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1 Introduction

In the literature, several continuous univariate distributions have been extensively used for mod-
eling data in many areas such as economics, engineering, biological studies and environmental
sciences. However, applied areas such as �nance, lifetime analysis and insurance clearly require
extended forms of these distributions. So, several classes of distributions have been constructed by
extending common families of continuous distributions. These generalized distributions give more
�exibility by adding one "or more" parameters to the baseline model. They were pioneered by
Gupta et al. (1998) who proposed the exponentiated-G class, which consists of raising the cumu-
lative distribution function (cdf) to a positive power parameter. Many other classes can be cited
such as the Marshall-Olkin-G family by Marshall and Olkin (1997), beta generalized-G family by
Eugene et al. (2002), exponentiated generalized-G family by Cordeiro et al. (2013), a new method
for generating families of continuous distributions by Alzaatreh et al. (2013), transmuted expo-
nentiated generalized-G by Yousof et al. (2015), exponentiated transmuted-G by Merovc et al.
(2016), Burr X-G by Yousof et al. (2016), transmuted Weibull G family by Alizadeh et al. (2016),
complementary generalized transmuted Poisson-G family by Alizadeh et al. (2016b), transmuted
geometric-G by A�fy et al. (2016a), complementary geometric transmuted-G family A�fy et al.
(2016b), Kumaraswamy transmuted-G by A�fy et al. (2016c), exponentiated generalized-G Pois-
son by Aryal and Yousof (2017), Marshall-Olkin generalized family by Yousof et al. (2017a), beta
Weibull-G family of distributions by Yousof et al. (2017b), Type I general exponential class of
distributions by Hamedani et al. (2017), Topp-Leone odd log-logistic family by de Brito et al.
(2017), generalized odd generalized exponential family by Alizadeh et al. (2017), exponentiated
Weibull-H family Cordeiro et al. (2017a), generalized transmuted-G by Nofal et al. (2017), Burr
XII system of densities by Cordeiro et al. (2017b) and beta transmuted-H family by A�fy et al.
(2017), among others.

Abstract: In this paper, we introduce a new family of continuous distributions called
the transmuted Topp-Leone G family which extends the transmuted class pioneered
 by Shaw and Buckley (2007). Some of its mathematical properties including
 probability weighted moments, mo- ments, generating functions, order statistics,
 incomplete moments, mean deviations, stress- strength model, moment of residual
 and reversed residual life are studied. Some useful char- acterizations results based
 on two truncated moments as well as based on hazard function are presented. The
 maximum likelihood method is used to estimate its parameters. The Monte Carlo
 simulation is used for assessing the performance of the maximum likelihood
 estimators. The usefulness of the new model is illustrated by means of two real data
 set.
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For an arbitrary baseline cdf G(x ), Shaw and Buckley (2007) de�ned the TG family with cdf
and probability density function (pdf) given by

F (x) =F (x;�; ) =H (x; ) [1 +���H(x; )] (1)

and
f (x) =f (x;�; ) =h(x; ) [1 +��2�H(x; )] ; (2)

respectively, where j�j � 1 is a shape parameters,x > 0 and  = ( k) = ( 1; 2; :::) is a
parameter vector. The TG density is a mixture of the baseline density and the exponentiated-G
(exp-G) density with power parameter two. For � = 0 , Equation (1) gives the baseline distribution.
Due to Rezaei et al. (2016), the cdf and the pdf of the Topp Leone generated (TLG) family of
distributions are speci�ed by

H (x) =H (x;�; ) =fG(x; ) [2�G(x; )]g�=
n
1� [1�G(x; )]2

o�
(3)

and
h(x) =h(x;�; ) = 2� g(x; ) [1�G(x; )]

n
1� [1�G(x; )]2

o��1
; (4)

respectively. The various properties of the Topp-Leone�s distribution have been studied by several
authors. For example: moments by (Nadarajah and Kotz, 2003); reliability measures and stochas-
tic orderings by (Ghitany et al., 2005); distributions of sums, products and ratios by (Zhou et al.,
2006); behavior of kurtosis by (Kotz and Seier, 2007); record values by (Zghoul, 2011); moments
of order statistics by (Genc, 2012); stress-strength modeling by (Genc, 2013); Bayesian estimation
under trimmed samples by (Sindhu et al., 2013) and Censored maximum likelihood estimation by
(Rezaei et al., 2016). The objective of this study is to de�ne a new class of distributions called the
transmuted Topp-Leone G (TTL-G for short) family of distributions and study its mathematical
properties. Based on the TG and TLG families, we construct a new generator by inserting (3)
into (1), to have

