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Abstract: Inferences about the ratio of two lognormal means δ can depend
on plausible values of ρ, the ratio of the normal standard deviations associ-
ated to these distributions. This aspect is not usually considered in most of
the analyses carried out in some applied sciences. In this paper we propose
a profile likelihood approach that allows the comparison of two independent
lognormal data sets in a more exhaustive way. Inferences about δ, ρ and
(δ, ρ) are jointly analyzed through a simple closed-form expression obtained
for the profile likelihood function of the parameter vector (δ, ρ). A similar
analysis is done for ψ and ρ, where ψ is the ratio of two lognormal medians,
obtaining also a simple closed-form expression for the profile likelihood func-
tion of these parameters. These expressions allow us to construct likelihood
contour plots that capture most of the information provided by the samples
and become valuable to identify if a trade-off between the parameters un-
der study occurs; in case of that, individual inferences should be analyzed
carefully. A detailed series of Monte Carlo simulations are included; they
illustrate the performance of profile likelihood and parametric bootstrap ap-
proaches, for different sample sizes and parameter values.

Key words: Likelihood contour plot; Nuisance parameter; Profile likelihood
function; Hypothesis test; Confidence intervals.

1. Introduction

Lognormal distributions occurs frequently in various applications coming from
ecology, biology, hydrology, medicine, human behavior and many other scientific
fields, where measurements under analysis are positive, with a small mean and
a large variance. A random variable is said to be lognormally distributed if its
natural logarithm follows a normal distribution. Now, many real life problems
involve the comparison of two independent lognormal data sets and, in most
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of them the usual concern relies in their means comparison. That explains the
large list of procedures that have been proposed to prove the equality of these
population means. These approaches usually consider the difference or the ratio
of these means, as the parameter of interest, and a decision is generally taken by
constructing a confidence interval or by doing a hypothesis test for one of these
parameters. For example, a procedure focused on a difference of these means is
the one proposed by Chen (1994), where the author explored the advantages of a
new test over a t-test based on log-data. Some well known procedures to analyze
the ratio of these means can be found in Zhou et al. (1997); in this paper, the
authors proposed two methods for testing the null hypothesis of equality of means:
a Z -score test and a nonparametric bootstrap method. On the other hand, Chen
and Zhou (2006) also discussed various approaches for constructing confidence
intervals for the ratio of these means, particularly they include two methods
based on the log-likelihood ratio statistic and a generalized pivotal approach,
among others. Currently, comparing the means of two lognormal distributions
is still a problem of interest and different test statistics are proposed and also
compared to measure, in a certain way, their performance (Jiang et al., 2014).

Although the comparison of two lognormal means is usually the problem of
interest, in many practical situations comparing the medians of two lognormal
distributions could be more appropriate to respond some specific questions or
maybe it could be easier to work with. A comparison of the ratio of two lognormal
means and two lognormal medians is made throughout this paper, using the same
proposed methodology.

The usual analysis of the ratio of two lognormal means or two lognormal medi-
ans, considers that X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are two independent
random samples from lognormal distributions, where ln (Xi) ∼ N

(
µ1, σ

2
1

)
and

ln (Yj) ∼ N
(
µ2, σ

2
2

)
, i = 1, . . . , n, j = 1, . . . ,m. When comparing two lognormal

means, inferences are made on

δ = exp
[
(µ1 − µ2) + σ22

(
ρ2 − 1

)
/2
]
, (1)

the ratio of these means, where ρ = σ1/σ2 denotes the ratio of the normal stan-
dard deviations associated to these lognormal distributions. When the purpose
relies in comparing the medians of these distributions, inferences are made on

ψ = exp (µ1 − µ2) . (2)

Inferences about δ can rely heavily on plausible values of ρ, as we can observe in
(1). Now, although ρ is not involved in (2), it is recommendable to have analytical
and graphical tools that allow us to analyze if changes on plausible values of ρ
could affect a decision about δ or ψ. This is not the common manner this kind of
problem is addressed in most of the analyses carried out in some applied sciences,
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and important information could be throw out when the behavior of ρ is discarded
from the analysis.

Dı́az-Francés and Sprott (2004) studied the ratio of the means of two indepen-
dent normal distributions. They explored in detail how different and plausible
values for the variance ratio can influence a decision about the ratio of these
means. Sprott and Farewell (1993) made a similar analysis for the difference of
two normal means. They showed that inferences about this parameter can be
sensitive to the assumption of equality of variances. They explored how differ-
ent plausible values for the variance ratio, influence on the inferences about the
difference between two normal means. They emphasize that this type of analysis
is not restricted by the assumption of normality and that it applies equally, but
with more computational complexity, to the difference in location between any
two location-scale distributions.

Taking into consideration the analyses made by Dı́az-Francés and Sprott
(2004) and Sprott and Farewell (1993), in Section 2 we propose a profile like-
lihood approach that allows us to compare two independent lognormal data sets
in a more exhaustive way. Inferences about δ, ρ and (δ, ρ) are jointly analyzed
through a simple closed-form expression obtained for the profile likelihood func-
tion of the parameter vector (δ, ρ). This expression allows us to construct a likeli-
hood contour plot that capture most of the information provided by the samples.
The location of the point (δ = 1, ρ = 1) and the profile likelihood-confidence
intervals for single parameters δ and ρ are included in this contour plot, making
possible not only to jointly visualize one and two dimensional inferences, but
also to detect a possible relationship between these parameters. Now, inferences
about ψ, ρ and (ψ, ρ) were also achieved using this approach. The plots obtained
are so valuable to identify if inferences for one of the parameters can be affected
by the behavior of the other one. Lindsey (2006, pp.106) emphasizes that when
parameters are inter-related, that is, when the likelihood contours are not parallel
to the axes, they should not be treated individually, except approximately.

Section 3 is devoted to the analysis of a series of Monte Carlo simulations
that were performed to compare the coverage probability of profile likelihood
and bootstrap intervals, their type I errors, as well as the power for the profile
likelihood and bootstrap tests. The election of sample sizes and parameter values,
considered in these simulations, were based on the characteristics of the four
examples included in Section 4, that were carefully selected to illustrate the utility
of our proposal; actually, three of them are very well known data sets in the
statistical literature. In the first example we studied a data set presented by
Wu et al. (2002); they compared the maximum of plasma concentration in two
formulations. In our second and third example we analyzed two data sets studied
by Krishnamoorthy and Mathew (2003); these authors compared the amount
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of rainfall for seeded and unseeded clouds and the carbon monoxide levels in
two locations. Our last example deals with a data set that comes from a study
made by Navarro-Garćıa et al. (2014), where the interest relies in comparing the
amount of fatty acids in two ray species.

2. Profile likelihood inferences

Consider again that X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are two indepen-
dent random samples from lognormal distributions, where ln (Xi) ∼ N

(
µ1, σ

2
1

)
,

ln (Yj) ∼ N
(
µ2, σ

2
2

)
, i = 1, . . . , n, j = 1, . . . ,m. The ratio of the means is

δ = exp
[
(µ1 − µ2) + σ22

(
ρ2 − 1

)
/2
]
, where ρ = σ1/σ2, and the ratio of the two

medians is ψ = exp (µ1 − µ2). Let x = (x1, . . . , xn) and y = (y1, . . . , ym) denote
observed values of X and Y , respectively. The purpose here is to provide pro-
file likelihood inferences about (δ, ρ), (ψ, ρ) as well as δ, ψ and ρ. The profile
likelihood functions for δ and ψ will be calculated based on the profile likeli-
hood functions of (δ, ρ) and (ψ, ρ), respectively. The profile likelihood function
for ρ can be derived from any one of these, using the invariance property of the
likelihood function.

