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Abstract: A graphical tool for choosing the number of nodes for a neural network 

is introduced. The idea is to fit the neural network with a range of numbers of 

nodes at first, and then generate a jump plot using a transformation of the mean 

square errors of the resulting residuals. A theorem is proven to show that the jump 

plot will select several candidate numbers of nodes among which one is the true 

number of nodes. Then a single node only test, which has been theoretically 

justified, is used to rule out erroneous candidates. The method has a sound 

theoretical background, yields good results on simulated datasets, and shows wide 

applicability to datasets from real research. 
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1. Introduction 

Determining the optimal number of hidden units for a neural network is a difficult problem. 

When there are too few parameters, a statistical model or machine learning algorithm cannot 

capture the underlying trend of the data. Underfitting occurs and the prediction performance of 

such a model is poor. When there are too many parameters, a statistical model fits the pattern of 

random error or noise instead of the underlying relationship, which is called ”overfitting”. A 

model that has been overfitted performs poorly in predicting, since it overreacts to minor 

variations in the training data, essentially focusing on the noise rather than the true underlying 

trend. For a neural network model, when there are too few nodes, the prediction performance 

on the output variable is poor. When there are too many nodes, al- though the output error is 

lower on the training data, the errors for predicting novel examples increase. Selecting an 

optimal number of hidden nodes allows a good fit to both training data and future predictions, 

such as a hold-out test sample of data. Herein we consider only single hidden layer feedforward 

neural networks, although the methodology is extensible to other varieties. Thus we consider 
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fitting models of the form:   where 

𝑥𝑖ℎ is the ℎ𝑡ℎ component of the 𝑖𝑖ℎ sample of the inputs, y is the output, and 𝜀𝑖∼ N (0, σ2). 

A variety of approaches have been proposed to combat overfitting in neural networks, 

including early stopping (Sarle, 1995; Girosi et al., 1995), weight decay (Krogh and Hertz, 

1992), and Bayesian methods (Lee, 2004). In addition, Sheela and Deepa (2013) and Xu and 

Chen (2008) provide recent reviews of the literature on selection of the number of hidden units. 

Here we survey criteria-based methods, andthen develop a new criterion based on a graphical 

interface. Two popular general model selection criteria that can be applied to choosing the 

number of nodes are Akaike’s information criterion (AIC) (Akaike, 1973) and the Bayesian 

Information Criterion (BIC) (Schwarz, 1978). Another related criterion is Mallow’s Cp statistic:

 where SSE(p) is the sum of the squared errors of residuals, n denotes the 

number of observations, p denotes the number of parameters, and Σ̂2 is an unbiased estimate of 

the variance of an error term (Fogel, 1991).  If  Σ̂2 is known, any model which can estimate 

regression coefficients unbiasedly and include all critical regressors, has Cp converging to the 

number of parameters when sample size is large (Gilmour, 1996). 

In the context of neural networks, Murata et al. (1994) has studied the theoretical 

relationship between the training error and the generalization error with regard to the training 

examples and the complexity of the structure of a neural network. The Network Information 

Criterion (NIC) chooses a specification for which the following expression takes a minimum:

. T is the sample size.  L is the like . If 

the class of models investigated includes the true model, A = B asymptotically. Thus, 

 is the effective number of model parameters, which is typically less than 

the nominal number because the parameters are dependent. However, this method can suffer 

from the problem of rejecting hidden units and d the least complex network architectures for 

model fitting (Anders and Korn, 1999). However, none of aforementioned methods performs 

well in choosing the best number of nodes for a neural network. Hence it is critical to find a 

new method which does a good job for such a task. 

In the field of choosing the number of clusters in a mixture model, Sugar and James (2003) 

proposed the jump method from an information theory point of view. By adapting ideas from 

rate distortion theory to clustering, the theory of the jump method investigates the functional 

form of the mean square error (MSE) curve in both the appearance and absence of clusters. 

Furthermore, they demonstrate both theoretically and empirically, that the MSE curve, when 

transformed to an appropriate negative power, will display a jump, reliably and accurately, at 

the true number of clusters. However, it is often arduous to designate the transformation 

parameter directly. Chang and Sugar (2008) proposed a graphical tool, christened the 

“graphical jump method”, to ascertain the number of clusters. By changing the transformation 

parameter, the transformed MSE curve jumps at divergent numbers of clusters, called candidate 

numbers, amongst which one is the true number of clusters. If the candidate number is smaller 

than the true number of clusters, at least one cluster will accommodate more than one true 
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cluster and yield a positive result on a test, which is dubbed the “cluster-existence test” and has 

been theoretically justified. 