F (x) = (1 +�)
n
1� [1�G(x; )]2

o�
��

n
1� [1�G(x; )]2

o2�
; x� 0; (5)

whereG(x; ) = G(x) is the baseline cdf and� > 0 and j�j � 1 are two additional shape
parameters. The TTL-G is a wider class of continuous distributions. It includes the TG and TLG
families of distributions.
The rest of the paper is outlined as follows. In Section 2, we de�ne the univariate extensions

of the TTL-G family. A useful mixture representation for the new pdf are derived in the same
Section. In Section 3, we derive some of its mathematical properties including probability weighted
moments (PWMs), residual life and reversed residual life functions, stress-strength model, ordinary
and incomplete moments, generating functions and �nally order statistics and their moments are
introduced at the end of the section. Some characterization results are provided in Section 4.
Maximum likelihood estimation of the model parameters is addressed in Section 5. In section
6, simulation results to assess the performance of the proposed maximum likelihood estimation
procedure are discussed. In Section 7, we de�ne two special models and provide the plots of their
pdf�s and hazard rate functions (hrf�s). In Section 8, we provide the applications to real data to
illustrate the importance of the new family. Finally, some concluding remarks are presented in
Section 9.

2 The new family

The pdf corresponding to (5) is

f (x) = 2� g(x; ) [1�G(x; )]
n
1� [1�G(x; )]2

o��1
�
n
1 +��2�

n
1� [1�G(x; )]2

o�o
; x >0: (6)
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The hrf for the new family can be expressed as

� (x) = 2� g (x; ) [1�G (x; )]
1 + �� 2�

n
1� [1�G (x; )]2

o�
n
1� [1�G (x; )]2

o1��
�
�
1� (1 + �)

n
1� [1�G (x; )]2

o�
+ �

n
1� [1�G (x; )]2

o2���1
: (7)

For simulation of this new family, ifu� u(0;1) then for� 6= 0 the solution of non-linear equation

xu = G
�1

0B@1�
8<:1�

"
1 + ��

p
(1 + �)2 � 4�u
2�

#1=�9=;
0:5
1CA ;

has cdf (5). For�= 0, xu= G�1
�
1� (1�u1=�)0:5

�
has cdf (5). The chief motivation of the

generalized distributions for modeling lifetime data lies in the �exibility to model both monotonic
and non-monotonic failure rates even though the baseline failure rate may be monotonic. The basic
justi�cations for generating a new distribution in practice are the following: to produce a skewness
for symmetrical models; to generate distributions with left-skewed, right-skewed, symmetric, or
reversed-J shape; to de�ne special models with all types of hrf; to make the kurtosis more �exible
compared to that of the baseline distribution; to construct heavy-tailed distributions for modeling
various real data sets; to provide consistently better �ts than other generated distributions with
the same underlying model. Below is a simple motivation for the development of TTL-G family
of distributions. Suppose "T1andT1" are two independent random variables with cdf (3). De�ne

X =

(
T1:2 with probability 1

2 (�+ 1) ;

T2:2 with probability 1
2 (1� �) ;

where
T1:2 = min fT1; T2g and T2:2 = max fT1; T2g :

Then, the cdf ofX is given by (5). The TTL-G family of distributions appears to be more felxible
and could be used for modeling various types of data. For illustration propose we provide pdf
and hrf of some special models of this family in �gures 1 and 2. It can be seen that the hazard
rate can take increasing, decreasing, upside down and bathtub shapes. Therefore, this family
of distribution could be used to model diverse nature of data sets. Now, we provide a useful
representation for (5) as

F (x) = (1 + �)
1X
j=0

(�1)j
�
�

j

�
�G(x)2j � �

1X
j=0

(�1)j
�
�

j

�
�G(x)2 j ; (8)

or

F (x) = (1 + �)
1X
j=0

2 jX
k=0

(�1)j+k
�
�

j

��
2 j

k

�
G(x)k � �

1X
j=0

2 jX
k=0

(�1)j+k
�
2�

j

��
2 j

k

�
G(x)k;

and �nally

F (x) =

2 jX
k=0

wj;k�k(x); (9)

where

wk =
1X
j=0

(�1)j+k
�
(1 + �)

�
�

j

�
� �

�
2�

j

���
2 j

k

�
;
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and��(x) =G(x)
� is the cdf of the exp-G distribution with power parameter �. The correspond-

ing TTL-G density function is obtained by di¤erentiating (9)

f(x) =

2 jX
k=0

wk �k+1(x); (10)

where��(x) =�g(x)G(x)
��1
is the pdf of the exp-G distribution with power parameter �.