2.1 Likelihood function for (δ, ρ)

The likelihood function of the vector parameter (µ1, σ1, µ2, σ2) can be written
as

L(µ1, σ1, µ2, σ2;x, y) ∝ σ−n1 σ−m2 exp

{
− 1

2σ21

n∑
i=1

[ln (xi)− µ1]2

− 1

2σ22

m∑
j=1

[ln (yj)− µ2]2
 . (3)

Now, consider the one to one transformation µ1, ρ, δ, σ2 ←→ µ1, σ1, µ2, σ2,
where

σ1 = ρσ2 and µ2 = µ1 − ln(δ)− 1

2
σ22
(
1− ρ2

)
. (4)

Substituting (4) into (3)

L (µ1, δ, ρ, σ2;x, y) ∝ ρ−nσ
−(n+m)
2 exp

{
− 1

2ρ2σ22

n∑
i=1

[ln (xi)− µ1]2−

1

2σ22

m∑
j=1

[
ln (yj)− µ1 + ln(δ) +

1

2
σ22
(
1− ρ2

)]2 (5)
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is obtained. Using the invariance property of the likelihood, the maximum like-
lihood (ML) estimates for δ and ρ result

δ̂ = exp

[
(µ̂1 − µ̂2) +

1

2
σ̂22
(
ρ̂2 − 1

)]
and ρ̂ = σ̂1/σ̂2, (6)

where

µ̂1 =
1

n

n∑
i=1

ln (xi) , σ̂
2
1 =

1

n

n∑
i=1

[ln (xi)− µ̂1]2 ,

µ̂2 =
1

m

m∑
j=1

ln (yj) , σ̂
2
2 =

1

m

m∑
j=1

[ln (yj)− µ̂2]2 ,

are the ML estimates of µ1, σ
2
1, µ2 and σ22, respectively.

Based on the likelihood function (5), the profile likelihood function of (δ, ρ)
can be easily obtained in two steps, as follows:

Step 1. Replace µ1 in (5) by its restricted ML estimate, for specified (δ, ρ, σ2),

µ̂1 (δ, ρ, σ2) = a+ bσ22,

where

a =
S1 + ρ2S2 +mρ2 ln (δ)

n+mρ2
, b =

mρ2
(
1− ρ2

)
2 (n+mρ2)

,

S1 =
∑n

i=1 ln (xi) and S2 =
∑m

j=1 ln (yj). Then, the profile likelihood of (δ, ρ, σ2)
can be written as

Lp (δ, ρ, σ2;x, y) ∝ ρ−nσ
−(n+m)
2 exp

[
− b2

2ρ2σ22

n∑
i=1

(
Ai − σ22

)2
− d2

2σ22

m∑
j=1

(
Bj − σ22

)2 , (7)

where

Ai =
ln (xi)− a

b
, Bj =

ln (yj)− a+ ln(δ)

d

and d = b−
(
1− ρ2

)
/2.

Step 2. Replace σ22 in (7) by its restricted ML estimate, for specified (δ, ρ),

σ̂22 (δ, ρ) =


M∗

1+M
∗
2

n+m , ρ = 1

r

{
−1 +

√
1 + 2

r

[
M1+ρ2M2

(n+m)ρ2

]}
, ρ 6= 1

,
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where

M1 =

n∑
i=1

[ln (xi)− a]2, M2 =

m∑
j=1

[ln (yj)− a+ ln(δ)]2,

M∗1 =
n∑
i=1

[ln (xi)− a∗]2, M∗2 =
m∑
j=1

[ln (yj)− a∗ + ln(δ)]2,

a∗ = [S1 + S2 +m ln (δ)] / (n+m) and 2r = (n+m) ρ2/
(
nb2 +mρ2d2

)
. Then

the profile likelihood of (δ, ρ) can be expressed as

Lp (δ, ρ;x, y) ∝ Lp (δ, ρ, σ2 = σ̂2 (δ, ρ) ;x, y) . (8)

2.2 Likelihood function for (ψ, ρ)

To obtain the likelihood function of (ψ, ρ), we will consider a one to one
transformation µ1, ρ, ψ, σ2 ←→ µ1, σ1, µ2, σ2, throughout the reparametrization

σ1 = ρσ2 and µ2 = µ1 − ln(ψ).

Following the same procedure shown in previous section, it is easy to obtain the
restricted ML estimate of µ1, for a specified (ψ, ρ, σ2), resulting

µ̂1(ψ, ρ, σ2) =
S1 + ρ2S2 +mρ2 ln (ψ)

n+mρ2
,

where again, S1 =
∑n

i=1 ln (xi) and S2 =
∑m

j=1 ln (yj). Note that µ̂1(ψ, ρ, σ2) = a,
where a is given in Step 1.

Finally, the profile likelihood of (ψ, ρ, σ2) becomes

Lp (ψ, ρ, σ2;x, y) ∝ ρ−nσ
−(n+m)
2 exp

{
− 1

2ρ2σ22

n∑
i=1

[ln(xj)− a]2

− 1

2σ22

m∑
j=1

[ln(yj)− a+ ln(ψ)]2

 ,

from which we can obtain the restricted ML of σ22, for a specified (ψ, ρ),

σ̂22(ψ, ρ) =
M1 + ρ2M2

(n+m)ρ2
,
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where

M1 =

n∑
i=1

[ln (xi)− a]2, M2 =

m∑
j=1

[ln (yj)− a+ ln(ψ)]2,

and the profile likelihood of (ψ, ρ) can be expressed as:

Lp(ψ, ρ;x, y) ∝ ρm
(
M1 + ρ2M2

)− 1
2
(n+m)

. (9)

2.3 Profile likelihood inferences about (δ, ρ)

The relative profile likelihood function of (δ, ρ) is defined as the ratio of the

profile likelihood function Lp(δ, ρ;x, y) to its maximum Lp

(
δ̂, ρ̂;x, y

)
; so it is a

standardized version to be one at the maximum of the profile likelihood function
of (δ, ρ) given in (8),

Rp (δ, ρ;x, y) =
Lp(δ, ρ;x, y)

max(δ,ρ)∈R+×R+ Lp(δ, ρ;x, y)
=

Lp(δ, ρ;x, y)

Lp

(
δ̂, ρ̂;x, y

) , (10)

where δ̂ and ρ̂ are the ML estimates of δ and ρ presented in (6). The relative
profile likelihood thus varies between 0 and 1. This likelihood measures the
plausibility of any specified value (δ, ρ) relative to that of (δ̂, ρ̂). The relative
profile likelihood function (10) ranks all possible (δ, ρ) values according to their
plausibilities in the light of the observed samples (x, y). Thus, from a graph of
Rp (δ, ρ;x, y) we can easily distinguish plausible and implausible values for (δ, ρ).