In this paper, the graphical jump method is extended to solve the problem of choosing the 

number of nodes for a neural network. First, by using theoretical results from Murata et al. 

(1994), a theorem is proved stating that after some boundary conditions are satisfied, there 

surely exists a transformation power by which the MSE can be transformed to exhibit a jump at 

the true number of nodes. A “single node only test”, which is also justified theoretically, is used 

to rule out erroneous candidates. The newly developed method for choosing the number of 

nodes makes limited parametric assumptions, can be rigorously theoretically motivated using 

theorems from Murata et al. (1994), and is simple to both understand and implement. The jump 

method only applies to choosing a parameter that is a counting number, and does not apply for 

continuous or other-valued parameters. 

In Section 2, the theory and concrete steps of the graphical jump method are introduced in 

detail. In Section 3, simulation studies and results are elucidated. Section 4 describes the 

analysis of a real dataset. Section 5 lays out future research directions. 

 
1.1 The introduction of the graphical jump method 

Assume that the data are fitted to the following neural network: 

 
where 𝜀𝑖 ∼ N (0, σ2). The MSE dk equals the variance of residuals generated by fitting the 

neural network model with k nodes. 

Assuming that the dataset is fitted by model (1), the graphical jump method has the 

following four basic steps for choosing the best number of nodes: 

a. Calculate MSE dk for K = 1...kmax by fitting the neural network model using k nodes. 

b. Choose a positive number v > 0, called the transformation power. 

c. Calculate the jump score associated with k nodes  

d. The best number of nodes is the number k with the highest Jk. 

To give a simple illustration of how the graphical jump method works, a simulated dataset 

is generated with 100 observations from a gamma(20, 40) distribution with supplementary 

standard normal noise and the true number of nodes of 4. The response, Y 1, is the aggregate of 

the 4 different nodes: Y 2, Y 3, Y 4 and Y 5 (Figure (1)), whose coefficients are manifested at 

the top of the plots. The first node and the third node have active declining regions in the range 

of (-1.5, -0.3) and (0.5,1), while the second node and the fourth node have active increasing 

regions in the range of (-0.3,0.4) and (1.1,1.9). Consequently, the final response variable, Y 1, 

has 4 disconnected active regions with adjacent active regions in totally opposite directions, 

which necessitate 4 nodes to provide the best fit.
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Figure (1).The shape of each node for a simulated dataset. The first to the third nodes are described by the 

upper left, upper middle and upper right plots. The lower left plot illustrates the fourth node. The lower 

middle plot shows the x values. The lower right plot illustrates the sum of the 4 nodes. 

A graphical visualization is provided by Figure (2) which plots the successive jumps in the 

transformed MSE. In the plot, the possible number of nodes ranges from 1 to 10. The lower left 

plot of Figure (2) shows a jump at 4, which is the true number of nodes. Intuitively, this jump 

occurs because of the sharp increase in the jump scores that results from not modeling noise 

using additional nodes. Adding subsequent neural network nodes cannot decrease, but increase 

the MSE of residuals and thus has a smaller contribution to the jump score. When the 

transformation powers change from 0.4, 1, 2 to 5, the highest jump scores occur at nodes of 1, 1, 

4 to 
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Figure (2). Plots of the jump scores versus the number of nodes under different transformation powers for 

a simulated dataset. 

 

10. A jump plot (Figure (3)) is generated to elucidate the functional relationship of the number 

of nodes selected versus transformation power used. As the transformation power increases 

from 0 to 20, the number of nodes selected changes from 1, 4 to 10. 

 
Figure(3). The jump plot for the simulated dataset. 

As the transformation power y approaches 0, the jump score for 1 node 

approaches 1 while the jump score for k nodes  approaches 0. Thus the highest jump 

occurs at node one. As the transformation power approaches an enormous number, the jump 

score for 10 nodes  will be the largest one. This is because the MSE of residuals is a 

decreasing function of the number of nodes,  is smaller than dk for 1 ≤ k ≤ 10. As y 

approaches infinity,  increases much faster than  for 1 ≤ k ≤ 10. This leads to the fact 

that above some point of y,  will be the highest jump score. 
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1.2 Summary of the Graphical Jump Method 

By utilizing the graphical property of the jump plot, a graphical jump method is developed 

to choose the number of nodes more efficiently. Since a jump surely occurs at the best number 

of nodes, by choosing the candidates as the number of nodes where the jumps occur, the range 

of candidate numbers of nodes are significantly narrowed down. When implementing the 

graphical jump method, a jump plot is sketched at first to illustrate all the candidate numbers of 

nodes, assuming there are a total of g candidates. Secondly, organizing the g candidate numbers 

of nodes from small to large, the dataset is modeled with these candidate numbers of nodes 

sequentially to produce g consecutive sets of residuals, for which g jump plots are produced to 

see whether each plot contains candidates with more than one node. The key idea is that if the 

best model has been found, there is nothing left to model in the residuals, whereas if there are 

not yet enough nodes in the model, then one can find this signal in the residuals by fitting one 

or more nodes to the residuals. 