3 Mathematical properties

3.1 Probability weighted moments

The PWMs are expectations of certain functions of a random variable and they can be de�ned for
any random variable whose ordinary moments exist. The PWMs method can generally be used
for estimating parameters of a distribution whose inverse form cannot be expressed explicitly. The
(s; r)th PWMs ofX following the TTL-G distribution, say �s;r , is formally de�ned by

�s;r = E fXs F (X)rg =
Z 1

�1
xs F (x)r f (x) dx:

Using equations (5) and (6), we can write

f (x) F (x)r =

2j+1X
k=0

bk�k+1 (x) ;

where

bk =

rX
i=0

1X
j=0

2��i (�1)i+j+k

(k + 1) (1 + �)�(r�i)

�
r

i

��
2j + 1

k

�

�
�
(1 + �)

�
� (r + i+ 1)� 1

j

�
� 2�

�
� (r + i+ 2)� 1

j

��
:

Then, the(s; r)th PWMs of X can be expressed as

�s;r =

2j+1X
k=0

bkE
�
Y sk+1

�
:

3.2 Residual life and reversed residual life functions

The nth moment of the residual life, say mn( t) =E[(X� t )n jX > t ] ,n = 1 ;2 ,. . . , uniquely
determineF(x). Then th moment of the residual life of X is given by mn(t) = 1

1�F(t)
R1
t (x�

t)n dF(x): Therefore,

mn(t) =
1

1� F (t)

2 jX
k=0

wFk

Z 1

t

xr�k+1(x);

wherewFk = wk
nP
r=0

�
n

r

�
(�t)n�r . Another interesting function is the mean residual life (MRL)

function or the life expectation at age t de�ned bym 1(t) = E [(X � t) j X > t], which represents
the expected additional life length for a unit which is alive at age t. The MRL of X can be
obtained by setting n= 1 in the last equation. The n th moment of the reversed residual life, say
Mn(t) = E [(t�X)n j X � t] for t > 0 and n = 1;2 ,. . . uniquely determines F (x) . We obtain
Mn(t) =

1
F (t)

R t
0
(t� x)ndF (x).Then, the nth moment of the reversed residual life of X becomes
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Mn(t) =
1

F (t)

2 jX
k=0

wFFk

Z t

0

xr�k+1(x);

where wFFk = wk
nP
r=0

(�1)r
�
n
r

�
tn�r. The mean inactivity time (MIT) or mean waiting time

(MWT) also called the mean reversed residual life function is given by M1(t) = E[(t�X) j X � t],
and it represents the waiting time elapsed since the failure of an item on condition that this failure
had occurred in (0; t).The MIT of the TTL-G family of distributions can be obtained easily by
settingn = 1 in the above equation.

3.3 Stress-strength model

Stress-strength model is the most widely approach used for reliability estimation. This model is
used in many applications in physics and engineering such as strength failure and system collapse.
In the stress-strength modeling, R = Pr(X2 < X1 ) is a measure of reliability of the system
when it is subjected to random stress X2 and has strength X1 . The system fails if and only
if the applied stress is greater than its strength and the component will function satisfactorily
whenever X1 > X2. R can be considered as a measure of system performance and naturally arise
in electrical and electronic systems. Other interpretation can be that, the reliability of the system
is the probability that the system is strong enough to overcome the stress imposed on it. Let
X1 and X2 be two independent random variables wiht TTL-G (�1; �1; )and TTL-G (�1; �1; )
distributions . Then, the reliability is de�ned by

R =

Z 1

0

f1 (x;�1; �1; )F2 (x;�1; �1; ) dx:

We can write

R =

2 jX
k=0

2wX
m=0


k;m

Z 1

0

�k+m (x) dx;

where


k;m =
1X

j;w=0

(k + 1) (�1)j+k+w+m
(k +m+ 1)

�
2 j

k

��
2w

m

�

�
�
(1 + �1)

�
�1
j

�
� �1

�
2�1
j

�� �
(1 + �2)

�
�2
w

�
� �2

�
2�2
w

��
:

Thus, the reliability,R , can be expressed as

R =

2 jX
k=0

2wX
m=0


k;m:

3.4 Moments, incomplete moments and generating function

The r th ordinary moment of X is given by �0r = E(X
r) =

R1
�1 xr f (x) dx: Then we obtain

�0r =

2 jX
k=0

wkE(Y
r
k+1): (11)

Henceforth, Yk+1denotes the exp-G random variable with power parameter k + 1. Setting r = 1
in (11), we have the mean ofX.The last integration can be computed numerically for most parent
distributions. The skewness and kurtosis measures can be calculated from the ordinary moments
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using well-known relationships. The n th central moment of X , say Mn, is Mn = E(X � �)n =
nP
h=0
(�1)h

�n
h
�
(�01)n�0n�h: The cumulants ( � n ) of X follow recursively from

�n = �
0
n �

n�1X
r=0

�
n� 1
r � 1

�
�r �

0
n�r;

where �1= �
0
1, �2= �

0
2� �021 ; �3= �03� 3�02�01+ �031 , etc. The skewness and kurtosis measures

can also be calculated from the ordinary moments using well-known relationships. The main
applications of the �rst incomplete moment refer to the mean deviations and the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography, insurance and
medicine. The r th incomplete moment, say 'r (t), of X can be expressed, from (9), as

'r (t) =

Z t

�1
xrf (x) dx =

2 jX
k=0

wk

Z t

�1
xr �k+1 (x) dx: (12)

The mean deviations about the mean [�1 = E(jX��01j)] and about the median [�2 = E (jX �M j)]
ofX are given by �1 = 2�

0

1F (�
0
1)�2'1(�01) and �2 = �

0
1�2'1 (M) , respectively, where �01 = E (X),

M = Median (X) = Q(0:5) is the median, F (�01) is easily calculated from (5) and '1 (t) is the
�rst incomplete moment given by (12) with r = 1. A general equation for '1 (t) can be derived
from (12) as

'1(t) =
2jX
k=0

wkIk+1(x) ;

where Ik+1 (x) =
R t
�1 x�k+1 (x) dx is the �rst incomplete moment of the exp-G distribution. The

moment generating function (mgf)MX (t) = E
�
etX

�
of X can be derived from equation (9) as

MX (t) =

2 jX
k=0

wkMk+1 (t) ;

whereMk+1 (t) is the mgf of Yk+1. Hence,MX (t) can be determined from the exp-G generating
function.

3.5 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let
X1; : : : ; Xn be a random sample from the TTL-G family of distributions and letX1:n; : : : ; Xn:n
be their corresponding order statistics. The pdf of i th order statistic,Xi:n, can be written as

fi:n (x) =
f (x)

B (i; n� i+ 1)

n�iX
j=0

(�1)j
�
n� i
j

�
F j+i�1 (x) ; (13)

whereB(�; �) is the beta function. Substituting (5) and (6) in equation (13) and using a power
series expansion,we have

f (x) F (x)r =
2m+1X
k=0

tk �k+1 (x) ;

where

tk =

j+i�1X
h=0

1X
m=0

2��h (�1)h+m+k

(k + 1) (1 + �)�(j+i�h�1)

�
j + i� 1

h

��
2m+ 1

k

�
�
�
(1 + �)

�
� (j + i+ h)� 1

m

�
� 2�

�
� (j + i+ h+ 1)� 1

m

��
:
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The pdf of Xi:ncan be expressed as

fi:n (x) =
n�iX
j=0

2m+1X
k=0

(�1)j
�
n�i
j

�
B (i; n� i+ 1) tk �k+1:

Then, the density function of a TTL-G order statistic is a mixture of exp-G densities. Based on
the last equation, we note that the properties of Xi:n follow from those of Yk+1. For example, the
moments of Xi:n can be expressed as

E (Xq
i:n) =

n�iX
j=0

2m+1X
k=0

(�1)j
�
n�i
j

�
tk

B (i; n� i+ 1)E
�
Y qk+1

�
: (14)

The L-moments are analogous to the ordinary moments but can be estimated by linear combi-
nations of order statistics. They exist whenever the mean of the distribution exists, even though
some higher moments may not exist, and are relatively robust to the e¤ects of outliers. In view
of the moments in equation (14), we can derive explicit expressions for the L-moments ofX as
in�nite weighted linear combinations of the means of suitable TTL-G order statistics. They are
linear functions of the expected order statistics de�ned by

�r =
1

r

r�1X
d=0

(�1)d
�
r � 1
d

�
E (Xr�d:r) ; r � 1:

4 Characterizations

Characterizations of distributions is an important research area which has recently attracted
the attention of many researchers. This section deals with various characterizations of TTL-G
distribution. These characterizations are based on: (i) a simple relationship between two truncated
moments and(ii)the hazard function. It should be mentioned that for characterization (i) the
cdf need not have a closed form.

4.1 Characterizations based on two truncated moments

In this subsection we present characterizations of TTL-G distribution in terms of a simple rela-
tionship between two truncated moments. Our �rst characterization result employs a theorem
due to Glänzel (1987); see Theorem 4.1 below. Note that the result holds also when the interval
H is not closed. Moreover, as mentioned above, it could be also applied when the cdf F does not
have a closed form. As shown in Glänzel (1990), this characterization is stable in the sense of
weak convergence.
Theorem 4.1. Let (
;F ;P) be a given probability space and let H = [d; e] be an interval

for some d < e (d = �1; e =1 might as well be allowed): Let X : 
 ! H be a continuous
random variable with the distribution functionFand let q 1 and q2 be two real functions de�ned
on H such that

E [q2 (X) j X � x] = E [q1 (X) j X � x] � (x) ; x 2 H;

is de�ned with some real function �. Assume that q1; q2 2 C1 (H), � 2 C2 (H) and F is twice
continuously di¤erentiable and strictly monotone function on the setH . Finally, assume that the

=
functions q1; q2 �

F (x) =

Z x

d

C

���� �0 (u)

� (u) q1 (u)� q2 (u)

���� exp (�s (u)) du ;
equation has no real solution in the interior of . Then is uniquely determined by the�q q H F1 2

and , particularly
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s s0 = �0 q1
� q1�q2

and C is the normal-
ization constant, such that

R
H
dF = 1.