Now, under the null hypothesis H0 : (δ, ρ) = (δ0, ρ0), the profile likelihood
ratio statistic −2 ln [Rp(H0;X,Y )] follows an asymptotically χ2

2 distribution; see
Serfling (2002, p. 155). Thus, at the significance level α,

H0 : (δ, ρ) = (δ0, ρ0) is rejected if − 2 ln [Rp(H0;x, y)] > q2,1−α,

where q2,1−α is the quantile of probability 1−α of a chi-squared distribution with
2 degrees of freedom. In this case the p-value can be computed as

p-value = P
{
χ2
2 ≥ −2 ln [Rp(H0;x, y)]

}
= Rp(H0;x, y) = Rp(δ0, ρ0;x, y). (11)

Now, a level c profile likelihood region for δ and ρ, is given by

{(δ, ρ) : Rp(δ, ρ;x, y) ≥ c} ,

where 0 ≤ c ≤ 1. Any pair of values (δ, ρ) within this region, has a relative profile
likelihood Rp(δ, ρ;x, y) ≥ c, and for those outside this region, Rp(δ, ρ;x, y) < c; so
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just looking at the contour plot we can easily identify plausible and implausible
values for (δ, ρ), at level c. Thus, varying c from 0 to 1, we obtain a complete set
of nested likelihood regions that converges to the ML estimate (δ̂, ρ̂), as c→ 1; see
Sprott (2000, pp. 14-15). A profile likelihood region for (δ, ρ) is an approximate
confidence region for (δ, ρ); the approximate confidence level is determined from
−2 ln [Rp(δ = δ0, ρ = ρ0;X,Y )] ∼ χ2

2, as exposed in Kalbfleisch (1985, pp. 189-
190). For example, when c = 0.05, the confidence level is approximately 95%.
Moreover, from (11), every specified value (δ, ρ) has an associated p-value greater
or equal than 0.05 if it lies within this contour, and less than 0.05 otherwise.

2.4 Profile likelihood inferences about δ and ρ

The profile likelihood function of δ, Lp (δ;x, y), is obtained by maximizing
over ρ the profile likelihood function of the parameter vector (δ, ρ) given in (8),
keeping δ fixed,

Lp (δ;x, y) ∝ max
ρ∈R+|δ

Lp (δ, ρ, σ2 = σ̂2 (δ, ρ) ;x, y) . (12)

The relative profile likelihood function of δ is a standardized version to be
one at the maximum of the profile likelihood function of δ given in (12),

Rp (δ;x, y) =
Lp(δ;x, y)

maxδ∈R+ Lp(δ;x, y)
=

Lp(δ;x, y)

Lp

(
δ̂, ρ̂;x, y

) ,
where δ̂ and ρ̂ are the ML estimates of δ and ρ presented in (6). This relative
profile likelihood varies between 0 and 1 and ranks all possible δ values based only
on the observed samples (x, y). Thus, a graph of Rp (δ;x, y) allows to distinguish
plausible and implausible values for δ.

Considering that the profile likelihood ratio statistic −2 ln [Rp(H0;X,Y )] fol-
lows an asymptotically χ2

1 distribution if the null hypothesis H0 : δ = δ0 is true,
then at the significance level α,

H0 : δ = δ0 is rejected if − 2 ln [Rp(H0;x, y)] > q1,1−α,

where q1,1−α is the quantile of probability 1−α of a chi-squared distribution with 1
degree of freedom. In this case the p-value is given by P

{
χ2
1 ≥ −2 ln [Rp(H0;x, y)]

}
.

A level c profile likelihood region (commonly an interval) for δ is given by

{δ : Rp(δ;x, y) ≥ c} ,

where 0 ≤ c ≤ 1. Every specific value of δ within this interval has a relative profile
likelihood Rp(δ;x, y) ≥ c, and those δ values outside this interval have a relative
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profile likelihood Rp(δ;x, y) < c. Then, at level c, this interval separates plausible
and implausible values of δ. Varying c from 0 to 1 we can obtain a complete set
of nested likelihood intervals that converges to the ML estimate δ̂ as c→ 1. Note
that a profile likelihood interval for δ is an approximate confidence interval for δ,
with approximate confidence level determined from −2 ln [Rp(δ = δ0;X,Y )] ∼ χ2

1.
For example, the confidence level will be approximately 90%, 95% and 99% if
c = 0.25, 0.146 and 0.036, respectively; see Kalbfleisch (1985, pp. 115-116).

In the case of profile likelihood inferences for ρ, these can be obtained through-
out the relative profile likelihood function of ρ, given by

Rp (ρ;x, y) =
Lp(ρ;x, y)

maxρ∈R+ Lp(ρ;x, y)
=

Lp(ρ;x, y)

Lp

(
δ̂, ρ̂;x, y

) ,
where

Lp (ρ;x, y) ∝ max
δ∈R+|ρ

Lp (δ, ρ, σ2 = σ̂2 (δ, ρ) ;x, y) .

2.5 Profile likelihood inferences about (ψ, ρ), ψ and ρ

Even though Sections 2.3 and 2.4 are devoted to obtain the relative profile
likelihood of (δ, ρ) and profile likelihood inferences about δ and ρ, the procedures
used there can be implemented to obtain relative profile likelihood of (ψ, ρ) and
profile likelihood inferences about ψ and ρ, considering Lp(ψ, ρ;x, y), given in (9),
as a starting point. Note that the profile likelihood of ρ can be obtained either
from Lp(ψ, ρ;x, y) or Lp(δ, ρ;x, y), using the invariance property of the likelihood
function.

All the computations required for the likelihood-based approach presented in
this paper were programmed in the R software, this includes a non-linear mini-
mization function named nlm, that was used to numerically compute the profile
likelihood function of parameters δ, ψ and ρ. Now, even these computations are
not difficult, these programs are freely available via the corresponding author.

3 Simulation

Some series of Monte Carlo simulations were conducted to compare the per-
formance of profile likelihood approach and a parametric bootstrap approach
based on maximum likelihood estimators. This comparison was made through
the estimation of: coverage probability of Profile Likelihood (PL) and Bootstrap
intervals, probability of type I error, and power for inverted PL and Bootstrap
tests. Samples of sizes (n,m) = (10, 10), (20, 20), (26, 26), (50, 50), (20, 10),
(31, 9), (40, 10), (50, 20) were simulated 10, 000 times, considering the five param-
eter configurations shown in Table 1. These configurations were selected based
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on parameter estimates obtained from real data, particularly the ones analyzed
in the examples presented in Section 4. In the case of the bootstrap method, we
used 1000 bootstrap replications of size (n,m).

The parameter configuration (c) of Table 1, satisfies the null hypothesis H0 :
δ = 1 in the case of a means comparison, and H0 : ψ = 1 when comparing
medians; the others depict a range of values of δ and ψ that varies around 1.
For each scenario, Table 1 includes different characteristics of the log-normal
distributions under study, like their means (E), medians (Med) and skewness
(Sw). Some scenarios comparisons could be particularly interesting, for example
in configuration (a) the absolute value of the skewness difference between these
two distributions is 9.24, but in scenario (d) this difference is 0.02.