If the candidate number of nodes is less than or equal to the best number of nodes minus 

two, then it cannot account for the total variability of the dataset. The corresponding residuals 

will encompass variability that has to be explained by additional nodes, and thus it will test 

negative on the single node only test. This is caused by the fact that if they had produced 

positive result, then the total number of nodes needed to model the data is the candidate number 

of nodes plus one, which is less than the best number of nodes and contradicts the original 

assumption of the true size of the network. 

Nevertheless, if a candidate number of nodes is adjacent to the best number of nodes, then 

the residuals of both numbers of nodes will present positive results on the “Single node only 

test”. As a result, the first candidate number of nodes without an adjacent lower candidate that 

demonstrates that its residuals need to be explained by a single node only, is the best number of 

nodes. If two earliest consecutive numbers of nodes, Ni, Ni + 1, both indicate that their residuals 

only need one node to count for  the  total  variability,  then  the  ratios  of  dNi−1/dNi and dNi 

/dNi+1  are  calculated. 

If  Ni is  the  best  number  of  nodes,  dNi−1  should  be much  larger than dNi since  themodel 

changes from modeling the main effects to modeling the noise at this point. Therefore, the ratio 

of dNi−1/dNi should be the larger one. If Ni +1 is the true number of nodes, dNi should be much 

larger than dNi+1 due to similar reason. Consequently, the ratio of dNi /dNi+1 should be the larger 

one.
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2. Method 

2.1 The Two Theorems 

The following theorem provides an asymptotic result of the shape of the MSE curve after 

transformation, and thus it provides a theoretical explanation for the graphical jump method. 

Theorem 1: Assume the dataset y follows model (1). Define Kmax as the maximum number of 

nodes investigated, t as the sample size. Assume the dataset is composed of G nodes and that 

the likelihood ratio test of H0: the dataset is composed of G nodes, versus HA: the dataset is 

composed of less than G nodes, yields a positive result. Define m∗ as the number of parameters 

in one node. If  
𝑡

2𝐶ℎ𝑖𝑠𝑞(𝑚∗,0.05)
< ν <

𝑡2

6𝑚∗(𝑘𝑚𝑎𝑥−𝐺)
 , as t → ∞, the jump method always selects 

the true number of nodes as a candidate (proof in appendix). 

By the aforementioned theorem, when changing the transformation power from small to 

large, a jump surely exists at the best number of nodes. Nonetheless, some- times a correct 

transformation power is difficult to identify due to the deviation of the dataset from the 

theoretical model, measurement error caused by experiment operators and random errors, etc. 

Ergo, the graphical property of the jump plot is explored to provide a tool for choosing the 

number of nodes based on the jump plot. The nodes at which jumps appear are called candidate 

numbers of nodes, N1, ..., Ng. Theorem 2 provides a theoretical foundation for examining 

whether a dataset needs to be fitted by the neural network model with more than one node, 

dubbed “Single node only test”. It is not onerous to conjecture that, if Ni is the best number of 

nodes, after fitting the data with Ni nodes, the residuals follow a standard normal distribution 

and result in a positive test in the “Single node only test”. Thus the candidate numbers of nodes 

in the jump plot will be fitted to the dataset with the neural network models one by one to 

figure out which residuals will give positive results in the test. 

Theorem  2:  Assume  that  y N (0, 1).   Define  Kmax as  the  maximum  number  of nodes 

investigated, t as the sample size, and m∗ as the number of parameters in one node. If 

, as t → ∞, the jump plot will only select one node as the candidate. 

The proof of Theorem 2 is provided in Chang (2011). Theorem 2 is illustrated by Figure (4), 

which is a jump plot generated by a dataset simulated from a standard normal distribution. 

Theorem 2 demonstrates that the jump plot designates one node as the solitary candidate in a 

long range of transformation powers. However, the length of this range depends on the dataset 

actually generating the jump plot. Empirically, this range would always include (0, 2), i.e, the 

length of this range would be larger than 2 units for the majority of the datasets. Therefore, if 

the true number of nodes is one, the jump plot would select one as the candidate number of 

node in a range, including (0, 2), as the solo candidate. Nevertheless, by Theorem 1, if the true 

number of nodes is larger than one, the jump plot would select a candidate number of node 

bigger than one within this range. For instance, in Figure (3), the dataset is composed of 4 
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nodes and 4 nodes are pinpointed in the jump plot within the range of (1.2, 4.6), which overlaps 

the range (0, 2) at (1.2, 2). Therefore, in all, if the jump plot picks a candidate number of nodes 

(larger than one) within the range of (0, 2), then the dataset is deemed as composed of more 

than one node and one node otherwise. As a result, in Figure (4), the dataset is regarded as 

composed of one node. 

