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Abstract: this paper provides a novel research on the pricing ability of the hybrid 

ANNs based upon the Hang Seng Index Options spanning a period of from Nov, 

2005 to Oct, 2011, during which time the 2007-20008 financial crisis had developed. 

We study the performances of two hybrid networks integrated with Black-Scholes 

model and Corrado and Su model respectively. We find that hybrid neural networks 

trained by using the financial data retained from a booming period of a market 

cannot have good predicting performance for options for the period that undergoes 

a financial crisis (tumbling period in the market), therefore, it should be cautious 

for researchers/practitioners when carry out the predictions of option prices by 

using hybrid ANNs. Our findings have likely answered the recent puzzles about 

NN models regarding to their counterintuitive performance for option pricing 

during financial crises, and suggest that the incompetence of NN models for option 

pricing is likely due to the fact NN models may have been trained by using data 

from improper periods of market cycles (regimes), and is not necessarily due to the 

learning ability and the flexibility of NN models. 
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1. Introduction 

ASince it was published in 1973, Black-Scholes model has been regarded as the foundation 

of a large number of conventional pricing models. Widely accepted though it is, researchers also 

find that Black-Scholes model has significant flaws due to the presumed prerequisites which are 

not feasible in the real financial market. According to empirical evidence, the distribution of 

option returns has a higher peak and heavier tails than that of normal distribution, and the implied 

volatility generated from Black-Scholes model shows a convex curve which is widely known as 

the “volatility smile” rather than a horizontal line as assumed (Kou, 2002). This to a large extent 

leads to a systematical bias when carrying out in-the-money and out of-the-money option pricing, 

which has been proved in a multitude of research (Black,1975, MacBeth, and Merville, 1979), 

and biases might even change over time. (Rubinstein,1985). Therefore, later researchers focused 

much of their attention on varies of modified models in order to get a model fitted better for the 

real financial transactions when omitting some of the assumed conditions in Black-Scholes 

model(Kou, 2002, Saurabha, and Tiwari,2007, Bakshi, Cao, and  Chen,1997). However, most of 
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these models are either too complex to apply in reality or have poor out of-sample performance 

( Bakshi,  Cao, and  Chen,1997). 

Apart from the parametric and semi-parametric models, Hutchinson, Lo and Poggio (1994) 

proposed a nonparametric approach. They used an artificial neural network (ANN) to simulate 

the relationships between the input parameters and the derivative prices.  This approach discards 

the restriction of Black-Scholes model and thus becomes more adaptive and flexible (Hutchinson, 

Lo, and Poggio, 1994). The comparison between artificial neural network and Black-Scholes 

model in derivatives pricing reveals that the neural network model is better in out of-sample 

predicting with lower hedging errors (Amilon, 2003). Based on artificial neural network, later 

researchers (Andreou, Charalambous, and Martzoukos, 2006) also tested the forecasting 

performance of some hybrid models such as hybrid network with Black-Scholes model or 

Corrado and Su model (Corrado, and Su,1996), hybrid network with Autoregressive Conditional 

Heteroscedasticity (ARCH) or with Generalized ARCH (GARCH) (Hajizadeh, Seifi, Fazel 

Zarandi, and Turksen, 2011),. The results indicate that hybrid artificial neural networks model 

performs better than conventional parametric models in many cases (Andreou, Charalambous, 

and Martzoukos,2006,  Hajizadeh, Seifi, Fazel Zarandi, and Turksen, 2011, Lajbcygier, and 

Connor,1997).  