Sample sizes (n,m) = (10, 10), (20, 20), (26, 26) and (31, 9), considered in
these simulations, are the real sample sizes of the different data sets analyzed
in the examples presented in Section 4. Some others were included, considering
its occurrence in daily practice, where unequal as well as small sample sizes are
usual.

Table 1: Parameter configurations for the simulation study.
Scenarios µ1 σ1 µ2 σ2 E (X) E (Y ) Med (X) Med (Y ) Sw (X) Sw (Y ) δ ψ ρ

(a) 3.990 1.610 5.134 1.568 197.56 580.16 54.05 169.69 53.99 44.75 0.34 0.32 1.03
(b) 6.417 0.407 6.601 0.775 665.02 993.58 612.16 735.83 1.35 3.47 0.67 0.83 0.53
(c) 3 0.1 3 0.1 20.19 20.19 20.09 20.09 0.30 0.30 1 1 1
(d) 3.129 0.104 3.008 0.096 22.98 20.34 22.85 20.25 0.31 0.29 1.13 1.13 1.08
(e) 4.074 0.494 2.963 0.919 66.42 29.53 58.79 19.36 1.72 4.98 2.25 3.04 0.54

For each simulated scenario we calculate: proportion of times the interval
cover the true parameter (central coverage), proportion of times the confidence
interval falls below the true parameter (lower error) and proportion of times the
lower limit of the confidence interval is greater than the true parameter (upper
error). Theoretical values for central coverage, lower and upper errors are: 0.95,
0.025 and 0.025, respectively. Now, to compute empirical power in scenarios (a),
(b), (d) and (e), we calculate the proportion of times the interval cover the null
hypothesis H0 : δ = 1, in the case of means comparison, and H0 : ψ = 1 for
the case of medians comparison. The proportion of times that the interval not
include the true parameter value, represents the empirical type I error rate and
its corresponding theoretical value is α = 0.05.

Table 2 shows that the PL intervals for δ are reasonably well behaved in all
considered cases; they exhibit good coverage even for small and unequal sample
sizes; nevertheless, although central coverage is controlled, the upper and lower
errors are not necessarily symmetric for small and unequal sample sizes. On
the other hand, most of the coverage frequencies for the bootstrap approach were
nearest but below the ones obtained by the PL approach; even more, for scenarios
(a), (b) and (e), the bootstrap approach revealed poor coverage, particularly
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when (n,m) = (31, 9). In addition to that, bootstrap approach appears to be
more biased than the PL approach, revealing a strong bias toward the right,
when unequal and small sample sizes are involved, such as in scenarios (a), (b)
and (e). Some extra simulations, not reported here, suggest that the coverage
frequencies and the bias obtained throughout bootstrap approach, become even
worse when samples come from highly skewed distributions.

Table 2: Simulation results for the ratio of means. Each cell contains: lower
error, central coverage∗ and upper error.

Scenarios
(n,m) Method a b c d e

(10, 10)
PL
Bootstrap

3.75(93.41)2.84
3.70(93.48)2.82

2.80(93.28)3.92
2.07(90.69)7.24

3.53(92.92)3.55
4.00(91.91)4.09

3.51(93.24)3.25
4.41(91.49)4.10

2.37(93.61)4.02
1.41(90.95)7.64

(20, 20)
PL
Bootstrap

2.77(94.26)2.97
3.03(94.05)2.92

2.46(94.19)3.35
1.65(92.90)5.45

3.19(93.79)3.02
3.55(93.07)3.38

2.83(94.15)3.02
3.25(93.43)3.32

2.47(94.07)3.46
1.48(92.98)5.54

(26, 26)
PL
Bootstrap

2.79(94.46)2.75
2.97(94.33)2.70

2.75(93.91)3.34
1.90(93.09)5.01

2.83(94.58)2.59
3.10(93.93)2.97

2.87(94.28)2.85
3.32(93.58)3.10

2.60(94.14)3.26
1.88(93.04)5.08

(50, 50)
PL
Bootstrap

2.71(94.51)2.78
2.96(94.36)2.68

2.30(94.79)2.91
1.81(93.70)4.49

3.06(94.16)2.78
3.13(93.72)3.15

2.48(94.41)3.11
2.67(94.08)3.25

2.30(94.71)2.99
1.69(93.90)4.41

(20, 10)
PL
Bootstrap

2.32(94.19)3.49
1.49(93.36)5.15

2.78(93.24)3.98
1.87(90.04)8.09

2.99(93.51)3.50
3.59(92.06)4.35

3.26(93.40)3.34
4.02(91.93)4.05

2.61(92.84)4.55
1.39(89.58)9.03

(31, 9)
PL
Bootstrap

2.10(93.15)4.75
0.73(90.41)8.86

2.56(92.80)4.64
1.62(88.85)9.53

3.35(93.69)2.96
4.03(91.82)4.15

3.17(93.28)3.55
3.78(91.61)4.61

2.43(93.05)4.52
1.15(88.60)10.25

(40, 10)
PL
Bootstrap

2.10(93.78)4.12
0.70(90.90)8.40

2.44(93.40)4.16
1.52(89.93)8.55

3.18(93.49)3.33
3.76(91.81)4.43

2.91(93.90)3.19
3.56(92.20)4.24

2.42(93.30)4.28
1.06(89.47)9.47

(50, 20)
PL
Bootstrap

2.19(94.34)3.47
1.36(93.19)5.45

2.18(94.58)3.24
1.35(92.82)5.83

2.57(94.55)2.88
2.94(93.61)3.45

2.70(94.49)2.81
3.06(93.55)3.39

2.23(94.29)3.48
1.12(92.27)6.61

∗Coverage percentage is reported within brackets.

Table 3: Simulation results for the ratio of medians. Each cell contains: lower
error, central coverage∗ and upper error.