 
Figure(4) The jump plot for the simulated dataset. 
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2.2 Connection between the theory of the NIC criterion and the graphical jump 

method 

There are connections between the theory of the NIC criterion and the graphical jump 

method. Consider a stochastic system which has an input vector x ∈ Rk and produces an output 

vector y ∈ Rl. An input vector x is generated according to the probability q(x) and an output 

vector y is generated according to a conditional probability q(y|x) specified by x. q(x, y) is the 

product of q(x) and q(y|x). A network is considered to have a conditional distribution p(y|x,θ), 

where θ ∈ Rm is an m-dimensional parameter vector that describes the network, such as a set of 

weights and thresholds. q represents the true distribution of p(y|x, θ). Let f (x, y) be the density 

function for neural network models. The dataset is assumed to follow the model: y = f (x,θ) + 

ξ(x), where ξ(x) is noise and E(ξ(x)) = 0. To calculate the goodness of fit of a neural network, a 

discrepancy function D(q, p(θ)) is designed to measure the difference between q(y|x) and p(y|x, 

θ). d(x,y,θ) is a loss function, typically, it could be square error loss or negative log likelihood.  

The square error loss is defined as d(x, y, θ) = (‖y −  f (x, θ)‖)2.  The discrepancy function we 

use is D(q, p(θ)) ≡ ∫ d(x, y, θ)q(x)q(y|x)dxdy. In order to minimize the discrepancy function, 

the true probability distribution q(x,y) of the target system needs to be known. However, it is 

not possible to identify q(x, y) in reality. Frequently, the empirical distribution 

 is used instead. It is well known that the empirical distribution 

approximates the true distribution q(x, y) in the weak sense when sample size is large, and 

hence it is reasonable to evaluate the network model by q∗(x, y) instead of q(x,y). p(θ) is the 

distribution of θ. For square error loss, , the following is an 

important result on which the graphical jump method depends: 

D(q, p(θopt)) = minθD(q, p(θ)) 

where θopt is the value of θ when D(q*, p(θ)) achieves the minimum. 

D(q∗, p(θ∗)) = minθD(q∗, p(θ)) 

where θ* is the value of θ when D(q∗, p(θ)) attains the minimum. 

Let Ropt ≡ Vq[∇d(x, y, θopt)], i.e., for the true distribution of θ, Ropt is the variance of the first 

derivative of d(x, y, θopt) with respect  to θ. Let m be the number of parameters in the model, 

Ropt is of m × m dimensions. Let , i.e., for the true distribution of θ, 

Qopt is the expectation of the second derivative of d(x, y, θopt) with respect to θ. Let m be the 

number of parameters in the model, Qopt is of dimension m × m. 

Theorem 3: The average discrepancy between the system q(x,y) = q(y|x)q(x) and the machine 

p(y|x,�̃�) learned from t examples is given by < D(q, p(�̃�)) >=<D(q∗, p(�̃�)) > +1 tr(Ropt𝑄𝑜𝑝𝑡
−1 ) + 

O(𝑡
−3

2 ), where < . > denotes the expectation with respect to the distribution of θ ̃, the parameter 

after sufficient learning of θ with the machine, and 𝜃∗  (Murata et al. (1994), page 868). 

Theorem 1 studies the difference of < D(q, p(�̃�)) > and < D(q∗, p(�̃�)) > in terms of the ensemble 

average of training sets. Nevertheless, when using this criterion formodel selection, we need to 

evaluate < D(q, p(�̃�))  > and < D(q∗, p(�̃�))  > for one particular training set. A “subset” for a 
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single layer feedforward neural network is defined as following: if the first model has fewer 

hidden units than the second model, then it is deemed a submodel of the second one.  The 

submodel can be obtained from the full model by setting the connection weights and thresholds 

of the extra units equal to 0. < D(q, p(�̃�)) > can be decomposed as we now show. Let Mi 

={pi(y|x,θi); θi ∈ Rmi } be a hierarchical series of models:  M1 ⊂ M2 ⊂ M3 ⊂ ..., where Mi is a 

submodel of Mj, (i < j). For only one training set 

 
where U = √𝑡D(q, p(θopt)) − D(q∗, p(θopt)), is a random variable of order 1 with zero mean. 