Here is our �rst characterization.
Proposition 4.1. Let X : 
 ! (0;1) be a continuous random variable and let q1 (x) =n

1 + �� 2�
h
1�

�
G (x)

�2i�o�1
and q2 (x) = q1 (x)

h
1�

�
G (x)

�2i�
for x > 0: The random

variableX belongs to TTL-G family(6) if and only if the function � de�ned in Theorem 4.1 has
the form

� (x) =
1

2

n
1 +

h
1�

�
G (x)

�2i�o
; x > 0: (15)

X (6)

(1� F (x))E [q1 (x) j X � x] = 1�
h
1�

�
G (x)

�2i�
; x > 0;

and

(1� F (x))E [q2 (x) j X � x] = 1

2

�
1�

h
1�

�
G (x)

�2i2��
; x > 0;

and �nally

� (x) q1 (x)� q2 (x) =
1

2
q1 (x)

n
1�

h
1�

�
G (x)

�2i�o
> 0 for x > 0:

�

s0 (x) =
�0 (x) q1 (x)

� (x) q1 (x)� q2 (x)
=
�g (x)G (x)

h
1�

�
G (x)

�2i��1
1�

h
1�

�
G (x)

�2i� ; x > 0;

and hence s (x) = � log
n

1�
h

1�
�
G (x)

�2i �o
; x > 0:

Now, in view of Theorem 4.1, X has density (6):
Corollary 4.1. Let X : 
 ! (0;1) be a continuous random variable and let q1(x) be as

in Proposition 4.1. The pdf of X is (6) if and only if there exist functions q2 and � de�ned in
Theorem 4.1 satisfying the di¤erential equation

�0 (x) q1 (x)

� (x) q1 (x)� q2 (x)
=
�g (x)G (x)

h
1�

�
G (x)

�2i��1
1�

h
1�

�
G (x)

�2i� ; x > 0: (16)

The general solution of the di¤erential equation in Corollary 4.1 is

� (x) =
n
1�

h
1�

�
G (x)

�2i�o�1 ��
�
Z
�g (x)G (x)

h
1�

�
G (x)

�2i��1
(q1 (x))

�1
q2 (x) dx+D

�
where D is a constant. Note that a set of functions satisfying the di¤erential equation (16) is
given in Proposition 4.1 with D = 1

2 : However, it should be also noted that there are other triplets
(q1; q2; �) satisfying the conditions of Theorem 4.1.

where the function is a solution of the di¤erential equation

Proof. Let be a random variable with pdf , then

Conversely, if is given as above, then
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4.2 Characterization based on hazard function

It is known that the hazard function, hF , of a twice di¤erentiable distribution function, F, satis�es
the �rst order di¤erential equation

f 0(x)

f(x)
=
h0F (x)

hF (x)
� hF (x): (17)

For many univariate continuous distributions, this is the only characterization available in terms
of the hazard function. The following characterization establish a non-trivial characterization for
TTL-G distribution in terms of the hazard function when � = 1 , which is not of the trivial form
given in (17).
Proposition 4.2. Let X : 
 ! (0;1) be a continuous random variable. Then for � = 1;

the pdf of X is (6) if and only if its hazard function hF (x) satis�es the di¤erential equation

h0F (x)�
g0 (x)

g (x)
hF (x)

=
2 (g (x))

2
n
(1� �)2 + � (1� �)

�
G (x)

�2
+ 2�2

�
G (x)

�4on
G (x)

h
(1� �) + �

�
G (x)

�2io2 ; (18)

with the boundary condition hF (0) = 2g (0) (1 + �) :

Proof. IfX has pdf (6), then clearly (18) holds. Now, if (18) holds, then

d

dx

n
(g (x))

�1
hF (x)

o
= 2

d

dx

n�
G (x)

��1o
+ 2�

d

dx

8<: G (x)h
(1� �) + �

�
G (x)

�2i
9=; ;

or, equivalently,

hF (x) =
2g (x)

n
(1� �) + 2�

�
G (x)

�2o
G (x)

h
(1� �) + �

�
G (x)

�2i ;

which is the hazard function of the TTL-G distribution.

5 Estimation

Several approaches for parameter estimation are proposed in the literature but the maximum
likelihood method is the most commonly employed. The maximum likelihood estimators (MLEs)
enjoy desirable properties and can be used for constructing con�dence intervals and regions and
also in test statistics. The normal approximation for these estimators in large samples can be easily
handled either analytically or numerically. So, we consider the estimation of the unknown para-
meters of this family from complete samples only by maximum likelihood method. Let x1; : : : ; xn
be a random sample from the TTL-G distribution with parameters �; � and  . Let � =(�; �; )|

be the p� 1 parameter vector. To determine the MLE of� , we have the log-likelihood function

` = `(�) = n log(2) + n log�+
nX
i=1

log g (xi; ) +
nX
i=1

logG(xi; )

+ (�� 1)
nX
i=1

log
�
1� �G(xi; )

2
�
+

nX
i=1

log (si) ;
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wheresi =
�
1 + �� 2�

�
1� �G(xi; )

2
��	

:

The components of the score vector,U (�) = @`
@� =

�
@`
@� ;

@`
@� ;

@`
@ 

�|
; are

U� =
nX
i=1

zi
si
; U� =

n

�
+

nX
i=1

log
�
1� �G(xi; )