Scenarios
(n,m) Method a b c d e

(10, 10)
PL
Bootstrap

3.39(93.57)3.04
4.09(91.93)3.98

3.43(93.17)3.40
4.56(91.07)4.37

3.31(93.29)3.40
4.09(91.79)4.12

3.40(93.39)3.21
4.25(91.70)4.05

3.33(93.40)3.27
4.37(91.48)4.15

(20, 20)
PL
Bootstrap

2.85(94.19)2.96
3.28(93.32)3.40

2.80(94.25)2.95
3.51(93.19)3.30

3.16(93.94)2.90
3.51(93.21)3.28

2.75(94.34)2.91
3.18(93.43)3.39

2.67(94.77)2.56
3.22(93.73)3.05

(26, 26)
PL
Bootstrap

2.86(94.66)2.48
3.04(94.12)2.84

2.84(94.39)2.77
3.17(93.53)3.30

2.89(94.52)2.59
3.14(94.01)2.85

2.87(94.38)2.75
3.32(93.61)3.07

2.98(94.37)2.65
3.38(93.61)3.01

(50, 50)
PL
Bootstrap

2.54(94.73)2.73
2.66(94.44)2.90

2.72(94.67)2.61
2.87(94.22)2.91

3.03(94.28)2.69
3.27(93.71)3.02

2.45(94.53)3.02
2.62(94.13)3.25

2.72(94.57)2.71
2.87(94.07)3.06

(20, 10)
PL
Bootstrap

2.97(93.83)3.20
3.60(92.40)4.00

3.57(93.10)3.33
4.64(90.80)4.56

3.04(93.54)3.42
3.68(92.17)4.15

3.34(93.31)3.35
4.24(91.78)3.98

3.49(92.89)3.62
4.63(90.65)4.72

(31, 9)
PL
Bootstrap

2.95(93.39)3.66
3.83(91.55)4.62

3.50(92.79)3.71
4.83(90.27)4.90

3.28(93.88)2.84
4.40(91.86)3.74

3.27(93.36)3.37
4.17(91.58)4.25

3.72(92.97)3.31
4.74(90.57)4.69

(40, 10)
PL
Bootstrap

3.36(93.52)3.12
4.22(91.81)3.97

3.65(92.97)3.38
4.57(90.85)4.58

3.36(93.33)3.31
4.25(91.62)4.13

3.02(93.84)3.14
3.90(92.11)3.99

3.33(93.53)3.14
4.43(91.34)4.23

(50, 20)
PL
Bootstrap

2.69(94.21)3.10
3.00(93.46)3.54

2.84(94.50)2.66
3.41(93.27)3.32

2.61(94.53)2.86
3.04(93.68)3.28

2.83(94.43)2.74
3.14(93.75)3.11

2.69(94.44)2.87
3.27(93.35)3.38

∗Coverage percentage is reported within brackets.

Table 3 shows that the PL intervals for ψ are reasonably good in all considered
cases, since coverage frequencies are close to the 95 per cent theoretical value, even
for small and unequal sample sizes. Now, in the case of Bootstrap approach and
for each simulated scenario, coverage frequencies are close to the ones obtained by
PL approach, but they never surpass them. Moreover, neither the PL approach
nor the bootstrap approach resulted in high bias. Additional simulations, not
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reported here, suggest that the observed coverage and bias patterns are still
maintained even when the samples come from fairly skewed distributions.

Table 4 summarizes the results obtained from empirical type I error and
empirical power when carrying out tests about δ. When increasing both sample
sizes (n,m), a larger and similar power for inverted bootstrap test and inverted
PL test is obtained. In the case of scenario (a), the power obtained through
the inverted bootstrap test is larger than the one obtained from the inverted PL
test, except for the unequal sample size cases. For scenario (b), the inverted PL
test had always a larger power. Now, for scenario (d) inverted bootstrap test
had larger or equal power than inverted PL test, and in the case of scenario
(e), inverted bootstrap test had always a larger power than inverted PL test.
Nevertheless, excluding scenario (a), when (n,m) = (10, 10), the probability of
type I error is always greater for the inverted bootstrap test, showing also a
strong bias to the right (See Table 2). This skewness could explain the increase
in power observed for the bootstrap method in scenarios (d) and (e), where the
true parameter value of δ is greater than the null hypothesized value H0 : δ = 1.
Now, the magnitude of this power could be diminished when the true parameter
value of δ is located to the left of the null hypothesized value H0 : δ = 1. Some
extra simulations, no reported here, seem to confirm all these power discrepancy
patterns.

Table 4: Powers of PL test and bootstrap test for δ (α = 0.05).
Scenarios

(n,m) Method a b d e

(10, 10)
PL
Bootstrap

18.56(6.59)∗

25.31(6.52)
30.38(6.72)
25.56(9.31)

76.80(6.76)
80.00(8.51)

44.22(6.39)
66.19(9.05)

(20, 20)
PL
Bootstrap

28.22(5.74)
35.19(5.95)

50.53(5.81)
45.67(7.10)

97.02(5.85)
97.38(6.57)

72.72(5.93)
84.62(7.02)

(26, 26)
PL
Bootstrap

35.23(5.54)
41.79(5.67)

60.43(6.09)
55.74(6.91)

99.08(5.72)
99.16(6.42)

83.04(5.86)
90.64(6.96)

(50, 50)
PL
Bootstrap

57.21(5.49)
62.76(5.64)

85.13(5.21)
83.05(6.30)

100(5.59)
100(5.92)

98.67(5.29)
99.36(6.10)

(20, 10)
PL
Bootstrap

22.86(5.81)
22.29(6.64)

33.09(6.76)
26.51(9.96)

86.61(6.60)
89.61(8.07)

45.66(7.16)
68.74(10.42)

(31, 9)
PL
Bootstrap

25.67(6.85)
20.20(9.59)

32.56(7.20)
25.07(11.15)

87.59(6.72)
91.37(8.39)

43.81(6.95)
68.45(11.40)

(40, 10)
PL
Bootstrap

29.43(6.22)
21.63(9.10)

35.99(6.60)
27.81(10.07)

91.65(6.10)
94.45(7.80)

46.67(6.70)
71.01(10.53)

(50, 20)
PL
Bootstrap

42.46(5.66)
39.38(6.81)

56.16(5.42)
48.36(7.18)

99.38(5.51)
99.54(6.45)

74.71(5.71)
86.68(7.73)

∗Empirical power, with empirical type I error percentage in brackets.

Results from empirical type I error and empirical power of the tests for ψ,
are presented in Table 5. As sample sizes (n,m) increase, the power of these
tests gets larger and closer. In all simulated scenarios, inverted bootstrap test
showed larger or equal power than inverted PL test; however, bootstrap method
generates a larger empirical type I error. Additional simulations, no included
here, seem to confirm these observations.

From our point of view, PL method outperforms bootstrap method regarding
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Table 5: Powers of PL test and bootstrap test for ψ (α = 0.05).
Scenarios

(n,m) Method a b d e

(10, 10)
PL
Bootstrap

37.92(6.43)∗

42.08(8.07)
12.14(6.83)
14.84(8.93)

76.39(6.61)
79.68(8.30)

90.78(6.60)
92.78(8.52)

(20, 20)
PL
Bootstrap

62.47(5.81)
64.60(6.68)

16.43(5.75)
18.33(6.81)

96.87(5.66)
97.33(6.57)

99.71(5.23)
99.77(6.27)

(26, 26)
PL
Bootstrap

73.64(5.34)
75.16(5.88)

19.44(5.61)
21.08(6.47)

99.06(5.62)
99.10(6.39)

99.95(5.63)
99.95(6.39)

(50, 50)
PL
Bootstrap

94.77(5.27)
95.07(5.56)

31.48(5.33)
32.95(5.78)

100(5.47)
100(5.87)

100(5.43)
100(5.93)

(20, 10)
PL
Bootstrap

46.66(6.17)
50.73(7.60)

12.67(6.90)
15.78(9.20)

87.13(6.69)
89.33(8.22)

92.41(7.11)
94.71(9.35)

(31, 9)
PL
Bootstrap

48.13(6.61)
53.15(8.45)

12.62(7.21)
16.29(9.73)

88.86(6.64)
91.16(8.42)

91.20(7.03)
93.86(9.43)

(40, 10)
PL
Bootstrap

53.73(6.48)
58.20(8.19)

13.08(7.03)
16.72(9.15)

92.56(6.16)
94.41(7.89)

94.10(6.47)
95.71(8.66)

(50, 20)
PL
Bootstrap

76.52(5.79)
78.39(6.54)

17.61(5.50)
19.98(6.73)

99.45(5.57)
99.53(6.25)

99.89(5.56)
99.91(6.65)

∗Empirical power, with empirical type I error percentage in brackets.

coverage and also in the way it handles upper and lower error; for that reason
and the simplicity of the closed-form expression of the profile likelihood, this
methodology will be used from here on.