U is common to all the models within a hierarchical structure, such as single layer neural 

network models with the same dimensions for the input and the output vectors, see Murata et al. 

(1994) (page 869). 

Obviously, the discrepancy D(q, p(�̃�)) achieves the minimum at the best numbers of nodes, 

resulting in a sequence of inequality equations composed of the right side of formula (2). For 

negative log likelihood, R = Q, which makes tr(Ropt𝑄𝑜𝑝𝑡
−1  ) reduce to the number of parameters 

in the corresponding neural network. U is common to all the models within a hierarchical 

structure. D(q∗,p( �̃� )) can be expressed as a function of MSE of residuals under different 

numbers of nodes. Thus, the inequality equations reduce to the inequality relationship of MSE 

of residuals under different numbers of nodes. By utilizing those inequality relationships of 

MSE of residuals and with the help of a Taylor expansion, the necessary conditions of the jump 

method, which are inequality relationships of MSE after transformation, are proved and the two 

related Theorems are established. 

 

3. Simulation Study 

3.1 One dimensional data 

Simulation studies are first performed with one x variable, and with 100, 200, 300 and 1000 

observations. For the scenarios of one x variable with 100, 200, and 300 observations, data are 

simulated with 4 nodes, which have distinct active regions as shown in Figure (1). The x 

variable is generated from a gamma distribution with shape parameter of 20 and rate parameter 

of 40, plus a noise variable with standard Gaussian distribution. For the first 3 scenarios, from 

nodes 1 to 4, the y variables are generated using the following formula: 
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The final Y = y1 + y2 + y3 + y4 + ϵ, where ϵ ∼ N (0,0.1). 

For the last scenario, from nodes 1 to 4, the y variables are generated using the following 

formula: 

 
Finally, Y = y1 + y2 + y3 + y4 + ϵ, where ϵ ∼ N (0, 0.1). 

Table (1) demonstrates simulation results for one dimensional data for sample sizes of 100, 

200, 300 and 1000. The first 3 rows are the percentages of the number of nodes correctly 

chosen for each method and each scenario. The last 3 rows are the mean and the standard 

deviation of the prediction errors for each method for the 30 datasets in each scenario. The 

three methods for comparison are the graphical jump method, cross validation and BIC. The 

goals of the graphical jump method and cross validation are different. The former is for the 

purpose of model selection, which corresponds to the top 3 rows of table, and the latter is for 

the purpose of prediction, which corresponds to the bottom 3 rows of the table. The predictive 

accuracy is obtained by comparing the prediction results to the known true response values in 

the simulated examples. The total number of datasets is 30 for all the scenarios in this paper. 

The graphical jump method performs the best in choosing the correct number of nodes. The 

percentages of the number of nodes correctly chosen for the graphical jump method are well 

above those of the other two methods. For the prediction errors, the graphical jump method 

leads the other two methods for 100 and 300 sample sizes scenarios, leads cross validation for 

200 and 1000 sample sizes scenarios. 

Figure (5) illustrates the results of the simulation studies for one dimensional data. 

Table (1).The percentages of the correct number of nodes chosen by each method and the mean (sd) of 

the prediction errors generated by each mothod for one dimensional scenarios.  

number of datapoints 100 200 300 1000 

Graphical jump method 

(percentage) 
100 100 70 100 

BIC (percentage) 80 100 3.3 100 

10 fold cross validation(percentage) 16.8 60 0 76.7 

graphical jump method (mean(sd))) 
1.40e- 

06(4.89e-07) 

1.08-06 

(1.08e-07) 

1.07e- 

06(1.34e-07) 

2.81e- 

06(1.25e-07) 

BIC (mean(sd)) 
1.42e- 

06(4.76e-07) 

1.08e-06 

(1.08e-07) 

1.19e- 

06(5.07e-07) 

2.81e- 

06(1.25e-07) 

10 fold cross validation (mean(sd)) 
1.41e-06 

(5.70e-07) 

1.11e-06 

(1.12e-07) 

1.22e-06 

(5.13e-07) 

2.82e- 

06(1.32e-07) 

The upper left plot is the scatter plot of the prediction errors versus the ith dataset (There are 