The purpose of this paper is to examine the effectiveness of the hybrid neural network models 

for option pricing especially during financial crises. This paper differs from previous research in 

two aspects. First, it focuses on the causes that would result in the incompetence of NN models 

(both hybrid neural networks and standard neural networks), while most of the previous research 

dealt with the comparisons of NN models with parametric models. Second, as it is widely 

recognized that volatility turns out to increase during financial crisis (Chong,2011, Ramlall,2010), 

and Black-Scholes model mispricing worsens when underlying volatility is high especially for 

the deep out of-the-money options(Gencay, and Salih, 2003), it is of practical importance to 

investigate the effect of financial crisis on hybrid models and traditional neural network model 

respectively, while most previous researches have mainly been conducted under the condition 

that market volatility is relatively stable.  As indicated by Lento and Gradojevic (2013) recently 

that little research has been conducted on the effectiveness of neural network option pricing 

models during the financial crises. Past literature (Lento and Gradojevic,2013,Gencay and 

Gibson, 2009, Gradojevic, Gencay and Kukolj, 2009) suggest that the simpler BS model is 

however superior to the NN models during the periods of high volatility. In this regard, 

researchers  (Lento and Gradojevic, 2013, Gencay and Gibson,2009, Gradojevic, Gencay and 

Kukolj, 2009) suggest that more thorough research be needed in order to identity the causes for 

such counterintuitive performance of NN models.  

In this research, we have not only examined the effectiveness of traditional neural networks 

on option pricing during financial crises, but also the hybrid-neural networks (i.e. neural networks 

coupled with parametric option pricing models). The research of this kind is novel and of great 

importance for the application of hybrid neural networks for option pricing.  

In the next part of the paper, a brief review of the feed forward back-propagation (BP) 

networks and the hybrid ANN models will be provided, as well as BS and CS model. Then, 
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training and testing of the BP neural network model, the hybrid ANN with BS model, and the 

hybrid ANN with CS model will be conducted using the collected data of Hang Seng Index 

Option. In the Results section, in-sample forecasting results from each model will be provided. 

Finally, we will draw a brief conclusion of this research. 

 

2. Methodology  

Artificial Neural Network 

Among varies of neural networks, back-propagation networks have gained a wide application 

especially in modeling and forecasting [16]. Therefore, we adopt BP networks for this research. 

Network Structure 

There are four input nodes and only one output node which denotes the difference between 

the theoretical price and the market price of the option over their respective strike prices.  

In determining the number of nodes in hidden layer, several criteria have been used such as 

the mean squared error (MSE), Akaike Information Criterion (AIC), and Bayesian Information 

Criterion (BIC). According to the BIC expression developed by Kashyap [17] and Schwarz [18] 

independently: 

ln( ) ln( )BIC M MSE P M                                                           (1) 

The AIC formula proposed by Akaike [19] and then adjusted by Box and Jenkins [20] is  

             ln( ) 2AIC M MSE P                                                            (2) 

where  
1
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              /MSE SE M                                     (4) 

P  is the number of weights and biases in network; 

L  is the output layer ( 2L  in this research); 

iN  is the number of nodes in the ith layer 

M  is the number of data pair used in training process  
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Transfer Function 

In BP multilayer networks, three kinds of transfer function are usually used. They are log-

sigmoid transfer function, tan-sigmoid transfer function, and linear transfer function, and it is 

essential for these transfer functions to have derivatives in BP networks.  

The log-sigmoid function: 

      1
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
                                        (5) 

The tan-sigmoid function:             ( )
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The linear function:                         ( )h x x                                           (7)  

In this research, the linear transfer function is used in the output layer because it is expected 

that the option prices should not be restricted into a specific range as (0,1) in log-sigmoid function 

or (-1,1) in tan-sigmoid function. Tan-sigmoid function is used in the hidden layer.  

The outputs of layer two (option prices) can be expressed as  

2
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j i

O h b w f b w I
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 
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               (8) 

where     n  is the total number of nodes in layer 0 (input layer); 

m  is the total number of nodes in layer 1 (hidden layer); 

iI  is the i th input in layer 0; 

j

iw  is the weight assigned to input iI by node j  in layer 1; 

jb  is the bias of j th node in layer 1; 

jf    is the tan-sigmiod transfer function of j th node in layer 1; 

jw  is the weight assigned to the output of j th node in layer 1 by the single node in layer 2 (output 

layer); 

2b  is the bias of the single node in layer 2; 

h  is the linear transfer function of the single node in layer 2. 