2
�
+

nX
i=1

pi
si

and

U =
nX
i=1

g0 (xi; )

g (xi; )
�

nX
i=1

G0 (xi; )

G(xi; )
+(�� 1)

nX
i=1

2G0 (xi; ) �G(xi; )�
1� �G(xi; )2

� �4��
nX
i=1

G0 (xi; ) �G(xi; )

si
�
1� �G(xi; )2

�1�� ;
where

pi =
�4��g (xi; ) �G(xi; )�
1� �G(xi; )2

�1�� ; g0 (xi; ) =
@g (xi; )

@ 
;

zi = 1� 2
�
1� �G(xi; )

2
��
and G0 (xi; ) =

@G (xi; )

@ 
:

Setting the nonlinear system of equations U� = U� = 0 and U = 0and solving them simultane-
ously yields the MLE b� = (b�; b�; b |)|. To solve these equations, it is usually more convenient to
use nonlinear optimization methods such as the quasi-Newton algorithm to numerically maximize
`. For interval estimation of the parameters, we obtain the p � p observed information matrix
J(�) = f @2`

@r @sg (for r; s = �; �; ), whose elements can be computed numerically. Under standard
regularity conditions whenn ! 1 , the distribution of b� can be approximated by a multivariate
normal Np(0; J(b�)�1) distribution to construct approximate con�dence intervals for the parame-
ters. Here, J( b�) is the total observed information matrix evaluated at b� . The method of the
re-sampling bootstrap can be used for correcting the biases of the MLEs of the model parameters.
Good interval estimates may also be obtained using the bootstrap percentile method.

6 Simulation study

For the simulation study, we consider a speci�c member of the TTL-G family, by settingG as a

The associated likelihood function can be obtained for a random sample of size n drawn from pdf
(6) by setting G(x;�) = Ix(a; b); where Ix(a; b) is the incomplete beta function.
We consider a random sample of size n = 50; 100 and 200 from our density corresponding

to particular choices of the parameters as follows: � = 2; � = 0:4; a = 1:5; b = 1:5: Below
we provide the bias and standard deviation for the estimates of all the parameters under both
the methods of estimation. Table 1 provides the bias and standard error under the method of
maximum likelihood. We consider 20; 000 simulations for drawing random samples each of size
n = 50; n = 100; and n = 200 drawn from our density respectively.

Table 1. Bias and standard deviation of the parameter estimates using maximum likelihood.

Sample size Bias(b�) Bias
�b�� Bias(ba) Bias

�bb� S.E(b�) S.E
�b�� S.E(ba) S.E

�bb�
50 -0.127 0.0194 0.0032 0.0371 0.0396 0.1098 0.05606 0.0148
100 -0.087 0.0114 0.0017 0.0149 0.0272 0.0532 0.0383 0.0109
200 0.015 0.0089 0.0004 0.0065 0.0154 0.0412 0.0203 0.0095

The log-likelihood function can be maximized directly by using the R-package or by solving the
nonlinear likelihood equations obtained by di¤erentiating the pdf (6) (using optim function and
Max-BFGS subroutines. One can �nd the estimates of the unknown parameters by setting the
score vector to zero, and then using any statistical software to solve them numerically. The results

beta (type I) distribution with parameters and .a > b >0 0
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show that the maximum likelihood estimation performs well. In general, the biases and standard
deviations of the parameters are reasonably small. The biases and standard deviations always
decrease as the sample size increases. The results suggest that the maximum likelihood method
can be used to estimate the parameters of the TTLB.

7 Special models

In this section, we provide examples of the TTL-G family. The pdf (6) will be most tractable
when g(x) and G(x) have simple analytic expressions. These special models generalize some well-
known distributions reported in the literature. Here, we provide two special models of this family
corresponding to the baseline Weibull (W) and beta (B) distributions to show the �exibility of
the new family.

7.1 The TTLW distribution

Consider the pdf and cdf (for x > 0 ) g(x) = babxb�1e�(ax)
b

and G(x) = 1� e�(ax)b , respectively,
of the Weibull distribution with positive parameters a and bwhich are scale and shape parameters
respectively. Then, the pdf of the TTLW model is given by

f(x) = 2�bab xb�1e�2(ax)
b
n
1� e�2(ax)

b
o��1 n

1 + �� 2�
n
1� e�2(ax)

b
o�o

:

The TTLW density and hrf plots for selected parameter values are displayed in Figure 1.