30 simulated datasets for each scenario and for each dataset, there is a prediction error 

generated for each method). In the scatter plot, the red, the dark blue and the green curves 
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connect points of prediction errors for the graphical jump method, the BIC method and the 

cross validation method separately. This color representation is used for all the scatter plots in 

this paper. The middle left plot contains several box plots. To draw the box plot, the prediction 

errors for  all the three methods in this scenario are combined and then categorized by their 

corresponding number of nodes chosen. For example, for all the datasets where the graphical 

jump method chooses the number of nodes of three, the prediction errors generated by the 

graphical jump method are combined into one group. Similarly, prediction errors whose 

corresponding number of nodes chosen are three for the BIC method and the cross validation 

method are categorized into the same group as that for the graphical jump method. For other 

numbers of nodes, data are categorized similarly. Theoretically, when overfitting happens, the 

mean value of boxplot 

 
Figure (5) Simulation study results for one dimensional data of 100 and 200 sample sizes (the upper two 

plots are the scatter plots of prediction errors, the middle two are the boxplots of prediction errors for 

each node, the lowest two are the 2-D histograms of counts for each number of nodes chosen by each 

method). 

 

should increase with the increasing of the number of nodes chosen. However, in this plot, when 

the number of nodes chosen increases, the mean value of the boxplots increases at first and then 
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decreases. This may be because the sample size is 100, which is too small, the prediction errors 

calculated are not accurate enough. The lower left plot is a 2 − D histogram generated by excel. 

The x-axis indicates the number of nodes chosen. The y-axis indicates the number of datasets 

which choose the corresponding number of nodes in the x-axis. For all the 2 − D histograms in 

this paper, the red, the dark blue and the green columns compose the histograms for the 

graphical jump method, BIC and cross validation separately, i.e., they use the same color 

representation as that in the scatter plot. For the lower left plot, the graphical jump method 

chooses the correct number of nodes, i.e. four nodes, with the highest rate. BIC chooses four 

nodes and five nodes with the highest rates. 

The right three plots are generated for sample size of 200. For most part of the upper right 

plot, the red curves are the lowest among the three, which means that for most of the datasets, 

the prediction errors generated by the graphical jump method are the lowest. For the plot in the 

middle right, the mean values of the box plots show an increasing trend along the x-axis. The 2 

− D histogram in the lower right shows that the graphical jump method and BIC choose 4 nodes 

with the highest rates. 

Figure (6) has six plots. The upper left, the middle left and the lower left plots contain the 

scatter plot, the box plot and the 2 − D histogram separately. There are two parts in the scatter 

plot, which differ by their y axises. The y-axis of the first part ranges from 0 to 2×10−6 and the 

x-axis indicating the sequence of the 30 datasets. The y-axis of the second part ranges from 

2×10−6 to 5×10−6. Both parts share the same x-axis. The two parts display the different 

appearances of the scatter plot in the corresponding ranges of the y axes. For most of the scatter 

plot, the red curve is the lowest, which means the graphical jump method generates the lowest 

prediction errors most of the time. The middle left plot shows that the mean value of the box 

plot increases with the number of nodes chosen generally. For the 2 − D histogram, the 

graphical jump method chooses 4 nodes as the best number of nodes most of the time. However, 

BIC and cross validation choose 9 or 10 nodes with the highest percentages. This is because for 

a small sample size, such as the 100 sample size scenario, 4 nodes can explain most of the 

variability of the dataset. 

Adding more nodes cannot decrease the MSE of residuals too much. Hence BIC and cross 

validation will choose a node count close to 4 nodes. When the sample size becomes larger, 

there are more data points. 4 nodes is not enough to explain most
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Figure(6) Simulation study results for one dimensional data of sample size of 300 and 1000 (the contents 

of the 6 plots in Figure (6) are the same as those in Figure (5)). 

 

of the variability of the dataset. Adding more nodes makes the MSE of the residuals decrease a 

lot. Hence BIC and cross validation will choose 9 and 10 nodes as the best number of nodes 

with high rates. 

The right three plots in Figure (6) are the scatter plot, the boxplot and the 2-D histogram for 

sample size of 1000. Since the sample size is large enough, all the three methods select the 

correct number of nodes most of the time, as you can see from the 2-D histgram. Also the 

boxplot shows that there are just a few observations from 5 nodes to 10 nodes. 

 

3.2 Three dimensional dataset 

Finally, simulations are performed for three variables. A cube described by the three 

variables is generated. For each node, the active region is located at a corner of the cube (See 

Figure (7)). The faces labeled by “F” are the front faces. Figure (7) demonstrates the positions 

of the active regions relative to the front faces. For the aggregate of the four nodes, the active 

regions are located at the 4 different corners of the cube. The nodes are then generated as 

following: firstly, n×100 observations with gamma distribution, with shape parameter 20 and 

rate parameter 40, plus a standard Gaussian noise term, are generated.                                                                                                  
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After sorting them from small to large, the n×100 observations are divided into n subgroups 

with consecutive 100 observations being in the same subgroup. Therefore, n subgroups are 

produced. n x1 observations are produced with each observation equaling to the mean of each 

subgroup. n x2 observations and n x3 observations are generated similarly. Then n observations, 