Table 6: Decomposition of type II error rate.
H0 : δ = 1 H0 : ψ = 1

Scenarios (n,m) (0, 0) (0, 1) (1, 1) (1, 0) (0, 0) (0, 1) (1, 1) (1, 0)
(10, 10) 3.95 16.63 78.45 0.97 5.09 1.43 91.70 1.77
(20, 20) 5.03 33.57 60.66 0.74 4.77 1.95 91.61 1.68
(26, 26) 5.87 42.63 50.98 0.52 5.20 1.86 91.35 1.59

(a) (50, 50) 8.97 70.93 20.03 0.07 3.44 3.25 92.35 0.96
(20, 10) 5.24 19.95 73.75 1.06 3.96 1.99 92.07 1.99
(31, 9) 7.13 18.00 73.60 1.26 3.78 2.99 91.19 2.04
(40, 10) 7.31 20.89 70.96 0.84 3.59 3.07 91.74 1.60
(50, 20) 7.42 40.16 52.03 0.38 4.30 2.64 91.91 1.15
(10, 10) 31.18 0.62 53.36 14.84 40.75 1.31 45.88 12.06
(20, 20) 58.14 0.14 27.69 14.03 72.13 1.02 18.31 8.54
(26, 26) 73.59 0.08 14.71 11.62 84.93 0.63 8.63 5.81

(b) (50, 50) 95.70 0.00 1.88 2.42 98.86 0.06 0.55 0.53
(20, 10) 46.35 0.99 41.11 11.55 54.80 2.91 33.44 8.85
(31, 9) 50.33 1.59 39.15 8.94 57.30 4.12 31.68 6.90
(40, 10) 56.96 1.58 33.32 8.14 64.40 4.02 25.59 5.99
(50, 20) 81.68 0.14 11.88 6.30 88.58 1.18 6.89 3.35

Observing Tables 4 and 5, it is intriguing that for scenarios (a) and (b), the
power of the tests was smaller than the ones observed for scenarios (c) and (d); so
it would be interesting to know how this not negligible type II error rate occurs.
To answer this question, a decomposition of type II error rate for scenarios (a)
and (b), is computed and presented in Table 6. Let (I1, I2) be a vector that
displays the results of two different hypotheses; either I1 or I2 can take 0 and
1 values. The first entry of this vector corresponds to the result obtained when
testing the vector hypothesis H0 : (δ, ρ) = (1, 1), and the second one is related
to testing H0 : ρ = 1. In that sense, (0, 1) represents a situation when the
hypothesis H0 : (δ, ρ) = (1, 1) is rejected, but individual hypothesis H0 : ρ = 1
is not rejected. This particular situation is very interesting because given that
H0 : δ = 1 is not rejected, the joint hypothesis H0 : (δ, ρ) = (1, 1) is rejected and
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the individual hypothesis H0 : ρ = 1 results not rejected. Actually, this situation
occurs markedly in scenario (a), for all sample sizes, and could be linked to an
elongated (δ, ρ) contour behavior, similar to the one obtained in the Rainfall
Data example presented in Section 4. Regarding scenario (b), we can observe
that frequencies below the (0, 1) column are very small, nevertheless frequencies
below (0, 0) column are considerable, for all sample sizes.

A similar decomposition was done for the case of formulating these hypotheses
in terms of parameter ψ. In the case of scenario (a), for all sample sizes, the
frequencies below the (0, 1) column are small; it seems that not so much cases of
elongated contours for (ψ, ρ) are present. In relation to scenario (b) the behavior
is similar to the one observed for parameter δ, in this scenario.

Regarding the results obtained when using the profile likelihood approach,
those turn out interesting because on one hand, we could conclude that coverage
frequencies seem to be controlled in all scenarios, but on the other hand they
showed that we must be concerned about scenarios like (a), since their loss in
power seems to be related to a situation where a strong relationship between
parameters δ and ρ exists, and that feature should not be discarded from an
analysis. Simulations also showed that we should not worry about this situation
if the parameters under analysis are ψ and ρ.

Overall, the analyses of coverage frequencies and power in all selected sce-
narios, support what we will emphasize in the examples presented in Section 4,
regarding the importance of an analysis that considers the possibility of a trade-
off between the parameters under study, since the exploration of one and two
dimensional inferences are very helpful procedures before taking a decision.

4 Illustrative examples

Profile likelihood function of an individual parameter (δ, ψ or ρ), computed
as shown in Section 2, allows to make individual inferences about the parameter
of interest. Nevertheless, when the analysis involve two parameters it is recom-
mendable not to restrict our inferences to a single profile likelihood function,
without considering the possibility of a relationship between these parameters.
The examples included in this section were carefully selected to show this as-
pect considering different situations that can occur in real life, where the decision
derived from individual and simultaneous inferences do not necessarily coincide.
Although the latter is already known, some statistics users do not realize that
this can occur. The examination of the likelihood contour plots of (δ, ρ) or (ψ, ρ),
obtained from the profile likelihood computed in Section 2, and the additional
features included in this plot, allow to compare two independent lognormal data
sets in a more exhaustive way.

For all the examples considered in this section we present five different plots.
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Three of them correspond to the profile likelihood function for parameters δ, ψ
and ρ, including their respective 95% likelihood confidence intervals; the other
two show a likelihood contour plot for parameters (δ, ρ) and parameters (ψ, ρ),
both at two different levels: 0.146 and 0.05. The 0.146 level likelihood contour
includes two dashed-line curves corresponding either to the trajectories of the
profile likelihoods for δ and ρ or the trajectories of the profile likelihoods for ψ
and ρ, depending of the plot. In the same manner, their crossing point denoted by
an asterisk, shows the location of either the ML estimate (δ̂, ρ̂) or the ML estimate
(ψ̂, ρ̂). The end points of these trajectories are projected to their respective axes
using dotted lines; this allows for obtaining their corresponding 95% confidence
intervals (CI). On the other hand, the 0.05 level likelihood contour is associated
to a 95% confidence region. The likelihood contour plot includes also a cross
sign to identify the location of parameter values (δ = 1, ρ = 1) or (ψ = 1,
ρ = 1), depending of the plot. This is an informative feature because if the
cross sign lies into the outer contour, then we have no evidence to reject that the
samples could come from the same distribution function. All the points outside
the 0.05 likelihood contour have associated p-values smaller than 0.05, for this
simultaneous test.

4.1 Bioavailability study

The data analyzed in this example is presented in Wu et al. (2002) and it
resulted from a bioavailability study where a randomized, parallel-group experi-
ment was conducted considering 20 subjects. The purpose of this study was to
compare a new test formulation (X) with a reference formulation (Y ) of a drug
product with a long half-life. It is important to determine if the means of the
maximum plasma concentration (Cmax) of the two formulations are the same.