Figure 1: pdf and hrf of TTLW distribution

7.2 The TTLB distribution

Consider the pdf and cdf (for x > 0) g(x) = �(a + b)xa�1(1� x)b�1= f�(a)�(b)g and G(x) =
Ix(a; b), respectively, of the beta distribution with positive parameters a and b . Then, the pdf of
the TTLB model is given by

f(x) = 2��(a+b)
�(a)�(b) x

a�1(1� x)b�1 [1� Ix(a; b)]
h
1� (1� Ix(a; b))2

i��1
�
n
1 + �� 2�

h
1� (1� Ix(a; b))2

i�o
:

The TTLB density and hrf plots for selected parameter values are displayed in Figure 2.
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Figure 2: pdf and hrf of TTLB distribution

8 Applications

In this section, we provide two applications to real data to illustrate the �exibility and potentiality
of the TTLW and TTLB models presented in Section 7. For illustrative purposes, we consider two
data sets and compare with the Weibull and beta distributions. For each data set, we estimate
the unknown parameters of each distribution by the maximum-likelihood method (as discussed
in Section 5) and all the computations were done using the Adequacy model package of the R
software. The goodness-of-�t statistics for these models are compared with other competitive
models and the MLEs of the model parameters are determined. In order to compare the �tted
models, we consider some goodness-of-�t measures including the values of the Cramér-von Mises
statistic (W ), Anderson-Darling statistic (A ), Kolmogorov-Smirnov Statistic (D), Kolmogorov-
Smirnov probability value ( Dpvalue), �2^̀ where ^̀ is the maximized log-likelihood, the Akaike
information criterion (AIC), Bayesian information criterion (BIC).
We compared the �ts of the TTLW distribution with some of its special cases and other

models such as Topp-Leone Weibull (TLW) (Rezaei et al., 2016), Weibull (W) (Weibull, 1951) ,
exponetiated Weibull (EW) (Mudholkar and Srivastava 1993), beta Weibull (BW) (Famoye et al.,
2005) and McDonald Weibull (McW et al., 2014) (Cordeiro, 2014) distributions given by:

� TLW : f (x) = 2�babxb�1e�2(ax)
b
h
1� e�2(ax)b

i��1
;

� W : f(x) = babxb�1e�(ax)
b

;

� EW : f(x) = �babxb�1e�(ax)
b
h
1� e�(ax)b

i��1
;

� BW : f(x) = babxb�1e��(ax)
b
h
1� e�(ax)b

i��1
=B(�; �);

� McW : f(x) = 
babxb�1e��(ax)
b
h
1� e�(ax)b

i�
�1 n
1�
h
1� e�(ax)b

i
o��1
=B(�; �):

In addition, we compared the �ts of the TTLB distributions with some of its special cases and
other models such as Topp-Leone beta (TLB), beta (B), beta power (BP) (Cordeiro and Bager,
2012), Kumaraswamy (Kum) (Kumaraswamy, 1980) and exponetiated Kumaraswamy (EKum)
(Lemonte et al., 2013) distributions given by:

� TLB : 2��(a+ b)xa�1(1� x)b�1 [1� Ix(a; b)]
n
1� [1� Ix(a; b)]2

o��1
= [�(a)�(b)] ;

� B : f (x) = �(a+ b)xa�1(1� x)b�1=�(a)�(b);
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� BP : f (x) = ��(�x)�a�1[1� (�x)�]b�1=B(a+ b);

� Kum : f (x) = abxa�1(1� xa)b�1;

� EKum : f(x) = �abxa�1(1� xa)b�1
h
1� (1� xa)b

i��1
:

First, we describe the two data sets:
Data set I: (Breaking Stress data)
The data for breaking stress of carbon �bers of 50 mm length (GPa) was reported by Nicholas

and Padgett (2006). This data was used by Cordeiro and Lemonte (2011) to illustrate the ap-
plication of the four-parameter beta-Birnbaum-Saunders distribution when compared to the two-
parameter Birnbaum-Saunders distribution (Birnbaum and Saunders, 1969). The data are: 0.39,
0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41,
2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93,
2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39,
3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90.
Data set II: (Milk Production)
The data is about the total milk production in the �rst birth of 107 cows from SINDI race.

These cows are property of the Carnaúba farm which belongs to the Agropecuária Manoel Dantas
Ltda (AMDA), located in Taperoá City, Paraíba (Brazil). The original data is not in the interval
(0,1), and it was necessary to make a transformation given by

xi = [yi �min(yi)]=[max(yi)�min(yi)]; for i = 1; :::; 107:

The values of yi are given in Table 3.1 of Brito (2009, p. 46) and xi values are: 0.4365, 0.4260,
0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394, 0.1479,
0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131,
0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371, 0.3383, 0.6114,
0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529,
0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150,
0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906,
0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854,
0.3821, 0.4694, 0.3635, 0.4111, 0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878,
0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 0.6860, 0.0609, 0.6488, 0.2747.
Tables 2 and 4 provide the values of W , A, D, Dpvalue, �2^̀, AIC and BIC . Since the values

of considered statsitics are smaller and probability values of Kolmogorov-Smirnov statistics are
greater than the TTLW distribution compared with those values of the other models, this new
distribution seems to be a very competitive model for these data. In addition, the MLEs and their
corresponding standard errors (in parentheses) of the considered model parameters are given in
Tables 3 and 5. Plots of the pdf and cdf of the TTLW and TTLB against other �tted models to
these data are displayed in Figures 3 and 4. They indicate that the TTLW and TTLB distributions
are superior to the other distributions in terms of model �tting. Based on these plots, we conclude
that the TTLW and TTLB distributions provide a better �t to these data than other models.