O   is the final output from layer 2 which is the forecasted option price. 
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Hybrid Neural Net with Black-Scholes Model (BS-ANN) 

The Black-Scholes formula for option pricing is 

0 1 2( ) ( )BS rtC S N d Ke N d                (9) 

where  
2
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                    (10) 
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                    (11) 

BSC is the European call option price on a non-dividend-paying asset at time 0; 

0S  is the price of the underlying asset at time 0; 

K  is the strike price; 

r  is the continuously compounded risk-free rate; 

  is the volatility of the underlying asset in one year; 

T  is the time to maturity, and 

( )N x  is the cumulative probability distribution function.  

In the hybrid model of artificial neural network with Black-Scholes model, values of 

parameters of , 0S
, K , r and T are collected and put into Black-Scholes model in order to get 

BSC . The differences between those forecasted values 
BSC and the real market values 

MC will be 

put into artificial neural network afterwards as training targets. With other inputs  , 0 /S K
, r

and T , ANN will generate the predicted difference 

BS MC C

K



. The final forecasted result is the 

sum of the multiplication of this predicted difference from ANN with its corresponding strike 

price K  and the theoretical value of BS model, which can be expressed as ( ( / ) / )ANN BSK C K C K  . 

Hybrid Neural Net with Corrado and Su Model (CS-ANN) 

Corrado and Su [10] adjusted the Black-Scholes model with a Gram-Charlier series 

expansion in order to take into consideration the skewness and kurtosis deviations from normality 

in stock returns. While it is similar to the semi-parametric option pricing model proposed by 

Jarrow and Rudd [21], but Corrado and Su’s model are easier to report and interpret [10]. 

Evidence shows that this semi-parametric model performs significantly better than Black-Scholes 

model [5]. Hence, the latter model will be used in this paper. 

Corrado and Su [10] modified the standard normal density function by a Gram-Charlier series 

expansion. The modified density function is 
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where 
2
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

 
                  (13) 

( )n z  is the standard normal probability density function; 

tS  is a random stock price at time t. 

3  is the nonnormal skewness; 

4  is the nonnormal kurtosis. 

The option pricing formula after modification is  

3 3 4 4( 3)CS BSC C Q Q                 (14) 

where 
0 1 2( ) ( )BS rtC S N d Ke N d                                       (15) 
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Similarly, the differences between forecasted values from Corrado and Su model with market 

values over their corresponding strike price will also be put into the network as targets in the 

hybrid model of artificial neural network with Corrado and Su model. The final forecasted result 

from this model is ( ( / ) / )ANN CSK C K C K  . 

Training Process for option pricing 

Among all kinds of training algorithms, Levenberg-Marquardt (LM) modified algorithms is 

the fastest and is also the default training function in MATLAB [21]. Due to the large amount of 

memory spaces it requires, LM algorithm is usually used in small or medium sized network. 

Considering that the size of the network here is not large, gradient descent LM training algorithm 

will be used in this research.  

To train the network, the weights and biases were first initialized and the initial values are 

generated automatically by the network. With these weights and biases, the network will calculate 

the option price and the error of the network E  which is defined as  

2 2

1 1
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E f w e O T
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                                    (18) 
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where M is the total number of input and output pairs as defined previously. 

Then, the weights and biases will be adjusted after each iteration following 

1t tx x f                              (19) 

where  is the learning rate. As explained by Hagan and Menhaj [23] in their paper, the 

derivatives of ( )f w is expressed by Jacobian matrix in LM algorithm. 
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where ix
represents the element in parameter column vector X  containing the weights and 

biases. 

Hence,  ( ) Tf w J e                                   (20) 

and  2 2
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So, the parameter matrix will be adjusted through equation 
1

1

T T

t tX X J J I J e



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                              (22) 

in each iteration, where  is a learning parameter. 

