), 

2

2 2

max
ˆ

s
k


  , (Hoerl and Kennard, 1970), 

2

3 2
median

ˆ
i

s
k



 
   

 
 , (Kibria, 2003), 

2

4 2
geomean

ˆ
i

s
k



 
   

 
 , (Kibria, 2003). 

 According to Table 1, it is observed that the same observations that Cook (1977) 

identified as influential cases are detected as influential observations in a different order as 

 16,10,5,4,15  and  16,10,4,5,15  by 
*

aiD  and 
**

aiD  respectively when 1k  is used. If we use 

2k  , then we obtain the same results as Cook (1977) did such that  5,16,4,10,15  computed by 

using 
*

aiD  . 

Moreover, if 3k  and 4k  are used, we obtain the influential observations in the same order as 

given in Ullah et al. (2013) in Table 1 by using Liu estimators. If we use 4k , we observe that the 

same cases given in Walker and Birch (1988) except for the sixth case instead of fifteenth are 

identified as influential cases by both 
*

aiD  and 
**

aiD . 
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Table 1: The most influential cases according to DFFITSa
i, D*

ai and D**
ai 

for different values of k and q. 

 

k  q  Cases 
*

aiD  Cases 
**

aiD  Cases 
a

iDFFITS  

1k  5
9.8562 10


  1.000002  

16 0.54984 16 0.56267 16 0.00692 

10 0.24554 10 0.26701 10 0.00632 

4 0.22988 5 0.25618 4 0.00558 

5 0.20389 4 0.24282 5 0.00553 

15 0.15142 15 0.15411 15 0.00390 

2k  5
2.1783 10


  1.0000004   

16 0.48723 5 0.49321 5 0.00772 

5 0.46467 16 0.48999 16 0.00646 

4 0.24107 4 0.24452 10 0.00604 

10 0.23792 10 0.24297 4 0.00561 

15 0.16586 15 0.16653 15 0.00405 

3k  0.0018  1.000008  

16 0.91656 16 1.13726 16 0.00968 

10 0.25723 10 0.48457 10 0.00798 

6 0.18731 6 0.21944 6 0.00395 

1 0.11507 4 0.13337 4 0.00394 

4 0.09707 1 0.12309 1 0.00317 

4k  0.0012  1.000007  

16 0.88136 16 1.04126 16 0.00931 

10 0.26171 10 0.43866 10 0.00775 

6 0.17040 6 0.19617 4 0.00437 

1 0.12331 4 0.16011 6 0.00377 

4 0.12220 1 0.12949 1 0.00325 

Values with * have smaller values than the cut-off point. 

 

We also give some plots to summarize the results easily. In Figures 1-2,  ,a

iDFFITS k q  

 * ,aiD k q and  ** ,aiD k q  values versus observations are plotted only for the estimator in order 

to make it easy to observe the influential cases from these figures. According to Figure 1 and 2, 

the most influential cases are the 16th and 10th cases. 
*

aiD  , 
**

aiD  and  ,a

iDFFITS k q  give 

similar results. These results are consistent with literature. 
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Figure 1: Plot of Cook’s distance according to different two approach using k3 

 

 

Figure 2: Plot of absolute value of DFFITS using k3 
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In Figure 3, we provide the plot of hat diagonals versus observations. According to Figure 3, 

although the observations having the first three highest leverages are 16th, 2nd and 8th  observations 

are not detected as influential cases. Thus, we can say that high leverage points may not be 

influential all the time.  

 
Figure 3: Plot of hat diagonals hii(k,q) using k3 

 

Figure 1. Plot of residuals  ,
i

e k q  using 
3

k  
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The Figure 4 is the plot of residual against the observations. According to this figure, 

 10,  16,  6,  4,  1   are the observations having largest residuals. Moreover, 10th observation has 

the largest residual; however it is not the most influential observation. Thus, we can say in a 

similar manner that having a larger residual does not guarantee to be the most influential 

observation. 

 

Figure 5. Plot of D*
ai  versus q using k3 

 

Figure 6. Plot of D**
ai versus q using k3 
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Figure 7: Plot of DFFITSi
a versus q using k3 

In Figure 5, we computed the values of   * ,aiD k q  of the unordered influential observations   

for changing values of the parameter   1,4,6,10,16  between 1 and 2 when 3k   is used. It can 

be seen from Figure 5 that increasing the value of  q   affects the distance values  * ,aiD k q   

negatively. Moreover, we obtained a similar figure for  ** ,aiD k q  . 

In the last figure, we provide the plots of the distance values of  
a

iDFFITS  for changing 

values of  q  between 0 and 1 when 3k   is used. All distance values of influential observations 

are increased slowly, however, all distance values remain smaller than 1. 

Finally, we consider the following data sets and obtain their influential observations and 

distance values using the new methods: Tobacco data (Myers, 1986), Hald data set (Hald, 1952), 

body fat data set (Neter et al., 1997) and crime rate data set (Agresti and Finlay, 1986). 

  



 
Y. Asar and M. Erişoğlu                                                            49 

 

 

Table 2: Influential observations and distance values of some data sets used in literature 

Data 3k  q  Cases 
*

aiD
 

Cases 
**

aiD
 

Cases 
a

iDFFITS
 

T
o

b
a

cc
o
 

0.0038 1.0003 

4 0.21568 4 0.64017 4 0.05092 

14 0.13010 14 0.27389 14 0.02510 

1 0.07646 8 0.12989 8 0.01930 

8 0.07103 1 0.08700 1 0.01424 

11 0.04500 11 0.08672 11 0.01375 

H
a

ld
 

0.0146 1.0002 

8 0.28968 8 0.32303 8 0.68700 

11 0.15016 11 0.17892 11 0.37566 

10 0.11096 10 0.12331 6 0.35687 

6 0.07808 3 0.12133 10 0.27890 

13 0.05606 6 0.08382 13 0.23406 

B
o
d

y
 f

a
t 

0.0263 1.0007 

3 0.36455 3 0.42279 3 0.51638 

13 0.15563 13 0.20096 13 0.35350 

14 0.10079 8 0.12962 14 0.31067 

8 0.06724 14 0.12739 8 0.22969 

4 0.05292 2 0.09174 4 0.19599 

C
ri

m
e 

0.0566 1.0083 

13 0.17213 13 0.26876 13 0.05055 

1 0.12978 1 0.19935 1 0.04340 

37 0.06693 37 0.08998 37 0.02892 

54 0.04821 54 0.05519 54 0.02358 

22 0.04408 22 0.05003 22 0.02156 

 

According to Table 2, we see that our detections agree with the literature [(Cook, 1977), 

(Ullah, et al., 2013)]. Thus, it is showed that new diagnostics defined in two-parameter ridge 

estimator are successful to determine the influential observations of the data sets used in literature. 

 

5. Conclusion 

In this article, we consider the problem of multicollinearity and influential observations 

together and propose new diagnostic measures using a two-parameter ridge estimator. In order 

to obtain the approximate versions of new diagnostic measures, we present the approximate case 

deletion formulas in two-parameter ridge regression using SMW theorem. 

Moreover, we illustrate an example of real data application using Longley (1967) data. The 

numerical results show that new measures are useful to identify influential observations. 

However, we suggest to the practitioners that it is important to use these measures along with the 

knowledge and expertise such that he/she needs to decide whether the identified case should be 

retained, removed or down weighted. 
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