Table 2: The statistics W , A, D, Dpvalue, �2^̀, AIC and BIC for breaking stress data

Model Goodness of �t criteria

W A D Dpvalue �2^̀ AIC BIC
W 9:233 60:628 0:9771 0:0000 86:067 176:13 180:51
TLW 0:0858 0:5084 0:0810 0:7794 85:994 177:88 184:45
TTLW 0:0689 0:4122 0:0759 0:8414 85:375 178:85 187:50
EW 0:0858 0:5084 0:0810 0:7791 85:944 177:88 184:45
BW 0:0805 0:4802 0:0829 0:7547 85:685 179:37 188:13
McW 0:0748 0:4559 0:0963 0:5729 85:407 180:81 191:76
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Table 3: MLEs and their standard errors (in parentheses) for breaking stress data
Model Estimates

TTLW
b�= 0:7059
(0:4406)

b�= �0:6996
(0:4039)

ba= 0:2742
(0:0231)

bb= 3:358
(0:9479)

TLW
b�= 0:8001
(0:3535)

ba= 0:2592
(0:0170)

bb= 3:912
(1:069)

W
ba= 0:3265
(0:0122)

bb= 3:441
(0:3309)

EW
b�= 0:8004
(0:3535)

ba= 0:3094
(0:0331)

bb= 3:911
(1:069)

BW
b�= 0:8602
(0:2007)

b�= 0:1490
(0:0204)

ba= 0:5356
(0:0061)

bb= 3:6989
(0:0062)

McW
b�= 0:9259
(0:2281)

b�= 0:1412
(0:0187)

b
= 0:7972
(0:0452)

ba= 0:5368
(0:0025)

bb= 3:690
(0:0038)

Figure 3: Histogram (left) and cdf (right) of the breaking stress data.

Table 4: The statistics W , A, D, Dpvalue, �2^̀, AIC and BIC for milk production data

Model Goodness of �t criteria

W A D Dpvalue �2^̀ AIC BIC
TTLB 0:0768 0:4956 0:0710 0:6520 �27:925 �47:850 �37:159
TLB 0:1191 0:7552 0:0819 0:4690 �26:790 �47:580 �39:561
B 0:2082 1:3263 0:0909 0:3384 �23:777 �43:554 �38:208
BP 0:1339 0:8413 0:0840 0:4361 �26:356 �46:713 �38:695
Kum 0:1560 1:0090 0:0762 0:5626 �25:394 �46:789 �41:443
EKum 0:0939 0:5950 0:0748 0:5868 �27:557 �49:114 �41:095

736 The Tramsmuted Topp-Leome G Family of Distributioms



Table 5: MLEs and their standard errors (in parentheses) for milk production data
Model Estimates

TTLB
b�= 0:1290
(0:0337)

b�= �0:6947
(0:3239)

ba= 9:970
(0:0025)bb= 3:165

(0:0025)

TLB
b�= 0:2127
(0:0205)

ba= 9:374
(0:0091)

bb= 3:218
(0:0091)

B
ba= 2:4125
(0:3144)

bb= 2:8296
(0:3744)

BP
b�= 6:6402
(1:5643)

b�= 0:7756
(0:0754)

ba= 0:2704
(0:0802)bb= 42:022

(3:3415)

Kum
ba= 2:194
(0:2223)

bb= 3:436
(0:5820)

EKum
b�= 0:3361
(0:1446)

ba= 5:315
(1:870)

bb= 7:140
(3:092)

Figure 4: Histogram (left) and cdf (right) of the milk production data.

9 Conclusions

In this paper, we introduce a new family of continuous distributions called the transmuted Topp-
Leone G family which extends the transmuted class pioneered by Shaw and Buckley (2007).
Some of its mathematical properties including probability weighted moments, moments, generating
functions, order statistics, incomplete moments, mean deviations, stress-strength model, moment
of residual and reversed residual life are studied. Some useful characterization results based on two
truncated moments as well as based on hazard function are presented. The maximum likelihood
method is used to estimate its parameters. The Monte Carlo simulation is used for assessing the
performance of the maximum likelihood method. The usefulness of the family model is illustrated
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by means of two real data set. The new famly is suitable for �tting di¤erent real data sets, as
explained below:
1- The transmuted Topp-Leone Weibull model and the transmuted Topp-Leone Beta model

are suitable for modelling unimodal and symmetric data sets.
2- It is better to use transmuted Topp-Leone G family (Weibull and Beta models case) is case

of modelling big data sets.
3- For the bimodal data sets it is better to use transmuted Topp-Leone G family (Normal model

case), as a future work we will consider the transmuted Topp-Leone normal (TTLN) distribution
for modelling bimodal data sets and the bivariate version.
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