 

3. Hong Kong (HK) Hang Seng Index Options 

The data adopted in this research ranges from 1st Nov, 2005 to 31st Oct, 2011 and covers the 

subprime mortgage crisis in 2008 during which period of time, a large number of stocks’ prices 

experienced a slump [27]. The financial option we considered in this research is the Hang 

Seng Index Option traded on Hong Kong Stock Exchange based upon the Hang Seng stock 

market index. 

Parameters: T and S/K 

The performances of the aforementioned three models are tested separately in several groups 

by considering that the predicted bias of BS model differs across maturity and moneyness [6]. 

Based upon their time to maturity, the data are separated into long term options ( 180T  days), 

medium term options (60 180T  days), and short term options ( 60T  days). Further, based upon 

the moneyness of the option, 0 /S K , each of the previous three groups are further separated into 

three subgroups as did in Bakshi, Cao and Chen’s research [6]: Out of-the-money (OTM) 
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( 0 / 0.97S K  ), At-the-money (ATM) ( 00.97 / 1.03S K  ), and In-the-money (ITM) ( 0 / 1.03S K 
). 

Consequently, in total 9 groups of data consist of 116,467 observations are summarized in Table1. 

Parameters: risk free rate, historical volatility, skewness and kurtosis 

One year deposit rate covering the time period of the collected data ranges from 2.25% to 

4.14%. To simplify the model, a risk free rate of 3% is used in this paper. Yearly historical 

volatility of the returns in the past 60 days (including the present day) is calculated as the 

volatility of the present day. Skewness and kurtosis of the returns are also calculated using 

historical data of the past 60 days. It is assumed that there are 252 trading days per year. 
 

Table 1.Hong kong index options 

Moneyness 

S/K 

 Time to maturity  Subtotal 

  
(0,60] (60,180] >180 

OTM HK$113.52 HK$295.95 HK$521.58 [74094] 

No. of obvs [41288] [27304] [5502]   

ATM HK$568.10 HK$950.76 HK$1686.55 [27883] 

No. of obvs [16286] [9911] [1686]   

ITM HK$1763.36 HK$2433.84 HK$4628.34 [14490] 

No. of obvs [10401] [3172] [917]   

Subtotal [67975] [40387] [8105] [116467] 

 

Pricing options under financial crisis 

One of the main purposes of this research is to test the forecast performances of neural 

network models for option prices during the 2008 financial crisis. Therefore, the data from each 

of the nine groups above are used for training the networks but also based upon different periods 

of time that are consistent with the developing stages of the subprime mortgage crisis in 2008 as 

shown in Figure 1. 
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Fig. 1 Trend of Hang Seng Index from Nov, 2005 to Oct, 2011 

 

We now roughly split the time in consideration into four stages reflecting different periods 

of development of the 2008 financial crisis in Hong Kong. These can be seen in Table 2. 

 
Table 2. Stages of development of the financial crisis 

Stage  Period Market Features 

1 1st Nov 2005 – 31st Oct 2007 Before financial crisis (booming) 

2 1st Nov 2007 – 15th Mar 2009 Financial crisis (tumbling) 

3 16th Mar 2009 – 9th Feb 2010 Fast recovering (booming) 

4 10th Feb 2010 – 31st Oct 2011 Slow recovering (stabilising) 

 

We have designed in total 6 simulation sets (as shown in Table 3) for the nine groups of the 

index options mentioned earlier. In each of the sets 1, 2 and 3, data from Stage 1 are used for 

training. For example, when using the BS-ANN model, the input data for the model are obtained 

from Stage 1, and the targeted outputs are also from the same stage. After training, the network 

is then used as an option pricing tool for Stage 2, 3, and 4 separately. For Simulation sets 4, 5, 

and 6, we combine two or three stages in time to train neural network models, and the trained 

models are then used for prediction of the option prices for other stage(s). For instance, in 