𝑋1 ,..., 𝑋𝑛3  , are produced with the 3 coordinates being a combination of each x1 (first 

coordinate), x2 (second coordinate) and x3 (third coordinate) values. The first to fourth nodes 

are simulated by the following formula: 

 
where X1, X2 and X3 are the first, second and third coordinates of Xs. The final Y values are 

generated by Y = y1 + y2 + y3 + y4 + ϵ, where ϵ ∼ N (0, 1). Simulations are done for n values 

equaling 4, 5 and 6. 

 
Figure(7) Plots of the shape of each node for the simulated data with three explanatory variables. 

 

Table (2) is presented the same way as for one dimensional case. For all of the three 

scenarios, the graphical jump method leads the other two methods in both picking the correct 

number of nodes and making predictions. The graphical jump method picks 100%, 90% and 

93.3% correct results for sample sizes of 64, 125 and 216, separately, which are almost twice of 

those from the second best methods. The mean (sd) of the prediction errors generated from the 

graphical jump method are 1.14e-04 (7.68e-05), 3.97e-05(1.18e-05) and 3.27e-05(4.21e-06) for 

sample sizes of 64, 125 and 216, respectively. Both the mean and the sd of the prediction errors 
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generated by the graphical jump method are smaller than those from the other two methods, 

which means the graphical jump method produces results both more accurate and more stable. 

 
Figure(8) Simulation study results for three dimensional data of sample sizes of 64 ,125 and 216 (the 

scatter plots, the boxplots and the 2-D histograms describe the same thing as those in Figure(5)). 

 

For Figure (8), everything else is the same as those from sample size of 300 and dimension 

of one except that the plot containing box plots is divided into two parts with different ranges in 

x-axis. Since the mean values of prediction errors for 3 nodes are much higher than those of the 

rest numbers of nodes, they are sketched separately at the left parts. In the right parts of the 

plots, the box plots have increased trend in mean values along the x-axis, which means that 

when overfitting happens, the prediction errors increase with larger number of nodes chosen. 

For all of the                                                  .                                      
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Table (2).The percentages of the correct number of nodes chosen by each method and the mean (sd) of 

the prediction errors generated by each method for three dimensional scenarios. 

 three scenarios in three dimension, the scatter plots indicate that the graphical jump 

method yields the lowest prediction errors most of the time. Also the spread of the red points is 

narrower than those of the green points and the dark blue points. The 2-D histograms show that 

the graphical jump method picks the correct number of nodes (> 90%) most of the time. For 

sample size of 64, it even yields 100 % correct results. The graphical jump method yields the 

highest percentages of correct results among the three. 

For each of the scenarios above, another set of explanatory variables and response variable 

are generated the same way as that in each scenario. The newly generat- ed explanatory 

variables are used to make predictions and the predicted values are compared to the 

corresponding newly generated response variable. 

 

4 Combined Cycle Power Plant Data Set 

We now show our method in use on a real dataset. The dataset contains 9568 observations 

obtained from a Combined Cycle Power Plant over 6 years (2006-2011), during which the 

power plant worked with full load. The explanatory variables include average ambient variables 

Temperature (T), which is in the range of 1.81C and 37.11C, Ambient Pressure (AP), which is 

in the range of 992.89 to 1033.30 milibar, Relative Humidity (RH), which is in the range of 

25.56% to 100.16% and Exhaust Vacuum (V), in the range of 25.36 to 81.56 cm Hg. The 

output is the net hourly electrical energy output (EP) of the plant, varying from 420.26 to 

495.76 MW (Tufekci, 2014). Various sensors are located around the plant. They record the 

ambient variables every second and the hourly averages are taken as the observations given in 

the dataset. The final variables in the dataset are not normalized. 

The dataset is analyzed using a single layer feedforward neural network. The graphical 

jump method, the BIC criterion, and 10 fold cross validation are implemented to analyze the 

dataset and they select 1, 4 and 9 nodes as the best numbers of nodes respectively. Then the full 

dataset is analyzed using the neural network model using 1, 4 and 9 nodes, separately. The 
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graphical jump method yields the lowest Mean Square Error (MSE) of residuals, which is 

272.317. The BIC criterion and 10 fold cross validation yield higher MSEs of residuals, which 

are 291.866 and 291.865, separately. Therefore the number of nodes selected by the graphical 

jump method does the best job in predicting the outcome variable using the explanary variabes. 

Hence, the graphical jump method does the best job in choosing the true number of nodes. 