Wu et al. (2002) analyzed the ratio of means of Cmax to determine if the
two formulations have or not, different bioavailability. By means of QQ plots for
the original and the log-transformed data, as well as the Shapiro-Wilk tests for
the normality on the log-transformed data, they showed that a lognormal model
adequately describes both data sets. They also made a hypothesis test for the
equality of variances of the log-transformed data (H0 : ρ = 1) using an F -test,
as a preliminary step to compare the means of Cmax; this test produced a p-
value of 0.034, so they concluded that the log transformation does not stabilize
variances. To test the equality of means of Cmax, between these two formula-
tions (H0 : δ = 1), they computed a two-sided p-value of the modified signed
log-likelihood ratio statistic (r∗) obtaining 0.173, and a 95% confidence interval
for the ratio of means δ of Cmax, which resulted (0.242, 1.200). For comparison
purposes, they also computed the two-sided p-values of the signed log-likelihood
ratio statistic (r) and the Z -score test, obtaining 0.167 and 0.203, respectively,
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and their corresponding 95% confidence intervals that resulted (0.295, 1.181) and
(0.339, 1.259), respectively. Thus, from this results they concluded that the sam-
ples do not provide evidence for rejecting the equality of the means of Cmax

(H0 : δ = 1).

Figure 1: Bioavailability study data: Relative profile likelihood of ρ.

Figure 2: Bioavailability study data: a) Relative profile likelihood of δ, b)
Relative profile likelihood contour plot for (δ, ρ) and individual 95% CI for δ

and ρ

When we carry out one dimensional inferences for δ and ρ, the assumption
H0 : ρ = 1 is not supported by the data, as can be observed in Figure 1, where
the 95% confidence interval for ρ resulted (0.277, 0.996). In the case of parameter
δ its 95% likelihood confidence interval, shown in Figure 2a, provides evidence
that both data sets share the same mean. The conclusions obtained from these
individual inferences coincide with the ones presented by Wu et al. (2002), and
this can be easily observed just looking at the 0.146 level likelihood contour plot,
shown in Figure 2b where, as we previously mentioned, the dotted lines projected
from the end points of the profile likelihood trajectories to their respective axes,
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provide these one dimensional 95% confidence intervals. In this figure we can
also observe that the point (δ = 1, ρ = 1), represented by a cross sign, lies into
the 0.05 level outer contour, which is associated to a 95% confidence region.
That is, the assumption of the simultaneous parameter values (δ = 1, ρ = 1) is
supported by the data; there is no evidence to reject the assumption that both
sets could come from the same distribution. Note that elongated contours, like
the ones presented in Figure 2b, are indicative of a relationship between δ and
ρ, suggesting a trade-off between these parameters, so we must be careful about
treating them individually. This aspect will be more evident in the next example.

Now, for the case of comparing the medians of these distributions, throughout
the parameter ψ, its 95% likelihood confidence interval provides evidence that
both data sets could come from distributions that share the same median, as
can be observed in Figure 3a. On the other hand, Figure 3b shows a likelihood
contour plot constructed for (ψ, ρ); the contours of this plot are not as elongated
as the contours for (δ, ρ), and the point (ψ = 1, ρ = 1), represented by a cross sign,
lies again into the 0.05 level outer, associated to a 95% confidence region. That
is, the assumption of simultaneous parameter values (ψ = 1, ρ = 1) is supported
by the data and same conclusion, as the one obtained in the case of the means
comparison, is derived.

Figure 3: Bioavailability study data: a) Relative profile likelihood of ψ, b)
Relative profile likelihood contour plot for (ψ, ρ) and individual 95% CI for ψ

and ρ.

4.2 Rainfall data

Data about the amount of rainfall (in acre-feet) from 52 clouds, 26 of which
were chosen at random and seeded with silver nitrate, was analyzed by Krish-
namoorthy and Mathew (2003). They constructed probability plots for these
particular data sets and found that lognormal models fit them very well. Their
interest was to test the hypothesis H0 : δ = 1 vs. H1 : δ > 1, so they constructed
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a one-sided 95% generalized confidence interval for ln(δ) that produced a lower
confidence limit of −0.20; they also obtained a generalized p-value of 0.078. On
the other hand, they performed a Z -score test for the same parameter and the
95% lower confidence limit resulted −0.06203, and the corresponding p-value was
0.06. They concluded that the data do not provide sufficient evidence to indicate
that the mean rainfall from seeded clouds is higher than the mean rainfall from
unseeded clouds.

Figure 4: Rainfall data: Relative profile likelihood of ρ.

Figure 5: Rainfall data: a) Relative profile likelihood of δ, b) Relative profile
likelihood contour plot for (δ, ρ) and individual 95% CI for δ and ρ.

When we perform individual inferences, the profile likelihood confidence in-
terval for ρ, that can be observed in Figure 4, provides no evidence to reject the
hypothesis H0 : ρ = 1. On the other hand, 95% likelihood interval for δ which is
presented in Figure 5a, indicates that the hypothesis H0 : δ = 1 is supported by
the data; both conclusions coincide with the results presented in Krishnamoorthy
and Mathew (2003). Nevertheless, it could be erroneous to infer, based on these
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individual tests, that these sets could come from the same distribution. Actu-
ally, the relative likelihood associated to this hypothesis is small (p-value< 0.05),
as can be observed in the 95% confidence region for (δ, ρ), presented in Figure
5b, where the point (δ = 1, ρ = 1), represented by a cross sign, lies outside de
0.05 level outer contour. The triangular and elongated contours shown in Fig-
ure 5b, make evident the strong relationship between these parameters, so we
must be careful about treating them individually. This data set exemplifies a
case where individual inferences for parameters δ and ρ are not rejected, but the
simultaneous hypothesis test (δ = 1, ρ = 1) is rejected.

Figure 6: Rainfall data: a) Relative profile likelihood of ψ, b) Relative profile
likelihood contour plot for (ψ, ρ) and individual 95% CI for ψ and ρ.

When using ψ to compare the medians of these distributions, its 95% likelihood
confidence interval, presented in Figure 6a, indicates that the hypothesis H0 : ψ =
1 is not supported by the data, providing evidence that these data sets seem to
come from distributions with different medians. On the other hand, a likelihood
contour plot for (ψ, ρ), presented in Figure 6b, confirms that the assumption of
simultaneous parameter values (ψ = 1, ρ = 1) is not supported by the data, since
the point (ψ = 1, ρ = 1), represented by a cross sign, lies outside de 0.05 level
outer contour.

4.3 Air quality data

The data analyzed in this example contains 31 consecutive daily Carbon
Monoxide measurements taken by an oil refinery located at the northeast of San
Francisco, between April 16 and May 16, 1993. Nine independent measurements,
from the same stack, were taken by The Bay Area Air Quality Management Dis-
trict (BAAQMD) over the period from September 11, 1990 to March 30, 1993.
Krishnamoorthy and Mathew (2003) observed that lognormal models fit these
data sets very well and, to prove the hypothesis H0 : δ ≤ 1 vs. H1 : δ > 1,

649



On the Problem of Comparing the Means and Medians of two Lognormal Distributions

they computed a 95% generalized lower confidence limit for the ratio of these
lognormal population means obtaining a value of 0.67, which is less than one, so
they concluded that the samples do not provide sufficient evidence to indicate
that the mean measurement by the refinery is greater than that of BAAQMD.