Simulation Set 6, data from Stage 1, 2, and 3 are altogether used to train the network, which is 

later used to simulate the option prices in Stage 4. 
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Table 3.The simulation sets 

Simulation set Training set Prediction 

1 Stage 1 Stage 2 

2 Stage 1 Stage 3 

3 Stage 1 Stage 4 

4 Stage 1&2 Stage 3 

5 Stage 1&2 Stage 4 

6 Stage 1, 2,&3 Stage 4 

 

4. Results and discussions 

To provide a thorough comparison among the three models, four different measures are used: 

1
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              (26) 

Where  

N is the number of data pair used in simulate; 

iF is the forecasted option price; 

iA is the actual price from the market. 

Preliminary results 

The first purpose of this research is to test the prediction performance of the models in each 

stage of the financial crisis. Firstly, we want to know whether learning of prices from a certain 

stage (s) would cause any side effect to the prediction of prices. Secondly, we want to find out 

whether hybrid networks possess any advantages over the traditional network. 
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Table 4: RMSEs of each simulation set in artificial neural network 

RMSE ANN   L     M     S   

Training Prediction OTM ATM ITM OTM ATM ITM OTM ATM ITM 

S1* S2 1355.3636 1556.9918 2161.878 1310.0963 639.66857 764.30342 2016.1897 1263.0071 992.20655 

S1 S3 1151.3077 669.38867 1132.3559 721.71177 142.59979 512.38419 275.47231 154.62877 341.35742 

S1 S4 616.53639 294.20669 393.17118 221.07265 151.68939 230.3813 88.452636 103.34483 133.69532 

S1&2 S3 127.35899 244.95334 262.33144 76.446726 187.9516 179.77449 42.461521 100.16175 135.73236 

S1&2 S4 133.91734 230.56396 271.07116 94.902816 156.27682 185.11979 48.611721 102.7587 107.72082 

S1,2&3 S4 120.36331 214.16583 292.1646 90.784591 149.08585 175.12264 46.484094 93.824601 102.90797 

*S1 stands for Stage 1 

 

Table 5. RMSEs of each simulation set for the Hybrid Model CS-ANN 

RMSE CS-ANN   L     M     S   

Training Prediction OTM ATM ITM OTM ATM ITM OTM ATM ITM 

S1 S2 2141.7422 957.8311 1094.4773 631.63212 427.12016 499.41196 298.01252 941.10333 327.1581 

S1 S3 653.59865 528.46051 814.59158 195.98336 299.05957 426.30136 110.20774 594.77594 245.86609 

S1 S4 108.99772 277.93967 511.64853 111.16594 180.21061 240.48015 59.75144 302.4292 160.21959 

S1&2 S3 159.97553 276.70231 761.67637 99.257598 156.35721 235.8928 245.15136 123.54767 144.29526 

S1&2 S4 95.637359 247.086 295.20516 91.217341 182.34225 187.23117 72.516084 104.2104 110.78911 

S1,2&3 S4 91.624076 238.74704 2364.6613 92.565105 158.98428 172.54063 48.00654 101.89797 103.78162 

 

The error measures (RMSE) of each simulation set are extracted and summarized in Table 4, 

5 and 6. It is clear that the worst performing excises lie with Simulation Set 1 (shown in Table 

3). In this set, the booming stage before the financial crisis was used for training the networks, 

which were then used for predicting the prices for the tumbling period of the market. This 

phenomenon can be seen in all three networks regardless the network is hybrid or not. Largest 

errors always occurred in Set 1. The pricing performance become generally better when the 

networks (trained by using Stage 1) are used to predict option prices for Stage 3 and 4 which 

represent for a recovering economics after the financial crisis, though there are some large errors 

when predicting OTM options. The performance becomes better because the later stages in the 

market bear similar features to those in Stage 1, which was that market prices were climbing up 

in one way or the other. When we used more stages as training sets, for instance, using Stages 1, 