 

5 Conclusion, Discussion and Future Research Directions 

The jump method was first introduced in Sugar and James (2003). It contains 4 simple steps. 

It produces a jump score for each number of nodes which are functions of negative 

transformation of Mean Square Error. Given the correct transformation power, the highest jump 

score occurs at the true number of nodes. However, in practice, the correct transformation 

power can be difficult to identify since there are many unknown parameters. Instead, the 

strategy is to use a jump plot to distinguish false candidates from the true candidate. The ”jump 

plot” graphs ”the number of nodes selected” versus ”transformation power used”. Theorem 1 

demonstrates that if the true number of nodes is bigger than one, then it will be selected in the 

jump plot, i.e., for the several numbers of nodes selected in the jump plot, one of them should 

be the true answer. Theorem 2 shows that if the true number of nodes is one, then the jump plot 

will select one as the only candidate over a long range of transformation powers. Theorem 2 

can be used iteratively to rule out false candidates selected from the jump plot. If the candidate 

number of nodes is less than the true number of nodes, after fitting the neural network model 

with that number of nodes, the residuals will still need to be explained by more than one node 

and show a jump larger than one in the jump plot. The method was demonstrated to work on 

both simulated and real datasets. 

The graphical jump method has the potential to be extended to solve other problems where 

a counting number needs to be chosen, such as choosing the number of species in 

environmental studies, or choosing the number of neighbors in computer science. Also we 

could try to choose the number of nodes for other types of neural networks such as 

classification neural networks, recurrent neural networks (encompassing simple recurrent 

networks, Long short-term memory (LSTM) networks, Hopfield networks, Echo state 

networks), region-based convolutional neural network (R-CNN),the growing neural gas 

network (GNGN), radial basis function networks, and stochastic neural networks (including the 

Boltsmann machine). Researchers have already studied the topic of model selection for some of 

the neural networks aforementioned (Decker, 2006; Hessami and Viau, 2004; Liu, 2016). Since 

all of these neural networks are composed of multiple nodes for data processing, a ”jump plot” 

might be constructed to find the candidate number of best nodes for the nueral network. 

Then ”a single node only test” could be designed to rule out erroneous candidates. Another 

interesting extension would be to multivariate decision problems, such as multi-layer neural 

networks, where each layer might have a different optimal number of nodes               . 
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Appendix A: Proof of Theorem 1 

Let θn be estimated parameter after n modifications by using t samples repeatedly, where in 

each modification, θn+1 = θn − ϵ(y − f (x, θn))T ∇f(x, θn). It has been shown that θn approaches 𝜃∗ 

as n → ∞ and ϵ → 0. 

Let πn(θn) be the probability distribution of θn.  p(�̃�) obeys �̃� (θ) = limn→∞πn(θ), where �̃� is 

deemed as the limits of θn see Murata, Yoshizwa and Amari (1994) (page 867). If d(x,y,θopt) = 

−logp(y|x,θopt), then 

 
Without loss of generality, assume G is the true number of nodes, MSEq(G)=1. MSEq(k), 

MSEq∗(k) are the MSE under q and q∗ distribution when fitting k nodes to the neural network 

model separately. m(k) is the number of parameters for k nodes and m∗ is the number of 

parameters in one node. 

Here we assume  Recall the likelihoods 

, where  Since 

the minimum discrepancy D(q,p(�̃�))=MSEq(G) should occur at the true number of nodes, 

Log(�̂�) = −
t

2
− tlog(�̂�) , where �̂�  and �̂�  are maximum likelihood estimates. If d(x,y, θ ) = 

−log(p(y|x, θ)), then 

 

Since –log(𝐿�̂� ) is a function 𝑀𝑆�̂� , where the minimum of  
1

2
𝑀𝑆�̂�  occurs at G nodes, the 

minimum of –log(𝐿�̂�) also occurs at G nodes. And Ropt=Qopt, 𝑅𝑜𝑝𝑡
−1 − 𝑄𝑜𝑝𝑡

−1 , if m is the number of 
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parameters in the corresponding model, Ropt is of dimensions m×m, tr(Ropt𝑄𝑜𝑝𝑡
−1  ) = tr(Ropt𝑅𝑜𝑝𝑡

−1 )= 

tr(Im×m) = m, (see Murata, Yoshizwa and Amari (1994)(page 868)). Therefore, 

 
Since the minimum discrepancy occurs at G nodes, 

 
Then by Taylor Series Expansion, we can prove that 

 
Again via Taylor series expansion, it can be shown that the highest jump score occurs at G 

nodes, 

 
for any k for certain range of v. Additional details are in Chang (2011). 
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