Figure 7: Air quality data: Relative profile likelihood of ρ.

The individual inferences that we performed on these samples showed that the
assumption ρ = 1 is not supported by the data, as can be observed in Figure 7,
where the 95% confidence interval for ρ resulted (0.298, 0.874).

Figure 8: Air quality data: a) Relative profile likelihood of δ, b) Relative
profile likelihood contour plot for (δ, ρ) and individual 95% CI for δ and ρ.

Regarding parameter δ, its 95% confidence interval, presented in Figure 8a, sup-
ports the assumption of equality of means, so same conclusion of Krishnamoorthy
and Mathew (2003) can be derived. Inferences about δ and ρ can be also observed
in Figure 8b, where the cross sign (δ = 1, ρ = 1) is located outside and so far
from the 0.05 level outer contour, that defines a 95% confidence region for (δ, ρ);
so there is evidence that the samples could come from different distributions.
This data exemplify a situation where the triangular likelihood contours suggest

650
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a relationship between δ and ρ, indicating a trade-off between these parameters;
so we must be careful about treating them individually.

Figure 9: Air quality data: a) Relative profile likelihood of ψ, b) Relative
profile likelihood contour plot for (ψ, ρ) and individual 95% CI for ψ and ρ.

A 95% likelihood confidence interval for ψ is used to compare the medians of
these distribution, this can be observed in Figure 9a where that the hypothesis
H0 : ψ = 1 is not supported by the data; so both data sets could come from
distributions that do not share the same median. On the other hand, a likelihood
contour plot for (ψ, ρ), presented in Figure 9b, shows that the assumption of
simultaneous parameter values (ψ = 1, ρ = 1) is not supported by the data,
because the point (ψ = 1, ρ = 1), represented by a cross sign, lies outside de 0.05
level outer contour.

4.4 Comparing fatty acids in two ray species

The term nutraceutical is coined from “nutrition” and “pharmaceutical”, and
it is usually applied to some food sources that provide health benefits, like treat-
ment and prevention of some diseases, in addition to the nutritional value they
contain. The consumption of essential fatty acids, particularly the n-3 long chain
polyunsaturated (LC-PUFA), like the eicosapentaenoic acid (EPA, C20:5) and the
docosahexaenoic acid (DHA, C22:6) are highly recommended, because they are
proved to reduce the risk of a coronary disease death (Harris and Dris-Etherton,
2008). Currently, oil fish is one of the most important sources of EPA and DHA,
and wild salmon, cod and herring, are some of the fish species with a considerable
content of these fatty acids. Rising demand of oil fish requires to find some al-
ternative sources of these essential fatty acids and ray liver oil has been found to
be a good alternative, as demostrated by a study made in some ray species from
Sinaloa, México (Navarro-Garćıa et al., 2014), where high levels of LC-PUFA
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n-3 C20:5, C20:6 and C22:5 were found. This can be observed in the descriptive
statistics for U. chillensis and U. halleri ray species, shown in Table 7.

Table 7: Percentage of content of Omega 3 in two ray species.

Specie Sample Size Minimum Maximum Mean Std. Dev.

U. chillensis 20 17.84 26.68 22.97 2.41

U. halleri 20 17.01 25.91 20.34 2.06

A Shapiro-Wilk test for the normality of the log-transformed data was per-
formed in both groups, obtaining a p-value of 0.3861 for the U. chillensis data
set and a p-value of 0.6936 for the U. halleri ray specie. A difference in the mean
content of Omega 3 in these species is suspected.

Figure 10: Ray species data: Relative profile likelihood of ρ.

In Figure 10 we can observe the 95% likelihood confidence interval for ρ which
supports the assumption ρ = 1; but the 95% likelihood confidence interval for δ,
presented in Figure 11a, indicates a difference in the mean content of Omega 3 for
these species; even more, this interval (1.06, 1.204) gives evidence that the mean
content of Omega 3 in U. chillensis is greater than the mean content of Omega
3 in U. halleri, since all interval values are greater than the parameter value
δ = 1. These individual inferences are also presented in Figure 11b, where we
can observe that the point corresponding to the parameter values (δ = 1, ρ = 1)
is located outside and so far from the 0.05 level outer contour, having evidence
that these samples could come from different distributions. Moreover, this exam-
ple shows a situation where the relationship between parameters δ and ρ seems
to be negligible, as evidenced by the nearly circular contours shown in Figure
11b, which suggest that the maximum likelihood estimation theory is probably
adequate for the actual sample size.

A computation of a 95% likelihood confidence interval for ψ was used to
compare the medians of these distributions; this interval, shown in Figure 12a,
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indicates that the hypothesis H0 : ψ = 1 is not supported by the data. Then,
both data sets could come from distributions with different median. On the other
hand, the likelihood contour plot for (ψ, ρ), presented in Figure 12b, provides
evidence that the assumption of simultaneous parameter values (ψ = 1, ρ = 1) is
not supported by the data, since the cross sign that represents the point (ψ =
1, ρ = 1), lies outside de 0.05 level outer contour.

The results we have obtained are important from the biological point of view,
since it was possible to differentiate between two ray species that biologically are
very close; species that lived and were captured in the same area, that is, both
shared the same source of fatty acids; hence, the detected differences between
them can be due to the way each of these species metabolize food. It is important
to emphasize that this kind of experimental study is very expensive, and sample
sizes are usually small, but using the proposal presented here it was possible to
detect differences between these ray species, using moderate sample sizes.

Figure 11: Ray species data: a) Relative profile likelihood of δ, b) Relative
profile likelihood contour plot for (δ, ρ) and individual 95% CI for δ and ρ.

Figure 12: Ray species data: a) Relative profile likelihood of ψ, b) Relative
profile likelihood contour plot for (ψ, ρ) and individual 95% CI for ψ and ρ.
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5 Conclusion

The simple closed-form expression developed in Section 2 and all the features
included in the likelihood contour plot, afford the comparison of two independent
lognormal data sets in a more exhaustive way. As we have seen, elongated or
triangular contour shapes are indicative of a trade-off between parameters δ and
ρ, so caution must be taken when summarizing individual inferences by using a
single p-value or its corresponding confidence interval. Monte Carlo simulations
showed that although coverage frequencies seems to be controlled in all scenar-
ios, the power of the inverted profile likelihood test is affected by the likelihood
contour shape. Now, even though contour plots for parameters (ψ, ρ) are not
as elongated as the ones obtained for (δ, ρ), the selection of the parameter to be
analyzed will be usually linked to the characteristics and objective of our problem.

When analyzing two data sets, it is important to have in mind a possible trade-
off between the parameters under study, even if we just want a one-parameter
comparison and are not interested in a distributions comparison. The likelihood
approach we proposed here summarizes the sample information about the param-
eter vectors (δ, ρ) or (ψ, ρ), contained in the data, and provides more elements to
support data conclusions.
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José A. Montoya
Department of Mathematics
University of Sonora, A. P. 1626
montoya@mat.uson.mx
Hermosillo, Sonora, México
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