2 and 3 as a whole, the prediction of prices of options gets better.  Take the RMSE of BS-ANN 
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in long term, out of-the-money group as an example. The RMSE of Stage 4 with a training set of 

Stage 1 is 829.50198, and that of the same stage with a training data from Stage 1 and Stage 2 

together is 123.92778. The difference is as large as over 700. As seen in the errors of RMSEs 

with a training set of Stage 1 and Stage 2 or a training set of Stage 1, 2, and 3 altogether are much 

smaller. This holds true almost for all the groups. 

On the other hand, the network trained only by Stage 1 can generate better results (smaller 

errors) when used to prediction option prices for Stage 3 or Stage 4, though the results are a little 

worse than those obtained by the networks trained by using more than 2 stages. All the 

phenomena indicate that the choice of a training set for a network is crucial for its prediction 

performance. Researchers need to pay attention to the financial data from which period of the 

economic cycles that is retained for training, and for which   period that is to be used for prediction. 

Of course, large quantity of training data could certainly generate smaller errors, however, the 

improvement could be limited as seen in our simulation that a network trained by using a 

combination of Stages 1, 2 and 3 didn’t outperform much over a network trained by using Stages 

1 and 2. In our view, it was the diluteness effect of combination of booming period (S1) and 

crashing period (S2) in the market that resulted in better prediction for a stable period (S4), not 

necessarily because of larger data amount. Of course, the later certainly helps. 

 

Table 6: RMSEs of each simulation set in Hybrid Model 2 (CS-ANN) 

RMSE CS-ANN   L     M     S   

Training Prediction OTM ATM ITM OTM ATM ITM OTM ATM ITM 

S1 S2 2141.7422 957.8311 1094.4773 631.63212 427.12016 499.41196 298.01252 941.10333 327.1581 

S1 S3 653.59865 528.46051 814.59158 195.98336 299.05957 426.30136 110.20774 594.77594 245.86609 

S1 S4 108.99772 277.93967 511.64853 111.16594 180.21061 240.48015 59.75144 302.4292 160.21959 

S1&2 S3 159.97553 276.70231 761.67637 99.257598 156.35721 235.8928 245.15136 123.54767 144.29526 

S1&2 S4 95.637359 247.086 295.20516 91.217341 182.34225 187.23117 72.516084 104.2104 110.78911 

S1,2&3 S4 91.624076 238.74704 2364.6613 92.565105 158.98428 172.54063 48.00654 101.89797 103.78162 
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Table 7: Error measures of each simulation set 1 

Simulation set 1   L     M     S   

    OTM ATM ITM OTM ATM ITM OTM ATM ITM 

  ANN 1003.7967 1089.6223 1560.8882 1035.444 -344.9254 347.35144 1143.9516 -480.5624 461.71309 

ME BS-ANN -4712.07 472.79527 1168.2261 331.85378 712.51359 339.06811 1135.3272 397.59058 203.52689 

  CS-ANN 1309.4909 670.06779 853.75597 412.33942 254.25163 348.13177 149.94286 498.09419 210.15869 

  ANN 1355.3636 1556.9918 2161.878 1310.0963 639.66857 764.30342 2016.1897 1263.0071 992.20655 

RMSE BS-ANN 14294.774 698.25948 1463.6269 511.14249 1047.4885 514.23247 2132.325 518.03605 311.04159 

  CS-ANN 2141.7422 957.8311 1094.4773 631.63212 427.12016 499.41196 298.01252 941.10333 327.1581 

  ANN 1061.8612 1140.5856 1596.7049 1056.535 466.31536 563.07748 1198.6332 675.27138 604.8783 

MAE BS-ANN 5517.7467 542.73745 1222.0666 380.11521 754.01412 386.51086 1149.2039 414.52023 252.86513 

  CS-ANN 1399.9303 721.57394 871.5729 468.02413 334.88126 388.9443 206.6553 738.78484 264.56355 

  ANN 79.742693 0.4461355 0.3956542 70.544843 0.299637 0.2036564 180.28338 0.9648541 0.3444915 

MAPE BS-ANN 664.61821 0.2115112 0.2739962 13.689559 0.4926544 0.1478211 175.275 0.7243695 0.1545263 

  CS-ANN 39.720518 0.2828634 0.2054983 15.724776 0.2287239 0.1468097 33.54445 1.0964372 0.1648266 

 

With the other objective in our mind, we now pick Simulation Set 1 (shown in Table 7) as 

an example (the comparisons in relation to other Simulation Sets can be found in the Appendix). 

Understandingly, this is the worst case that we have had with all the networks having performed 

badly for the periods during which a regime switch in the financial market had occurred. As 

shown before, in this simulation, the booming stage before the 2008 financial crisis was used for 

training the networks, which were then used for predicting the prices for the tumbling period of 

the market.   What we have observed here is that the hybrid CS-ANN and BS-ANN models 

performed a little better than the NN models in overall, while the BS-ANN performed worst for 

OTM options for options with long term maturity. This is somewhat related to the fact that Black-

Scholes model mispricing worsens when underlying volatility is high especially for the deep out 

of-the-money options [15]. 

Although network models can make a significant contribution in improving forecast 

precision, there is a common and significant deficiency in all the three models attributed to this. 

They all might generate negative prices for out of-the-money options. A small moneyness ratio 

0 /S K usually leads to a relatively low option price in the real market as shown in Table 1. In 

standard neural network model, it is hard for the network to control the extent to which the option 

price is close to zero. Similar to this, it is also hard for the network to control the difference 
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between the predicted price from BS (or CS) model and the real price from the market (

BS MC C

K



). 

This deficiency in simulation would probability lead to a negative sum ( / ) /ANN BSC K C K  , and 

further a negative predicted option price ( ( / ) / )ANN BSK C K C K  . 

 

Discussions and conclusions 

Recent researches on non-parametric models for option pricing have shown NN models to 

be less effective than parametric models (such as BS model) especially during the periods of 

financial crises. Lento and Gradojevic [24] ever concluded after pricing options for 1987 and 

2008 by using NN models, that “the very advantages of non-parametric models over their 

parametric counterparts such as learning ability and the flexibility of functional forms largely 

contribute to the poor performance of non-parametric models when markets are highly volatile 

and experience a regime shift.”. However, our research suggests that the incompetence of NN 

models for option pricing is likely due to the fact NN models may have been trained by using 

data from improper periods of market cycles (regimes), and is not necessarily due to the learning 

ability and the flexibility of NN models. Further, one should be aware that this research is not 

only about traditional neural networks, it is mainly about the hybrid ANN models for option 

pricing, i.e. the ANNs coupled with parametric option pricing models. The research is therefore 

novel on this aspect and the related results should be mainly referred to hybrid ANN models for 

options. 

In conclusion, using data of Hang Seng Index Options dating from Nov, 2005 to Oct, 2011, 

this paper tests the performances of a standard neural network and two hybrid neural networks in 

option pricing. In order to test their performances in different stages of financial crisis, the data 

is separated into several groups and are forecasted separately. Four error measures including ME, 

RMSE, MAE, and MAPE are used to compare the performances.  Two conclusions can be drawn 

based up our research: 1) a neural network trained by using the financial training data retained 

from a booming period of a market cannot have good predicting performance for options for the 

period which undergoes the financial crisis (tumbling period in the market), therefore, it should 

be cautious for researchers/practitioners when carry out the predictions of option prices by using 

either a standard ANN or a hybrid ANN. 2) We observed that Hybrid ANNs performed slightly 

better than traditional ANNs for option prices in the course of financial crisis except for 

predicting OTM option prices, while BS-ANN performed worst for OTM options for options 

with long term maturity. 
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